Classification and Distribution of the Dayside Ion Upflows Associated with Auroral Particle Precipitation
Abstract
:1. Introduction
2. Data and Analysis
3. Statistical Results
3.1. Characteristics of Magnetosphere Source Region
3.2. Characteristics of Incidence
3.2.1. The Distribution and Occurrence for Different Types of Ion Upflows
3.2.2. Temporal–Spatial Distribution of Different Types of Ion Upflows under Different Geomagnetic Activities
3.2.3. The Effect of Interplanetary Magnetic Field (IMF) Components
3.3. The Distribution and Velocities for Different Types of Ion Upflows
4. Discussion
5. Conclusions
- (1)
- The incidence of ion upflows in winter is higher than that in summer. Type A–D have the highest occurrence at MLAT range of 70–80°, which is 3–6 times of the total occurrence of other latitude ranges, and mainly appear in dayside regions of BPS, LLBL, Cusp and mantle. Type E have high incidence at MLAT range above 65°, and mainly appear in dayside regions of CPS, BPS and LLBL. The region of Cusp mainly contains type A and D. Type B and C mainly appear in LLBL and BPS. The region of CPS mainly contains type E. In January, all kinds of ion upflows mainly occur on the dawn and dusk side, and the incidence on the dawn side is higher than that on the dusk side, showing obvious “dawn–dusk asymmetry”. While in July, all kinds of ion upflows mainly occur around magnetic noon, with a symmetric distribution centered at the magnetic noon.
- (2)
- With the enhancement of geomagnetic activity, the main upflow region of all kinds of events expand to the lower latitude centered on the region of the quiet geomagnetic activity. During days with moderate geomagnetic activity, the incidence increases significantly. When Bx < 0, the incidence increases significantly at MLAT region below 70°, as well as the regions of 0600–0900 MLT and 1500–1800 MLT. When the direction of By changes, the occurrence of all kinds of ion upflows shows obvious high-incidence area reverse at the prenoon or postnoon region. When Bz < 0, the incidence increases significantly at MLAT region below 75°.
- (3)
- Type A ion upflow has the highest velocity of ion upflows, then is type E, and type D is the lowest. The average velocity of ion upflows in winter is significantly higher than that in summer. At MLAT range of 70–80°, the velocity of all kinds of ion upflows decrease with the increase of geomagnetic activity in January, while increase with the increase of geomagnetic activity in July.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Newell, P.T.; Meng, C.I. Mapping the dayside ionosphere to the magnetosphere according to particle precipitation characteristics. Geophys. Res. Lett. 1992, 19, 609–612. [Google Scholar] [CrossRef]
- Hu, Z.-J.; Yang, H.; Liang, J.; Han, D.; Huang, D.; Hu, H.; Zhang, B.; Liu, R.; Chen, Z. The 4-emission-core structure of dayside aurora oval observed by all-sky imager at 557.7nm in Ny-lesund, Svalbard. J. Atmos. Sol.-Terr. Phys. 2010, 72, 638–642. [Google Scholar] [CrossRef]
- Newell, P.T.; Sotirelis, T.; Wing, S. Diffuse, monoenergetic, and broadband aurora: The global precipitation budget. J. Geophys. Res. Space Phys. 2009, 114, A09207. [Google Scholar] [CrossRef]
