Solar Radio Emissions and Ultralight Dark Matter
Abstract
:1. Introduction
2. Ultralight Dark Matter
3. Conversion in Solar Plasma
4. Propagation of the Converted Photons
5. Detection
6. Summary
Funding
Data Availability Statement
Conflicts of Interest
References
- Akerib, D.S.; Alsum, S.; Araújo, H.M.; Bai, X.; Bailey, A.J.; Balajthy, J.; Beltrame, P.; Bernard, E.P.; Bernstein, A.; Biesiadzinski, T.P.; et al. Results from a search for dark matter in the complete LUX exposure. Phys. Rev. Lett. 2017, 118, 021303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aprile, E.; Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Althueser, L.; Amaro, F.D.; Anthony, M.; Arneodo, F.; Baudis, L.; et al. Dark Matter Search Results from a One Ton-Year Exposure of XENON1T. Phys. Rev. Lett. 2018, 121, 111302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, Y.; Wang, Z.; Tao, Y.; Abdukerim, A.; Bo, Z.; Chen, W.; Chen, X.; Chen, Y.; Cheng, C.; Cheng, Y.; et al. Dark Matter Search Results from the PandaX-4T Commissioning Run. Phys. Rev. Lett. 2021, 127, 261802. [Google Scholar] [CrossRef]
- Ipser, J.; Sikivie, P. Can Galactic Halos Made of Axions? Phys. Rev. Lett. 1983, 50, 925. [Google Scholar] [CrossRef]
- Svrcek, P.; Witten, E. Axions In String Theory. JHEP 2006, 6, 51. [Google Scholar] [CrossRef] [Green Version]
- Redondo, J.; Postma, M. Massive hidden photons as lukewarm dark matter. JCAP 2009, 2, 5. [Google Scholar] [CrossRef] [Green Version]
- Nelson, A.E.; Scholtz, J. Dark Light, Dark Matter and the Misalignment Mechanism. Phys. Rev. 2011, D84, 103501. [Google Scholar] [CrossRef] [Green Version]
- Arias, P.; Cadamuro, D.; Goodsell, M.; Jaeckel, J.; Redondo, J.; Ringwald, A. WISPy Cold Dark Matter. JCAP 2012, 1206, 13. [Google Scholar] [CrossRef]
- Graham, P.W.; Mardon, J.; Rajendran, S. Vector Dark Matter from Inflationary Fluctuations. Phys. Rev. 2016, D93, 103520. [Google Scholar] [CrossRef] [Green Version]
- Peccei, R.D.; Quinn, H.R. CP Conservation in the Presence of Instantons. Phys. Rev. Lett. 1977, 38, 1440–1443. [Google Scholar] [CrossRef] [Green Version]
- Peccei, R.D.; Quinn, H.R. Constraints Imposed by CP Conservation in the Presence of Instantons. Phys. Rev. D 1977, 16, 1791–1797. [Google Scholar] [CrossRef]
- Weinberg, S. A New Light Boson? Phys. Rev. Lett. 1978, 40, 223–226. [Google Scholar] [CrossRef]
- Wilczek, F. Problem of Strong P and T Invariance in the Presence of Instantons. Phys. Rev. Lett. 1978, 40, 279–282. [Google Scholar] [CrossRef]
- Preskill, J.; Wise, M.B.; Wilczek, F. Cosmology of the Invisible Axion. Phys. Lett. 1983, B120, 127–132. [Google Scholar] [CrossRef] [Green Version]
- Abbott, L.F.; Sikivie, P. A Cosmological Bound on the Invisible Axion. Phys. Lett. 1983, B120, 133–136. [Google Scholar] [CrossRef]
- Dine, M.; Fischler, W. The Not So Harmless Axion. Phys. Lett. 1983, B120, 137–141. [Google Scholar] [CrossRef]
- Vilenkin, A.; Everett, A.E. Cosmic strings and domain walls in models with Goldstone and pseudo-Goldstone bosons. Phys. Rev. Lett. 1982, 48, 1867. [Google Scholar] [CrossRef]
- Sikivie, P. Axions, domain walls, and the early universe. Phys. Rev. Lett. 1982, 48, 1156. [Google Scholar] [CrossRef]
- Holdom, B. Two U(1)’s and Epsilon Charge Shifts. Phys. Lett. 1986, 166B, 196–198. [Google Scholar] [CrossRef]
