The Dynamics of Earth’s Cusp in Response to the Interplanetary Shock
Abstract
:1. Introduction
2. Observations
2.1. The Motion of the High-Altitude Cusp in Response to an IP Shock
2.2. Energetic Ions and Impulsive Electric Fields in the Moving Cusp
3. Discussion
4. Conclusions
- 1.
- According to the ACE observations, an IP shock arrived at Earth’s magnetosphere at about 23:00 UT, together with strong solar wind dynamic pressure pulses and large southward IMF. Under the impact of the IP shock, THEMIS E in the subsolar magnetosheath went into solar wind three times from 23:00–23:30 UT, indicating that there were successive dayside magnetosphere compressions and relaxations. Meanwhile, triple cusps were observed by Cluster C4, and each encounter had a good one-to-one correspondence with the dayside magnetosphere compression and relaxation. Therefore, this multiple cusp phenomenon can be attributed to a temporal effect that the same cusp is moving back and forth three times under the driving of the solar wind dynamic pressure.
- 2.
- In the moving cusp, there were strong electric field perturbations up to 40 mV/m and energetic ions (O, He and H) up to MeV. These energetic ions were mainly distributed at pitch angles of 90– 180, while there were low-energy ions (no more than 1 keV) in the antifield-aligned direction outside the cusp. These pitch angle features of different ions and the observations of the O population imply that energetic ions in the moving cusp originate from the ionospheric outflows, which should experience further perpendicular acceleration in the upward process.
- 3.
- Strong electric field perturbations and weak total magnetic field in the moving cusp can cause much more remarkable energy increase of O than light ions (He and H), mainly due to the polarization drift. In other words, the impulsive acceleration by electric fields is mass-dependent, which can lead to the fast formation of a high-energy population of O. The ratio of O/H is increasing from 10 keV to MeV, indicating the efficient acceleration of O. The agreement between the observations and estimates based on Equation (1) supports the conclusion that impulsive acceleration by electric fields in the moving cusp could play a crucial role in the dynamics of energetic ions, especially for O.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Frank, L.A. Plasma in the earth’s polar magnetosphere. J. Geophys. Res. 1971, 76, 5202–5219. [Google Scholar] [CrossRef] [Green Version]
- Newell, P.T.; Meng, C.I. The cusp and the cleft/boundary layer: Low-altitude identification and statistical local time variation. J. Geophys. Res. 1988, 93, 14549–14556. [Google Scholar] [CrossRef]
- Maynard, N.C. Coupling the solar-wind/IMF to the ionosphere through the high latitude cusps. Surv. Geophys. 2005, 26, 255–280. [Google Scholar] [CrossRef]
- Zong, Q.; Fritz, T.; Korth, A.; Daly, P.; Dunlop, M.; Balogh, A.; Fennell, J.; Sullivan, J.; Friedel, R.; Reme, H. Energetic electrons as a field line topology tracer in the high latitude boundary/cusp region: Cluster rapid observations. Surv. Geophys. 2005, 26, 215–240. [Google Scholar] [CrossRef]
- Dunlop, M.; Lavraud, B.; Cargill, P.; Taylor, M.; Balogh, A.; Réme, H.; Decreau, P.; Glassmeier, K.H.; Elphic, R.; Bosqued, J.M.; et al. Cluster observations of the cusp: Magnetic structure and dynamics. Surv. Geophys. 2005, 26, 5–55. [Google Scholar] [CrossRef]
- Russell, C. The polar cusp. Adv. Space Res. 2000, 25, 1413–1424. [Google Scholar] [CrossRef]
- Zhou, X.; Russell, C.; Le, G.; Fuselier, S.; Scudder, J. Solar wind control of the polar cusp at high altitude. J. Geophys. Res. 2000, 105, 245–251. [Google Scholar] [CrossRef] [Green Version]