- Horwitz, J.L.; Moore, T.E. Four Contemporary Issues Concerning Ionospheric Plasma Flow to the Magnetosphere. Space Sci. Rev. 1997, 80, 49–76. [Google Scholar] [CrossRef]
- Moore, T.E.; Lundin, R.; Alcayde, D.; André, M.; Ganguli, S.B.; Temerin, M.; Yau, A. Source processes in the high-latitude ionosphere. Space Sci. Rev. 1999, 88, 7–84. [Google Scholar] [CrossRef]
- Sharp, R.D.; Johnson, R.G.; Shelley, E.G. Observation of an ionospheric acceleration mechanism producing energetic (keV) ions primarily normal to the geomagnetic field direction. J. Geophys. Res. 1977, 82, 3324–3328. [Google Scholar] [CrossRef]
- Shelley, E.G.; Johnson, R.G.; Sharp, R.D. Satellite observations of energetic heavy ions during a geomagnetic storm. J. Geophys. Res. 1972, 77, 6104–6110. [Google Scholar] [CrossRef]
- Shelley, E.G.; Sharp, R.D.; Johnson, R.G. Satellite observations of an ionospheric acceleration mechanism. Geophys. Res. Lett. 1976, 3, 654–656. [Google Scholar] [CrossRef]
- Ogawa, Y. Simultaneous EISCAT Svalbard radar and DMSP observations of ion upflow in the dayside polar ionosphere. J. Geophys. Res. Space Phys. 2003, 108, 1101. [Google Scholar] [CrossRef]
- Yau, A.W.; Shelley, E.G.; Peterson, W.K.; Lenchyshyn, L. Energetic auroral and polar ion outflow at DE 1 altitudes: Magnitude, composition, magnetic activity dependence, and long-term variations. J. Geophys. Res. 1985, 90, 8417–8432. [Google Scholar] [CrossRef]
- Ogawa, Y.; Buchert, S.C.; Häggström, I.; Rietveld, M.T.; Fujii, R.; Nozawa, S.; Miyaoka, H. On the statistical relation between ion upflow and naturally enhanced ion-acoustic lines observed with the EISCAT Svalbard radar. J. Geophys. Res. Space Phys. 2011, 116. [Google Scholar] [CrossRef]
- Wang, Q.; Liang, J.; Hu, Z.; Hu, H.; Zhao, H.; Hu, H.; Gao, X.; Yang, H. Spatial texture based automatic classification of dayside aurora in all-sky images. J. Atmos. Sol.-Terr. Phys. 2010, 72, 498–508. [Google Scholar] [CrossRef]
- Hu, Z.-J.; Yang, H.; Huang, D.; Araki, T.; Sato, N.; Taguchi, M.; Seran, E.; Hu, H.; Liu, R.; Zhang, B.; et al. Synoptic distribution of dayside aurora: Multiple-wavelength all-sky observation at Yellow River Station in Ny-Ålesund, Svalbard. J. Atmos. Sol.-Terr. Phys. 2009, 71, 794–804. [Google Scholar] [CrossRef]
- Hu, Z.-J.; Yang, H.; Han, D.; Huang, D.; Zhang, B.; Hu, H.; Liu, R. Dayside auroral emissions controlled by IMF: A survey for dayside auroral excitation at 557.7 and 630.0 nm in Ny-Ålesund, Svalbard. J. Geophys. Res. Space Phys. 2012, 117, A02201. [Google Scholar] [CrossRef] [Green Version]
- Moen, J.; Oksavik, K.; Carlson, H.C. On the relationship between ion upflow events and cusp auroral transients. Geophys. Res. Lett. 2004, 31, 373–374. [Google Scholar] [CrossRef]
- Hardy, D.A.; Gussenhoven, M.S.; Brautigam, D. A Statistical Model of Auroral Ion Precipitation. J. Geophys. Res. Space Phys. 1989, 94, 370–392. [Google Scholar] [CrossRef]
- Gussenhoven, M.S.; Hardy, D.A.; Burke, W.J. DMSP/F2 electron observations of equatorward auroral boundaries and their relationship to magnetospheric electric fields. J. Geophys. Res. Space Phys. 1981, 86, 768–778. [Google Scholar] [CrossRef]