- Dienes, K.R.; Kolda, C.F.; March-Russell, J. Kinetic mixing and the supersymmetric gauge hierarchy. Nucl. Phys. B 1997, 492, 104–118. [Google Scholar] [CrossRef]
- Abel, S.A.; Schofield, B.W. Brane anti-brane kinetic mixing, millicharged particles and SUSY breaking. Nucl. Phys. B 2004, 685, 150–170. [Google Scholar] [CrossRef] [Green Version]
- Abel, S.A.; Goodsell, M.D.; Jaeckel, J.; Khoze, V.V.; Ringwald, A. Kinetic Mixing of the Photon with Hidden U(1)s in String Phenomenology. JHEP 2008, 7, 124. [Google Scholar] [CrossRef] [Green Version]
- Abel, S.A.; Jaeckel, J.; Khoze, V.V.; Ringwald, A. Illuminating the Hidden Sector of String Theory by Shining Light through a Magnetic Field. Phys. Lett. B 2008, 666, 66–70. [Google Scholar] [CrossRef] [Green Version]
- Goodsell, M.; Jaeckel, J.; Redondo, J.; Ringwald, A. Naturally Light Hidden Photons in LARGE Volume String Compactifications. JHEP 2009, 11, 27. [Google Scholar] [CrossRef]
- Co, R.T.; Pierce, A.; Zhang, Z.; Zhao, Y. Dark Photon Dark Matter Produced by Axion Oscillations. Phys. Rev. D 2019, 99, 075002. [Google Scholar] [CrossRef] [Green Version]
- Dror, J.A.; Harigaya, K.; Narayan, V. Parametric Resonance Production of Ultralight Vector Dark Matter. Phys. Rev. D 2019, 99, 035036. [Google Scholar] [CrossRef] [Green Version]
- Bastero-Gil, M.; Santiago, J.; Ubaldi, L.; Vega-Morales, R. Vector dark matter production at the end of inflation. J. Cosmol. Astropart. Phys. 2019, 4, 15. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, P.; Kitajima, N.; Reece, M.; Sekiguchi, T.; Takahashi, F. Relic Abundance of Dark Photon Dark Matter. Phys. Lett. B 2020, 801, 135136. [Google Scholar] [CrossRef]
- Co, R.T.; Harigaya, K.; Pierce, A. Gravitational waves and dark photon dark matter from axion rotations. JHEP 2021, 12, 99. [Google Scholar] [CrossRef]
- Nakayama, K.; Yin, W. Hidden photon and axion dark matter from symmetry breaking. JHEP 2021, 10, 26. [Google Scholar] [CrossRef]
- Ema, Y.; Nakayama, K.; Tang, Y. Production of Purely Gravitational Dark Matter: The Case of Fermion and Vector Boson. JHEP 2019, 7, 60. [Google Scholar] [CrossRef] [Green Version]
- Kolb, E.W.; Long, A.J. Completely dark photons from gravitational particle production during the inflationary era. JHEP 2021, 3, 283. [Google Scholar] [CrossRef]
- Salehian, B.; Gorji, M.A.; Firouzjahi, H.; Mukohyama, S. Vector dark matter production from inflation with symmetry breaking. Phys. Rev. D 2021, 103, 063526. [Google Scholar] [CrossRef]
- Ahmed, A.; Grzadkowski, B.; Socha, A. Gravitational production of vector dark matter. JHEP 2020, 8, 59. [Google Scholar] [CrossRef]
- Nakai, Y.; Namba, R.; Wang, Z. Light Dark Photon Dark Matter from Inflation. JHEP 2020, 12, 170. [Google Scholar] [CrossRef]
- Nakayama, K.; Tang, Y. Gravitational Production of Hidden Photon Dark Matter in Light of the XENON1T Excess. Phys. Lett. B 2020, 811, 135977. [Google Scholar] [CrossRef]
- Firouzjahi, H.; Gorji, M.A.; Mukohyama, S.; Salehian, B. Dark photon dark matter from charged inflaton. JHEP 2021, 6, 50. [Google Scholar] [CrossRef]
- Bastero-Gil, M.; Santiago, J.; Ubaldi, L.; Vega-Morales, R. Dark photon dark matter from a rolling inflaton. JCAP 2022, 2, 15. [Google Scholar] [CrossRef]