- Tsyganenko, N.; Russell, C. Magnetic signatures of the distant polar cusps: Observations by Polar and quantitative modeling. J. Geophys. Res. 1999, 104, 24939–24955. [Google Scholar] [CrossRef]
- Mĕrka, J.; Šafránková, J.; Nĕmeček, Z. Cusp-like plasma in high altitudes: A statistical study of the width and location of the cusp from Magion-4. Ann. Geophys. 2002, 20, 311–320. [Google Scholar] [CrossRef] [Green Version]
- Newell, P.T.; Meng, C.I.; Sibeck, D.G.; Lepping, R. Some low-altitude cusp dependencies on the interplanetary magnetic field. J. Geophys. Res. 1989, 94, 8921–8927. [Google Scholar] [CrossRef]
- Newell, P.T.; Meng, C.I. Ionospheric projections of magnetospheric regions under low and high solar wind pressure conditions. J. Geophys. Res. 1994, 99, 273–286. [Google Scholar] [CrossRef]
- Yamauchi, M.; Nilsson, H.; Eliasson, L.; Norberg, O.; Boehm, M.; Clemmons, J.; Lepping, R.; Blomberg, L.; Ohtani, S.I.; Yamamoto, T.; et al. Dynamic response of the cusp morphology to the solar wind: A case study during passage of the solar wind plasma cloud on February 21, 1994. J. Geophys. Res. 1996, 101, 24675–24687. [Google Scholar] [CrossRef]
- Kremser, G.; Lundin, R. Average spatial distributions of energetic particles in the midaltitude cusp/cleft region observed by Viking. J. Geophys. Res. 1990, 95, 5753–5766. [Google Scholar] [CrossRef]
- Zong, Q.G.; Fritz, T.; Zhang, H.; Korth, A.; Daly, P.; Dunlop, M.; Glassmeier, K.H.; Reme, H.; Balogh, A. Triple cusps observed by Cluster–Temporal or spatial effect? Geophys. Res. Lett. 2004, 31, L09810. [Google Scholar] [CrossRef]
- Wing, S.; Newell, P.T.; Ruohoniemi, J.M. Double cusp: Model prediction and observational verification. J. Geophys. Res. 2001, 106, 25571–25593. [Google Scholar] [CrossRef]
- Zong, Q.G.; Zhang, H.; Fritz, T.; Goldstein, M.; Wing, S.; Keith, W.; Winningham, J.; Frahm, R.; Dunlop, M.; Korth, A.; et al. Multiple cusps during an extended northward IMF period with a significant By component. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef]
- Trattner, K.; Fuselier, S.; Peterson, W.; Chang, S.W.; Friedel, R.; Aellig, M. Origins of energetic ions in the cusp. J. Geophys. Res. 2001, 106, 5967–5976. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Fritz, T.A. Correlation of cusp MeV helium with turbulent ULF power spectra and its implications. Geophys. Res. Lett. 1998, 25, 4113–4116. [Google Scholar] [CrossRef]
- Nykyri, K.; Otto, A.; Adamson, E.; Kronberg, E.; Daly, P. On the origin of high-energy particles in the cusp diamagnetic cavity. J. Atmos. Sol. -Terr. Phys. 2012, 87, 70–81. [Google Scholar] [CrossRef]
- Burkholder, B.; Nykyri, K.; Ma, X. Magnetospheric multiscale statistics of high energy electrons trapped in diamagnetic cavities. J. Geophys. Res. 2021, 126, e2020JA028341. [Google Scholar] [CrossRef]
- Gosling, J.; Thomsen, M.; Bame, S.; Russell, C. On the source of diffuse, suprathermal ions observed in the vicinity of the Earth’s bow shock. J. Geophys. Res. 1989, 94, 3555–3563. [Google Scholar] [CrossRef]
- Lee, M.A. Coupled hydromagnetic wave excitation and ion acceleration upstream of the Earth’s bow shock. J. Geophys. Res. 1982, 87, 5063–5080. [Google Scholar] [CrossRef]
- Ellison, D.C.; Moebius, E.; Paschmann, G. Particle injection and acceleration at earth’s bow shock-Comparison of upstream and downstream events. Astrophys. J. 1990, 352, 376–394. [Google Scholar] [CrossRef]
- Chang, S.W.; Scudder, J.; Fuselier, S.; Fennell, J.; Trattner, K.; Pickett, J.; Spence, H.E.; Menietti, J.; Peterson, W.; Lepping, R.; et al. Cusp energetic ions: A bow shock source. Geophys. Res. Lett. 1998, 25, 3729–3732. [Google Scholar] [CrossRef] [Green Version]