- Hardy, D.A.; Gussenhoven, M.S.; Holeman, E. A statistical model of auroral electron precipitation. J. Geophys. Res. Space Phys. 1985, 90, 4229–4248. [Google Scholar] [CrossRef]
- Hardy, D.A.; Holeman, E.G.; Burke, W.J.; Gentile, L.C.; Bounar, K.H. Probability distributions of electron precipitation at high magnetic latitudes. J. Geophys. Res. Space Phys. 2008, 113, A06305. [Google Scholar] [CrossRef]
- Rich, F.J.; Hairston, M. Large-scale convection patterns observed by DMSP. J. Geophys. Res. Space Phys. 1994, 99, 3827–3844. [Google Scholar] [CrossRef]
- Newell, P.T.; Meng, C.I. The cusp and the cleft/boundary layer: Low-altitude identification and statistical local time variation. J. Geophys. Res. Space Phys. 1988, 93, 14549–14556. [Google Scholar] [CrossRef]
- Newell, P.T.; Burke, W.J.; Meng, C.I.; Sanchez, E.R.; Greenspan, M.E. Identification and observations of the plasma mantle at low altitude. J. Geophys. Res. Space Phys. 1991, 96, 35–45. [Google Scholar] [CrossRef]
- Newell, P.T.; Burke, W.J.; Sánchez, E.R.; Meng, C.I.; Greenspan, M.E.; Clauer, C.R. The low-latitude boundary layer and the boundary plasma sheet at low altitude: Prenoon precipitation regions and convection reversal boundaries. J. Geophys. Res. Space Phys. 1991, 96, 21013–21023. [Google Scholar] [CrossRef]
- Keating, J.G.; Mulligan, F.J.; Doyle, D.B.; Winser, K.J.; Lockwood, M. A statistical study of large field-aligned flows of thermal ions at high-latitudes. Planet. Space Sci. 1990, 38, 1187–1201. [Google Scholar] [CrossRef]
- Endo, M.; Fujii, R.; Ogawa, Y.; Buchert, S.C.; Nozawa, S.; Watanabe, S.; Yoshida, N. Ion upflow and downflow at the topside ionosphere observed by the EISCAT VHF radar. Ann. Geophys. 2000, 18, 170–181. [Google Scholar] [CrossRef]
- Coley, W.R. High-latitude plasma outflow as measured by the DMSP spacecraft. J. Geophys. Res. Space Phys. 2003, 108, 1441. [Google Scholar] [CrossRef]
- Seo, Y.; Horwitz, J.L.; Caton, R. Statistical relationships between high-latitude ionospheric F region/topside upflows and their drivers: DE 2 observations. J. Geophys. Res. Space Phys. 1997, 102, 7493–7500. [Google Scholar] [CrossRef]
- Millward, G.H.; Moffett, R.J.; Balmforth, H.F.; Rodger, A.S. Modeling the ionospheric effects of ion and electron precipitation in the cusp. J. Geophys. Res. Space Phys. 1999, 104, 24603–24612. [Google Scholar] [CrossRef]
- Kozlovsky, A.; Kangas, J. Characteristics of the postnoon auroras inferred from EISCAT radar measurements. J. Geophys. Res. Space Phys. 2001, 106, 1817–1834. [Google Scholar] [CrossRef]
- Yang, Q.; Hu, Z.-J. A comparative study of auroral morphology distribution between the Northern and Southern Hemisphere based on automatic classification. Geosci. Instrum. Methods Data Syst. 2018, 7, 113–122. [Google Scholar] [CrossRef] [Green Version]