- Firouzjahi, H.; Gorji, M.A.; Mukohyama, S.; Talebian, A. Dark matter from entropy perturbations in curved field space. Phys. Rev. D 2022, 105, 43501. [Google Scholar] [CrossRef]
- Sato, T.; Takahashi, F.; Yamada, M. Gravitational production of dark photon dark matter with mass generated by the Higgs mechanism. J. Cosmol. Astropart. Phys. 2022, 8, 22. [Google Scholar] [CrossRef]
- Alonso-Álvarez, G.; Hugle, T.; Jaeckel, J. Misalignment & Co.: (Pseudo-)scalar and vector dark matter with curvature couplings. J. Cosmol. Astropart. Phys. 2020, 2, 14. [Google Scholar]
- Nakayama, K. Vector Coherent Oscillation Dark Matter. JCAP 2019, 1910, 19. [Google Scholar] [CrossRef] [Green Version]
- Nakayama, K. Constraint on Vector Coherent Oscillation Dark Matter with Kinetic Function. JCAP 2020, 8, 33. [Google Scholar] [CrossRef]
- Long, A.J.; Wang, L.T. Dark Photon Dark Matter from a Network of Cosmic Strings. Phys. Rev. D 2019, 99, 063529. [Google Scholar] [CrossRef] [Green Version]
- de Salas, P.F.; Malhan, K.; Freese, K.; Hattori, K.; Valluri, M. On the estimation of the Local Dark Matter Density using the rotation curve of the Milky Way. JCAP 2019, 10, 37. [Google Scholar] [CrossRef] [Green Version]
- de Salas, P.F.; Widmark, A. Dark matter local density determination: Recent observations and future prospects. Rept. Prog. Phys. 2021, 84, 104901. [Google Scholar] [CrossRef]
- van Haarlem, M.P.; Wise, M.W.; Gunst, A.W.; Heald, G.; McKean, J.P.; Hessels, J.W.; de Bruyn, A.G.; Nijboer, R.; Swinbank, J.; Fallows, R.; et al. LOFAR: The LOw-Frequency ARray. Astron. Astrophys. 2013, 556, A2. [Google Scholar] [CrossRef] [Green Version]
- Dewdney, P.E.; Hall, P.J.; Schilizzi, R.T.; Lazio, T.J.L. The square kilometre array. Proc. IEEE 2009, 97, 1482–1496. [Google Scholar] [CrossRef]
- Kaiser, M.L.; Kucera, T.; Davila, J.; St Cyr, O.; Guhathakurta, M.; Christian, E. The STEREO mission: An introduction. Space Sci. Rev. 2008, 136, 5–16. [Google Scholar] [CrossRef]
- Pulupa, M.; Bale, S.D.; Bonnell, J.W.; Bowen, T.A.; Carruth, N.; Goetz, K.; Gordon, D.; Harvey, P.R.; Maksimovic, M.; Martínez-Oliveros, J.C.; et al. The solar probe plus radio frequency spectrometer: Measurement requirements, analog design, and digital signal processing. J. Geophys. Res. Space Phys. 2017, 122, 2836–2854. [Google Scholar] [CrossRef]
- Pshirkov, M.S.; Popov, S.B. Conversion of Dark matter axions to photons in magnetospheres of neutron stars. J. Exp. Theor. Phys. 2009, 108, 384–388. [Google Scholar] [CrossRef]
- Huang, F.P.; Kadota, K.; Sekiguchi, T.; Tashiro, H. Radio telescope search for the resonant conversion of cold dark matter axions from the magnetized astrophysical sources. Phys. Rev. D 2018, 97, 123001. [Google Scholar] [CrossRef] [Green Version]
- Hook, A.; Kahn, Y.; Safdi, B.R.; Sun, Z. Radio Signals from Axion Dark Matter Conversion in Neutron Star Magnetospheres. Phys. Rev. Lett. 2018, 121, 241102. [Google Scholar] [CrossRef] [Green Version]
- Hardy, E.; Song, N. Listening for Dark Photon Radio from the Galactic Centre. arXiv 2022, arXiv:2212.09756. [Google Scholar]
- Wang, J.W.; Bi, X.J.; Yao, R.M.; Yin, P.F. Exploring axion dark matter through radio signals from magnetic white dwarf stars. Phys. Rev. D 2021, 103, 115021. [Google Scholar] [CrossRef]