- Delcourt, D.; Sauvaud, J.A. Populating of the cusp and boundary layers by energetic (hundreds of keV) equatorial particles. J. Geophys. Res. 1999, 104, 22635–22648. [Google Scholar] [CrossRef]
- Zhou, X.Z.; Fritz, T.; Zong, Q.G.; Pu, Z.; Hao, Y.Q.; Cao, J.B. The cusp: A window for particle exchange between the radiation belt and the solar wind. Ann. Geophys. 2006, 24, 3131–3137. [Google Scholar] [CrossRef] [Green Version]
- Nykyri, K.; Cargill, P.; Lucek, E.; Horbury, T.; Lavraud, B.; Balogh, A.; Dunlop, M.; Bogdanova, Y.; Fazakerley, A.; Dandouras, I.; et al. Cluster observations of magnetic field fluctuations in the high-altitude cusp. Ann. Geophys. 2004, 22, 2413–2429. [Google Scholar] [CrossRef]
- Grison, B.; Sahraoui, F.; Lavraud, B.; Chust, T.; Cornilleau-Wehrlin, N.; Reme, H.; Balogh, A.; André, M. Wave particle interactions in the high-altitude polar cusp: A Cluster case study. Ann. Geophys. 2005, 23, 3699–3713. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Fritz, T.A. High-altitude cusp: The extremely dynamic region in geospace. Surv. Geophys. 2005, 26, 71–93. [Google Scholar] [CrossRef]
- Zhang, H.; Fritz, T.; Zong, Q.G.; Daly, P. Stagnant exterior cusp region as viewed by energetic electrons and ions: A statistical study using Cluster Research with Adaptive Particle Imaging Detectors (RAPID) data. J. Geophys. Res. 2005, 110, A05211. [Google Scholar] [CrossRef] [Green Version]
- Nykyri, K.; Otto, A.; Adamson, E.; Dougal, E.; Mumme, J. Cluster observations of a cusp diamagnetic cavity: Structure, size, and dynamics. J. Geophys. Res. 2011, 116, A03228. [Google Scholar] [CrossRef] [Green Version]
- Schillings, A.; Nilsson, H.; Slapak, R.; Wintoft, P.; Yamauchi, M.; Wik, M.; Dandouras, I.; Carr, C.M. O+ escape during the extreme space weather event of 4–10 September 2017. Space Weather 2018, 16, 1363–1376. [Google Scholar] [CrossRef]
- Rème, H.; Aoustin, C.; Bosqued, J.M.; Dandouras, I.; Lavraud, B.; Sauvaud, J.A.; Barthe, A.; Bouyssou, J.; Camus, T.; Coeur-Joly, O.; et al. First multispacecraft ion measurements in and near the Earth’s magnetosphere with the identical Cluster ion spectrometry (CIS) experiment. Ann. Geophys. 2001, 19, 1303–1354. [Google Scholar] [CrossRef] [Green Version]
- Johnstone, A.; Alsop, C.; Burge, S.; Carter, P.; Coates, A.; Coker, A.; Fazakerley, A.; Grande, M.; Gowen, R.; Gurgiolo, C.; et al. PEACE: A Plasma Electron and Current Experiment; Springer: Berlin/Heidelberg, Germany, 1997; pp. 351–398. [Google Scholar]
- Mouikis, C.; Kistler, L.; Wang, G.; Liu, Y. Background subtraction for the Cluster/CODIF plasma ion mass spectrometer. Geosci. Instrum. Methods Data Syst. 2014, 3, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Wilken, B.; Daly, P.; Mall, U.; Aarsnes, K.; Baker, D.; Belian, R.; Blake, J.; Borg, H.; Büchner, J.; Carter, M.; et al. First results from the RAPID imaging energetic particle spectrometer on board Cluster. Ann. Geophys. 2001, 19, 1355–1366. [Google Scholar] [CrossRef]
- Zong, Q.G.; Wang, Y.F.; Zhang, H.; Fu, S.Y.; Zhang, H.; Wang, C.R.; Yuan, C.J.; Vogiatzis, I. Fast acceleration of inner magnetospheric hydrogen and oxygen ions by shock induced ULF waves. J. Geophys. Res. 2012, 117, A11206. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Zong, Q.G.; Zhou, X.Z.; Hao, Y.; Yau, A.; Zhang, H.; Chen, X.R.; Fu, S.; Pollock, C.; Le, G.; et al. ULF waves modulating and acting as mass spectrometer for dayside ionospheric outflow ions. Geophys. Res. Lett. 2019, 46, 8633–8642. [Google Scholar] [CrossRef]