- Skjaeveland, Å.; Moen, J.; Carlson, H.C. On the relationship between flux transfer events, temperature enhancements, and ion upflow events in the cusp ionosphere. J. Geophys. Res. Space Phys. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Pitout, F.; Bosqued, J.M.; Alcaydé, D.; Denig, W.F.; Rème, H. Observations of the cusp region under northward IMF. Ann. Geophys. 2001, 19, 1641–1653. [Google Scholar] [CrossRef] [Green Version]
- Mccrea, I.W.; Lockwood, M.; Moen, J.; Pitout, F.; Eglitis, P.; Aylward, A.D.; Cerisier, J.C.; Thorolfssen, A.; Milan, S.E. ESR and EISCAT observations of the response of the cusp and cleft to IMF orientation changes. Ann. Geophys. 2000, 18, 1009–1026. [Google Scholar] [CrossRef]
- Liu, H.; Ma, S.Y.; Schlegel, K. Diurnal, seasonal, and geomagnetic variations of large field-aligned ion upflows in the high-latitude ionospheric F region. J. Geophys. Res. Space Phys. 2001, 106, 24651–24661. [Google Scholar] [CrossRef]
- Buchert, S.C.; Ogawa, Y.; Fujii, R.; Van Eyken, A.P. Observations of diverging field-aligned ion flow with the ESR. Ann. Geophys. 2004, 22, 889–899. [Google Scholar] [CrossRef] [Green Version]
- Ji, E.Y.; Jee, G.; Lee, C. Characteristics of the Occurrence of Ion Upflow in Association With Ion/Electron Heating in the Polar Ionosphere. J. Geophys. Res. Space Phys. 2019, 124, 6226–6236. [Google Scholar] [CrossRef]
- Cohen, I.J.; Lessard, M.R.; Varney, R.H.; Oksavik, K.; Zettergren, M.; Lynch, K.A. Ion upflow dependence on ionospheric density and solar photoionization. J. Geophys. Res. Space Phys. 2015, 120, 10039–10052. [Google Scholar] [CrossRef]
- Ogawa, Y.; Buchert, S.C.; Fujii, R.; Nozawa, S.; van Eyken, A.P. Characteristics of ion upflow and downflow observed with the European Incoherent Scatter Svalbard radar. J. Geophys. Res. Space Phys. 2009, 114, A05305. [Google Scholar] [CrossRef]
- Loranc, M.; Hanson, W.B.; Heelis, R.A.; St Maurice, J.P. A morphological study of vertical ionospheric flows in the high-latitude F region. J. Geophys. Res. Space Phys. 1991, 96, 3627–3646. [Google Scholar] [CrossRef]
- Prölss, G.W. Electron temperature enhancement beneath the magnetospheric cusp. J. Geophys. Res. Space Phys. 2006, 111, A07304. [Google Scholar] [CrossRef]
- Feldsten, Y.I.; Starkov, G.V. Dynamics of auroral belt and polar geomagnetic disturbances. Planet. Space Sci. 1967, 15, 209–229. [Google Scholar] [CrossRef]
- Xiong, C.; Lühr, H.; Wang, H.; Johnsen, M.G. Determining the boundaries of the auroral oval from CHAMP field-aligned current signatures—Part 1. Ann. Geophys. 2014, 32, 609–622. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.Z.; Zhang, Q.H.; Xing, Z.Y.; Heelis, R.A.; Oksavik, K.; Wang, Y. The Ion/Electron Temperature Characteristics of Polar Cap Classical and Hot Patches and Their Influence on Ion Upflow. Geophys. Res. Lett. 2018, 45, 8072–8080. [Google Scholar] [CrossRef]
- Hu, Z.-J.; Yang, H.G.; Hu, H.Q.; Zhang, B.C.; Ebihara, Y. Surveys of 557.7/630.0 nm dayside auroral emissions in Ny-Ålesund, Svalbard, and South Pole Station. In Dawn–Dusk Asymmetries in Planetary Plasma Environments; Haaland, S., Runov, A., Forsyth, C., Eds.; AGU & Wiley: Washington, DC, USA, 2017; Geophysical Monograph 230; pp. 143–154. [Google Scholar] [CrossRef]