- Dessert, C.; Long, A.J.; Safdi, B.R. X-ray Signatures of Axion Conversion in Magnetic White Dwarf Stars. Phys. Rev. Lett. 2019, 123, 061104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dessert, C.; Dunsky, D.; Safdi, B.R. Upper limit on the axion-photon coupling from magnetic white dwarf polarization. Phys. Rev. D 2022, 105, 103034. [Google Scholar] [CrossRef]
- Mondal, S.; Oberoi, D.; Mohan, A. First Radio Evidence for Impulsive Heating Contribution to the Quiet Solar Corona. Astrophys. J. Lett. 2020, 895, L39. [Google Scholar] [CrossRef]
- Zhitnitsky, A.R. ’Nonbaryonic’ dark matter as baryonic color superconductor. JCAP 2003, 10, 10. [Google Scholar] [CrossRef] [Green Version]
- Liang, X.; Zhitnitsky, A. Axion field and the quark nugget’s formation at the QCD phase transition. Phys. Rev. D 2016, 94, 083502. [Google Scholar] [CrossRef] [Green Version]
- Ge, S.; Liang, X.; Zhitnitsky, A. Cosmological axion and a quark nugget dark matter model. Phys. Rev. D 2018, 97, 043008. [Google Scholar] [CrossRef] [Green Version]
- Ge, S.; Liang, X.; Zhitnitsky, A. Cosmological CP odd axion field as the coherent Berry’s phase of the Universe. Phys. Rev. D 2017, 96, 063514. [Google Scholar] [CrossRef] [Green Version]
- Ge, S.; Lawson, K.; Zhitnitsky, A. Axion quark nugget dark matter model: Size distribution and survival pattern. Phys. Rev. D 2019, 99, 116017. [Google Scholar] [CrossRef] [Green Version]
- Zhitnitsky, A. Solar Extreme UV radiation and quark nugget dark matter model. JCAP 2017, 10, 50. [Google Scholar] [CrossRef] [Green Version]
- Raza, N.; van Waerbeke, L.; Zhitnitsky, A. Solar corona heating by axion quark nugget dark matter. Phys. Rev. D 2018, 98, 103527. [Google Scholar] [CrossRef] [Green Version]
- Ge, S.; Siddiqui, M.S.R.; Van Waerbeke, L.; Zhitnitsky, A. Impulsive radio events in quiet solar corona and axion quark nugget dark matter. Phys. Rev. D 2020, 102, 123021. [Google Scholar] [CrossRef]
- An, H.; Huang, F.P.; Liu, J.; Xue, W. Radio-frequency Dark Photon Dark Matter across the Sun. Phys. Rev. Lett. 2021, 126, 181102. [Google Scholar] [CrossRef]
- De La Luz, V.; Lara, A.; Mendoza, E.; Shimojo, M. 3D Simulations of the Quiet Sun Radio Emission at Millimeter and Submillimeter Wavelengths. Geofis. Int. 2008, 47, 197–203. [Google Scholar] [CrossRef]
- Moncuquet, M.; Meyer-Vernet, N.; Issautier, K.; Pulupa, M.; Bonnell, J.W.; Bale, S.D.; de Wit, T.D.; Goetz, K.; Griton, L.; Harvey, P.R.; et al. First In Situ Measurements of Electron Density and Temperature from Quasi-thermal Noise Spectroscopy with Parker Solar Probe /FIELDS. Astrophys. J. Suppl. Ser. 2020, 246, 44. [Google Scholar] [CrossRef] [Green Version]
- Leblanc, Y.; Dulk, G.A.; Bougeret, J.L. Tracing the Electron Density from the Corona to 1 au. Sol. Phys. 1998, 183, 165–180. [Google Scholar] [CrossRef]
- Raffelt, G.; Stodolsky, L. Mixing of the Photon with Low Mass Particles. Phys. Rev. 1988, D37, 1237. [Google Scholar] [CrossRef] [Green Version]
- Redondo, J. Helioscope Bounds on Hidden Sector Photons. JCAP 2008, 807, 8. [Google Scholar] [CrossRef]
- Kontar, E.P.; Chen, X.; Chrysaphi, N.; Jeffrey, N.L.S.; Emslie, A.G.; Krupar, V.; Maksimovic, M.; Gordovskyy, M.; Browning, P.K. Anisotropic Radio-wave Scattering and the Interpretation of Solar Radio Emission Observations. Astrophys. J. 2019, 884, 122. [Google Scholar] [CrossRef] [Green Version]