- Baumjohann, W.; Treumann, R.A. Basic Space Plasma Physics; World Scientific: Singapore, 1997. [Google Scholar]
- Palmroth, M.; Laakso, H.; Pulkkinen, T. Location of high-altitude cusp during steady solar wind conditions. J. Geophys. Res. 2001, 106, 21109–21122. [Google Scholar] [CrossRef]
- Yau, A.; André, M. Sources of ion outflow in the high latitude ionosphere. Space Sci. Rev. 1997, 80, 1–25. [Google Scholar] [CrossRef]
- Zurbuchen, T.; Fisk, L.; Gloeckler, G.; Von Steiger, R. The solar wind composition throughout the solar cycle: A continuum of dynamic states. Geophys. Res. Lett. 2002, 29, 66-1–66-4. [Google Scholar] [CrossRef] [Green Version]
- Pierrard, V.; Lazar, M. Kappa distributions: Theory and applications in space plasmas. Sol. Phys. 2010, 267, 153–174. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Liu, W.; Li, X.; Sarris, T.; Xiao, C.; Wygant, J.R. Observations of impulsive electric fields induced by interplanetary shock. Geophys. Res. Lett. 2018, 45, 7287–7296. [Google Scholar] [CrossRef]
- Aggson, T.; Heppner, J.; Maynard, N. Observations of large magnetospheric electric fields during the onset phase of a substorm. J. Geophys. Res. 1983, 88, 3981–3990. [Google Scholar] [CrossRef]
- Li, X.; Roth, I.; Temerin, M.; Wygant, J.; Hudson, M.; Blake, J. Simulation of the prompt energization and transport of radiation belt particles during the March 24, 1991 SSC. Geophys. Res. Lett. 1993, 20, 2423–2426. [Google Scholar] [CrossRef]
- Nosé, M.; Keika, K.; Kletzing, C.; Spence, H.; Smith, C.; MacDowall, R.; Reeves, G.D.; Larsen, B.; Mitchell, D. Van Allen Probes observations of magnetic field dipolarization and its associated O+ flux variations in the inner magnetosphere at L < 6.6. J. Geophys. Res. 2016, 121, 7572–7589. [Google Scholar] [CrossRef]
- Lavraud, B.; Fedorov, A.; Budnik, E.; Thomsen, M.; Grigoriev, A.; Cargill, P.; Dunlop, M.; Reme, H.; Dandouras, I.; Balogh, A. High-altitude cusp flow dependence on IMF orientation: A 3-year Cluster statistical study. J. Geophys. Res. 2005, 110, A02209. [Google Scholar] [CrossRef]
- Lavraud, B.; Reme, H.; Dunlop, M.; Bosqued, J.M.; Dandouras, I.; Sauvaud, J.A.; Keiling, A.; Phan, T.; Lundin, R.; Cargill, P.; et al. Cluster observes the high-altitude cusp region. Surv. Geophys. 2005, 26, 135–175. [Google Scholar] [CrossRef]
- Zhang, B.; Brambles, O.; Lotko, W.; Dunlap-Shohl, W.; Smith, R.; Wiltberger, M.; Lyon, J. Predicting the location of polar cusp in the Lyon-Fedder-Mobarry global magnetosphere simulation. J. Geophys. Res. 2013, 118, 6327–6337. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, J.; Zong, Q.; Fu, S.; Yang, H.; Hu, Z.; Zhang, X.; Zhou, X.; Yue, C.; Kistler, L.; Daly, P.; et al. The Dynamics of Earth’s Cusp in Response to the Interplanetary Shock. Universe 2023, 9, 143. https://doi.org/10.3390/universe9030143
Ren J, Zong Q, Fu S, Yang H, Hu Z, Zhang X, Zhou X, Yue C, Kistler L, Daly P, et al. The Dynamics of Earth’s Cusp in Response to the Interplanetary Shock. Universe. 2023; 9(3):143. https://doi.org/10.3390/universe9030143
Chicago/Turabian StyleRen, Jie, Qiugang Zong, Suiyan Fu, Huigen Yang, Zejun Hu, Xiaoxin Zhang, Xuzhi Zhou, Chao Yue, Lynn Kistler, Patrick Daly, and et al. 2023. "The Dynamics of Earth’s Cusp in Response to the Interplanetary Shock" Universe 9, no. 3: 143. https://doi.org/10.3390/universe9030143
APA StyleRen, J., Zong, Q., Fu, S., Yang, H., Hu, Z., Zhang, X., Zhou, X., Yue, C., Kistler, L., Daly, P., Kronberg, E., & Rankin, R. (2023). The Dynamics of Earth’s Cusp in Response to the Interplanetary Shock. Universe, 9(3), 143. https://doi.org/10.3390/universe9030143