- Iijima, T.; Potemra, T.A. The amplitude distribution of field-aligned currents at northern high latitudes observed by Triad. J. Geophys. Res. Space Phys. 1976, 81, 2165–2174. [Google Scholar] [CrossRef]
- Watanabe, M.; Iijima, T.; Rieh, F.J. Synthesis models of dayside field-aligned currents for strong interplanetary magnetic field By. J. Geophys. Res. Space Phys. 1996, 101, 13303–13319. [Google Scholar] [CrossRef]
- McDiarmid, I.B.; Burrows, J.R.; Wilson, M.D. Large-scale magnetic field perturbations and particle measurements at 1400 km on the dayside. J. Geophys. Res. Space Phys. 1979, 84, 1431–1441. [Google Scholar] [CrossRef]
- Wang, Z.; Hu, H.; Lu, J.; Han, D.; Liu, J.; Wu, Y.; Hu, Z. Observational Evidence of Transient Lobe Reconnection Triggered by Sudden Northern Enhancement of IMF Bz. J. Geophys. Res. Space Phys. 2021, 126. [Google Scholar] [CrossRef]
- Wang, Z.; Lu, J.; Hu, H.; Liu, J.; Hu, Z.; Wang, M.; Li, B.; Chen, X.; Wu, Y.; Zhang, H.; et al. HMB Variations Measured by SuperDARN During the Extremely Radial IMFs: Is the Coupling Function Applicable in Radial IMF? J. Geophys. Res. Space Phys. 2022, 127. [Google Scholar] [CrossRef]
- Thomas, E.G.; Shepherd, S.G. Statistical Patterns of Ionospheric Convection Derived from Mid-latitude, High-Latitude, and Polar SuperDARN HF Radar Observations. J. Geophys. Res. Space Phys. 2018, 123, 3196–3216. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.F.; Lu, J.Y.; Wang, J.S.; Peng, Z.; Zhou, L. Influence of interplanetary magnetic field and solar wind on auroral brightness in different regions. J. Geophys. Res. Space Phys. 2013, 118, 209–217. [Google Scholar] [CrossRef]
- Moore, T.E.; Fok, M.C.; Delcourt, D.C.; Slinker, S.P.; Fedder, J.A. Global aspects of solar wind–ionosphere interactions. J. Atmos. Sol.-Terr. Phys. 2007, 69, 265–278. [Google Scholar] [CrossRef]
Prn | Mantle | Cusp | LLBL | BPS | CPS | Others | Sum | |
---|---|---|---|---|---|---|---|---|
A | 16 | 190 | 370 | 1343 | 2208 | 138 | 1159 | 5824 |
B | 3 | 10 | 4 | 173 | 239 | 17 | 191 | 637 |
C | 1 | 4 | 2 | 131 | 208 | 17 | 160 | 523 |
D | 6 | 79 | 112 | 457 | 696 | 48 | 467 | 1865 |
E | 19 | 131 | 3 | 666 | 1072 | 1246 | 3212 | 6349 |
sum | 45 | 414 | 491 | 2770 | 4423 | 1466 | 5589 | 15,198 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Y.; Hu, Z.-J.; Cai, H.-T.; Zhang, Y.-S. Classification and Distribution of the Dayside Ion Upflows Associated with Auroral Particle Precipitation. Universe 2023, 9, 164. https://doi.org/10.3390/universe9040164
Yu Y, Hu Z-J, Cai H-T, Zhang Y-S. Classification and Distribution of the Dayside Ion Upflows Associated with Auroral Particle Precipitation. Universe. 2023; 9(4):164. https://doi.org/10.3390/universe9040164
Chicago/Turabian StyleYu, Yao, Ze-Jun Hu, Hong-Tao Cai, and Yi-Sheng Zhang. 2023. "Classification and Distribution of the Dayside Ion Upflows Associated with Auroral Particle Precipitation" Universe 9, no. 4: 164. https://doi.org/10.3390/universe9040164
APA StyleYu, Y., Hu, Z. -J., Cai, H. -T., & Zhang, Y. -S. (2023). Classification and Distribution of the Dayside Ion Upflows Associated with Auroral Particle Precipitation. Universe, 9(4), 164. https://doi.org/10.3390/universe9040164