- Thejappa, G.; MacDowall, R.J.; Kaiser, M.L. Monte Carlo Simulation of Directivity of Interplanetary Radio Bursts. Astrophys. J. 2007, 671, 894–906. [Google Scholar] [CrossRef]
- Bian, N.H.; Emslie, A.G.; Kontar, E.P. A Fokker–Planck Framework for Studying the Diffusion of Radio Burst Waves in the Solar Corona. Astrophys. J. 2019, 873, 33. [Google Scholar] [CrossRef] [Green Version]
- Acharya, S.K.; Chluba, J.; Sarkar, A. Comparison of numerical methods for computing the repeated Compton scattering of photons in isotropic media. Mon. Not. R. Astron. Soc. 2021, 507, 2052–2072. [Google Scholar] [CrossRef]
- Cooper, G. Compton Fokker–Planck equation for hot plasmas. Phys. Rev. D 1971, 3, 2312. [Google Scholar] [CrossRef]
- An, H.; Chen, X.; Ge, S.; Liu, J.; Luo, Y. Searching for Ultralight Dark Matter Conversion in Solar Corona using LOFAR Data. arXiv 2023, arXiv:2301.03622. [Google Scholar]
- Drukier, A.K.; Freese, K.; Spergel, D.N. Detecting Cold Dark Matter Candidates. Phys. Rev. D 1986, 33, 3495–3508. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.; Rott, C.; Itow, Y. Impact of the dark matter velocity distribution on capture rates in the Sun. JCAP 2014, 5, 49. [Google Scholar] [CrossRef] [Green Version]
- Evans, N.W.; O’Hare, C.A.J.; McCabe, C. Refinement of the standard halo model for dark matter searches in light of the Gaia Sausage. Phys. Rev. D 2019, 99, 023012. [Google Scholar] [CrossRef] [Green Version]
- An, H.; Ge, S.; Guo, W.Q.; Huang, X.; Liu, J.; Lu, Z. Direct detection of dark photon dark matter using radio telescopes. arXiv 2022, arXiv:2207.05767. [Google Scholar]
- SKA-Collaboration. SKA1 System Baseline Design. 2013. Available online: https://www.skatelescope.org/wp-content/uploads/2014/11/SKA-TEL-SKO-0000002-AG-BD-DD-Rev01-SKA1_System_Baseline_Design.pdf (accessed on 2 March 2023).
- Nijboer, R.J.; Pandey-Pommier, M.; de Bruyn, A.G. LOFAR imaging capabilities and system sensitivity. arXiv 2013, arXiv:1308.4267. [Google Scholar]
- de Vos, M.; Gunst, A.W.; Nijboer, R. The LOFAR Telescope: System Architecture and Signal Processing. IEEE Proc. 2009, 97, 1431–1437. [Google Scholar] [CrossRef]
- McDermott, S.D.; Witte, S.J. Cosmological evolution of light dark photon dark matter. Phys. Rev. 2020, D101, 063030. [Google Scholar] [CrossRef] [Green Version]
- Hoang Nguyen, L.; Lobanov, A.; Horns, D. First results from the WISPDMX radio frequency cavity searches for hidden photon dark matter. JCAP 2019, 1910, 14. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Bethge, C.; Tian, H.; Tomczyk, S.; Morton, R.; Del Zanna, G.; McIntosh, S.W.; Karak, B.B.; Gibson, S.; Samanta, T.; et al. Global maps of the magnetic field in the solar corona. Science 2020, 369, 694–697. [Google Scholar] [CrossRef]
- Betz, M.; Caspers, F.; Gasior, M.; Thumm, M.; Rieger, S.W. First results of the CERN Resonant Weakly Interacting sub-eV Particle Search (CROWS). Phys. Rev. D 2013, 88, 075014. [Google Scholar] [CrossRef] [Green Version]
- Ehret, K.; Frede, M.; Ghazaryan, S.; Hildebrandt, M.; Knabbe, E.A.; Kracht, D.; Lindner, A.; List, J.; Meier, T.; Meyer, N.; et al. New ALPS Results on Hidden-Sector Lightweights. Phys. Lett. B 2010, 689, 149–155. [Google Scholar] [CrossRef]
- Ballou, R.; Deferne, G.; Finger, M., Jr.; Finger, M.; Flekova, L.; Hosek, J.; Kunc, S.; Macuchova, K.; Meissner, K.A.; Pugnat, P.; et al. New exclusion limits on scalar and pseudoscalar axionlike particles from light shining through a wall. Phys. Rev. D 2015, 92, 092002. [Google Scholar] [CrossRef] [Green Version]
- Ayala, A.; Domínguez, I.; Giannotti, M.; Mirizzi, A.; Straniero, O. Revisiting the bound on axion-photon coupling from Globular Clusters. Phys. Rev. Lett. 2014, 113, 191302. [Google Scholar] [CrossRef] [Green Version]
- Dolan, M.J.; Hiskens, F.J.; Volkas, R.R. Advancing globular cluster constraints on the axion-photon coupling. JCAP 2022, 10, 96. [Google Scholar] [CrossRef]
- Noordhuis, D.; Prabhu, A.; Witte, S.J.; Chen, A.Y.; Cruz, F.; Weniger, C. Novel Constraints on Axions Produced in Pulsar Polar Cap Cascades. arXiv 2022, arXiv:2209.09917. [Google Scholar]
- Li, H.J.; Guo, J.G.; Bi, X.J.; Lin, S.J.; Yin, P.F. Limits on axion-like particles from Mrk 421 with 4.5-year period observations by ARGO-YBJ and Fermi-LAT. Phys. Rev. D 2021, 103, 083003. [Google Scholar] [CrossRef]
- Li, H.J.; Bi, X.J.; Yin, P.F. Searching for axion-like particles with the blazar observations of MAGIC and Fermi-LAT. Chin. Phys. C 2022, 46, 085105. [Google Scholar] [CrossRef]
- Davies, J.; Meyer, M.; Cotter, G. Constraints on axionlike particles from a combined analysis of three flaring Fermi flat-spectrum radio quasars. arXiv 2022, arXiv:2211.03414. [Google Scholar]
- Ajello, M.; Albert, A.; Anderson, B.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Blandford, R.D.; Bloom, E.D.; et al. Search for Spectral Irregularities due to Photon–Axionlike-Particle Oscillations with the Fermi Large Area Telescope. Phys. Rev. Lett. 2016, 116, 161101. [Google Scholar] [CrossRef] [Green Version]
- Anastassopoulos, V.; Aune, S.; Barth, K.; Belov, A.; Cantatore, G.; Carmona, J.M.; Castel, J.F.; Cetin, S.A.; Christensen, F.; Collar, J.I.; et al. New CAST Limit on the Axion-Photon Interaction. Nat. Phys. 2017, 13, 584–590. [Google Scholar] [CrossRef] [Green Version]
- De Panfilis, S.; Melissinos, A.C.; Moskowitz, B.E.; Rogers, J.T.; Semertzidis, Y.K.; Wuensch, W.; Halama, H.J.; Prodell, A.G.; Fowler, W.B.; Nezrick, F.A. Limits on the Abundance and Coupling of Cosmic Axions at 4.5-Microev < m(a) < 5.0-Microev. Phys. Rev. Lett. 1987, 59, 839. [Google Scholar] [CrossRef] [Green Version]
- Wuensch, W.; De Panfilis-Wuensch, S.; Semertzidis, Y.K.; Rogers, J.T.; Melissinos, A.C.; Halama, H.J.; Moskowitz, B.E.; Prodell, A.G.; Fowler, W.B.; Nezrick, F.A. Results of a Laboratory Search for Cosmic Axions and Other Weakly Coupled Light Particles. Phys. Rev. 1989, D40, 3153. [Google Scholar] [CrossRef] [Green Version]
- Hagmann, C.; Sikivie, P.; Sullivan, N.S.; Tanner, D.B. Results from a search for cosmic axions. Phys. Rev. 1990, D42, 1297–1300. [Google Scholar] [CrossRef]
- Asztalos, S.J.; Daw, E.; Peng, H.; Rosenberg, L.J.; Hagmann, C.; Kinion, D.; Stoeffl, W.; van Bibber, K.; Sikivie, P.; Sullivan, N.S.; et al. Large scale microwave cavity search for dark matter axions. Phys. Rev. 2001, D64, 092003. [Google Scholar] [CrossRef] [Green Version]
- Asztalos, S.J.; Carosi, G.; Hagmann, C.; Kinion, D.; Van Bibber, K.; Hotz, M.; Rosenberg, L.J.; Rybka, G.; Hoskins, J.; Hwang, J.; et al. A SQUID-based microwave cavity search for dark-matter axions. Phys. Rev. Lett. 2010, 104, 041301. [Google Scholar] [CrossRef] [Green Version]
- Du, N.; Force, N.; Khatiwada, R.; Lentz, E.; Ottens, R.; Rosenberg, L.J.; Rybka, G.; Carosi, G.; Woollett, N.; Bowring, D.; et al. A Search for Invisible Axion Dark Matter with the Axion Dark Matter Experiment. Phys. Rev. Lett. 2018, 120, 151301. [Google Scholar] [CrossRef] [Green Version]
- Navarro, J.F.; Frenk, C.S.; White, S.D.M. A Universal Density Profile from Hierarchical Clustering. Astrophys. J. 1997, 490, 493. [Google Scholar] [CrossRef]
- Braine, T.; Cervantes, R.; Crisosto, N.; Du, N.; Kimes, S.; Rosenberg, L.J.; Rybka, G.; Yang, J.; Bowring, D.; Chou, A.S.; et al. Extended Search for the Invisible Axion with the Axion Dark Matter Experiment. Phys. Rev. Lett. 2020, 124, 101303. [Google Scholar] [CrossRef] [Green Version]
- Boutan, C.; Jones, M.; LaRoque, B.H.; Oblath, N.S.; Cervantes, R.; Du, N.; Force, N.; Kimes, S.; Ottens, R.; Rosenberg, L.J.; et al. Piezoelectrically Tuned Multimode Cavity Search for Axion Dark Matter. Phys. Rev. Lett. 2018, 121, 261302. [Google Scholar] [CrossRef] [Green Version]
- Zhong, L.; Al Kenany, S.; Backes, K.M.; Brubaker, B.M.; Cahn, S.B.; Carosi, G.; Gurevich, Y.V.; Kindel, W.F.; Lamoreaux, S.K.; Lehnert, K.W.; et al. Results from phase 1 of the HAYSTAC microwave cavity axion experiment. Phys. Rev. D 2018, 97, 092001. [Google Scholar] [CrossRef] [Green Version]
- Backes, K.M.; Palken, D.A.; Kenany, S.A.; Brubaker, B.M.; Cahn, S.B.; Droster, A.; Hilton, G.C.; Ghosh, S.; Jackson, H.; Lamoreaux, S.K.; et al. A quantum-enhanced search for dark matter axions. Nature 2021, 590, 238–242. [Google Scholar] [CrossRef]
- Alesini, D.; Braggio, C.; Carugno, G.; Crescini, N.; D’Agostino, D.; Di Gioacchino, D.; Di Vora, R.; Falferi, P.; Gambardella, U.; Gatti, C.; et al. Search for invisible axion dark matter of mass ma = 43 μeV with the QUAX–aγ experiment. Phys. Rev. D 2021, 103, 102004. [Google Scholar] [CrossRef]
- Lee, S.; Ahn, S.; Choi, J.; Ko, B.R.; Semertzidis, Y.K. Axion Dark Matter Search around 6.7 μeV. Phys. Rev. Lett. 2020, 124, 101802. [Google Scholar] [CrossRef] [Green Version]
- Jeong, J.; Youn, S.; Bae, S.; Kim, J.; Seong, T.; Kim, J.E.; Semertzidis, Y.K. Search for Invisible Axion Dark Matter with a Multiple-Cell Haloscope. Phys. Rev. Lett. 2020, 125, 221302. [Google Scholar] [CrossRef] [PubMed]
- Kwon, O.; Lee, D.; Chung, W.; Ahn, D.; Byun, H.; Caspers, F.; Choi, H.; Choi, J.; Chong, Y.; Jeong, H.; et al. First Results from an Axion Haloscope at CAPP around 10.7 μeV. Phys. Rev. Lett. 2021, 126, 191802. [Google Scholar] [CrossRef]
- Bartram, C.; Braine, T.; Burns, E.; Cervantes, R.; Crisosto, N.; Du, N.; Korandla, H.; Leum, G.; Mohapatra, P.; Nitta, T.; et al. Search for Invisible Axion Dark Matter in the 3.3–4.2 μeV Mass Range. Phys. Rev. Lett. 2021, 127, 261803. [Google Scholar] [CrossRef]
- Crisosto, N.; Sikivie, P.; Sullivan, N.S.; Tanner, D.B.; Yang, J.; Rybka, G. ADMX SLIC: Results from a Superconducting LC Circuit Investigating Cold Axions. Phys. Rev. Lett. 2020, 124, 241101. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Yang, B.; Yoon, H.; Ahn, M.; Park, H.; Min, B.; Kim, D.; Yoo, J. Searching for Invisible Axion Dark Matter with an 18 T Magnet Haloscope. Phys. Rev. Lett. 2022, 128, 241805. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kwon, O.; Kutlu, C.; Chung, W.; Matlashov, A.; Uchaikin, S.; van Loo, A.F.; Nakamura, Y.; Oh, S.; Byun, H.; et al. Near-Quantum-Noise Axion Dark Matter Search at CAPP around 9.5 μeV. arXiv 2022, arXiv:2207.13597. [Google Scholar]
- Yi, A.K.; Ahn, S.; Kutlu, Ç.; Kim, J.; Ko, B.R.; Ivanov, B.I.; Byun, H.; van Loo, A.F.; Park, S.; Jeong, J.; et al. Axion Dark Matter Search around 4.55 μeV with Dine-Fischler-Srednicki-Zhitnitskii Sensitivity. Phys. Rev. Lett. 2022, 130, 071002. [Google Scholar] [CrossRef]
- Adair, C.M.; Altenmüller, K.; Anastassopoulos, V.; Arguedas Cuendis, S.; Baier, J.; Barth, K.; Belov, A.; Bozicevic, D.; Bräuninger, H.; Cantatore, G.; et al. Search for Dark Matter Axions with CAST-CAPP. Nat. Commun. 2022, 13, 6180. [Google Scholar] [CrossRef]
- Jewell, M.J.; Leder, A.F.; Backes, K.M.; Bai, X.; van Bibber, K.; Brubaker, B.M.; Cahn, S.B.; Droster, A.; Esmat, M.H.; Ghosh, S.; et al. New Results from HAYSTAC’s Phase II Operation with a Squeezed State Receiver. arXiv 2023, arXiv:2301.09721. [Google Scholar]
- Quiskamp, A.P.; McAllister, B.T.; Altin, P.; Ivanov, E.N.; Goryachev, M.; Tobar, M.E. Direct search for dark matter axions excluding ALP cogenesis in the 63- to 67-μeV range with the ORGAN experiment. Sci. Adv. 2022, 8, abq3765. [Google Scholar] [CrossRef]
- Alesini, D.; Braggio, C.; Carugno, G.; Crescini, N.; D’Agostino, D.; Di Gioacchino, D.; Di Vora, R.; Falferi, P.; Gallo, S.; Gambardella, U.; et al. Galactic axions search with a superconducting resonant cavity. Phys. Rev. D 2019, 99, 101101. [Google Scholar] [CrossRef] [Green Version]
- Alesini, D.; Babusci, D.; Braggio, C.; Carugno, G.; Crescini, N.; D’Agostino, D.; D’Elia, A.; Di Gioacchino, D.; Di Vora, R.; Falferi, P.; et al. Search for Galactic axions with a high-Q dielectric cavity. Phys. Rev. D 2022, 106, 052007. [Google Scholar] [CrossRef]
- Chang, H.; Chang, J.Y.; Chang, Y.C.; Chang, Y.H.; Chang, Y.H.; Chen, C.H.; Chen, C.F.; Chen, K.Y.; Chen, Y.F.; Chiang, W.Y.; et al. First Results from the Taiwan Axion Search Experiment with a Haloscope at 19.6 μeV. Phys. Rev. Lett. 2022, 129, 111802. [Google Scholar] [CrossRef] [PubMed]
- O’Hare, C. Cajohare/AxionLimits: AxionLimits. 2020. Available online: https://cajohare.github.io/AxionLimits/ (accessed on 2 March 2023). [CrossRef]
- Zaslavsky, A.; Meyer-Vernet, N.; Hoang, S.; Maksimovic, M.; Bale, S.D. On the antenna calibration of space radio instruments using the galactic background: General formulas and application to STEREO/WAVES. Radio Sci. 2011, 46, 1–7. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, H.; Ge, S.; Liu, J. Solar Radio Emissions and Ultralight Dark Matter. Universe 2023, 9, 142. https://doi.org/10.3390/universe9030142
An H, Ge S, Liu J. Solar Radio Emissions and Ultralight Dark Matter. Universe. 2023; 9(3):142. https://doi.org/10.3390/universe9030142
Chicago/Turabian StyleAn, Haipeng, Shuailiang Ge, and Jia Liu. 2023. "Solar Radio Emissions and Ultralight Dark Matter" Universe 9, no. 3: 142. https://doi.org/10.3390/universe9030142
APA StyleAn, H., Ge, S., & Liu, J. (2023). Solar Radio Emissions and Ultralight Dark Matter. Universe, 9(3), 142. https://doi.org/10.3390/universe9030142