Geometric Outlines of the Gravitational Lensing and Its Astronomic Applications
Abstract
:1. Introduction
2. Fundamental Principle
2.1. Deflection Angle
2.2. Lens Equation
2.3. Convergence and Shear
3. Strong Gravitational Lensing
3.1. Schwarzschild Black Hole
3.2. Time Delay
4. Weak Gravitational Lensing
4.1. Cosmic Shear and E/B Modes
4.2. Lensing Signals
4.3. Dark Energy and Dark Matter
Funding
Data Availability Statement
Conflicts of Interest
References
- Refsdal, S.; Surdej, J. Gravitational lenses. Rep. Prog. Phys. 1994, 57, 117–185. [Google Scholar] [CrossRef]
- Walsh, D.; Carswell, R.F.; Weymann, R.J. 0957+561 A, B: Twin quasistellar objects or gravitational lens? Nature 1979, 279, 381–384. [Google Scholar] [CrossRef]
- Moller, O.; Blain, A.W. Strong gravitational lensing by multiple galaxies. Mon. Not. R. Astron. Soc. 2001, 327, 339–349. [Google Scholar] [CrossRef] [Green Version]
- Treu, T. Strong Lensing by Galaxies. Annu. Rev. Astron. Astrophys. 2010, 48, 87–125. [Google Scholar] [CrossRef] [Green Version]
- Castro, P.G.; Heavens, A.F.; Kitching, T.D. Weak lensing analysis in three dimensions. Phys. Rev. D 2005, 72, 023516. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, K.; Sasaki, M.; Tomita, K. On distances and the Hubble parameter determination in gravitational lenses. Astrophys. J. 1992, 394, 38–50. [Google Scholar] [CrossRef]
- Jee, I.; Suyu, S.H.; Komatsu, E.; Fassnacht, C.D.; Hilbert, S.; Koopmans, L.V.E. A measurement of the Hubble constant from angular diameter distances to two gravitational lenses. Science 2019, 365, 1134–1138. [Google Scholar] [CrossRef] [Green Version]
- Bohn, A.; Throwe, W.; Herbert, F.; Henriksson, K.; Bunandar, D.; Taylor, N.W.; Scheel, M.A. What does a binary black hole merger look like? Class. Quantum Gravity 2015, 32, 065002. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Xie, Y. Probing an Extended Uncertainty Principle black hole with gravitational lensings. Mod. Phys. Lett. A 2019, 34, 1950152. [Google Scholar] [CrossRef]
- Sharif, M.; Iftikhar, S. Strong gravitational lensing in non-commutative wormholes. Astrophys. Space Sci. 2015, 357, 85. [Google Scholar] [CrossRef]
- Ono, T.; Ishihara, A.; Asada, H. Deflection angle of light for an observer and source at finite distance from a rotating wormhole. Phys. Rev. D 2018, 98, 044047. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, R.; Asada, H. Observational upper bound on the cosmic abundances of negative-mass compact objects and ellis wormholes from the Sloan Digital Sky Survey Quasar Lens Search. Astrophys. J. Lett. 2013, 78, L16. [Google Scholar] [CrossRef] [Green Version]
- Ovgun, A. Light deflection by Damour-Solodukhin wormholes and Gauss–Bonnet theorem. Phys. Rev. D 2018, 98, 044033. [Google Scholar] [CrossRef] [Green Version]
- Perlick, V.; Tsupko, O. Calculating black hole shadows: Review of analytical studies. Phys. Rep.-Rev. Sec. Phys. Lett. 2022, 947, 1–39. [Google Scholar] [CrossRef]
- Akiyama, K.; Alberdi, A.; Alef, W.; Asada, K.; Azulay, R.; Baczko, A.-K.; Ball, D.; Balokovic, M.; Barrett, J. First M87 event Horizon Telescope Results. I. the shadow of the supermassive black hole. Astrophys. J. Lett. 2019, 875, L1. [Google Scholar]
- Akiyama, K.; Alberdi, A.; Alef, W.; Algaba, J.C.; Anantua, R.; Asada, K.; Azulay, R.; Bach, U.; Baczko, A.-K. First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way. Astrophys. J. Lett. 2022, 930, L12. [Google Scholar]
- Cao, Z.J.; Li, L.F.; Wang, Y. Gravitational lensing effects on parameter estimation in gravitational wave detection with advanced detectors. Phys. Rev. D 2014, 90, 062003. [Google Scholar] [CrossRef] [Green Version]
- Oguri, M. Effect of gravitational lensing on the distribution of gravitational waves from distant binary black hole mergers. Mon. Not. R. Astron. Soc. 2018, 480, 3842–3855. [Google Scholar] [CrossRef] [Green Version]
- Petrillo, C.E.; Tortora, C.; Chatterjee, S.; Vernardos, G.; Koopmans, L.V.E.; Verdoes Kleijn, G.; Napolitano, N.R.; Covone, G.; Kelvin, L.S.; Hopkins, A.M. Testing convolutional neural networks for finding strong gravitational lenses in KiDS. Mon. Not. R. Astron. Soc. 2019, 482, 807–820. [Google Scholar] [CrossRef]
- Su, J.; Wang, W.G.; Wang, X.; Song, F. Simulation of the Gravitational Lensing Effect of Galactic Dark Matter Halos Using 3D Printing Technology. Phys. Teach. 2019, 57, 590–593. [Google Scholar] [CrossRef]
- Hanson, D.; Challinor, A.; Lewis, A. Weak lensing of the CMB. Gen. Relativ. Gravit. 2010, 42, 2197–2218. [Google Scholar] [CrossRef] [Green Version]
- Bartelmann, M. Gravitational lensing. Class. Quantum Gravity 2010, 27, 233001. [Google Scholar] [CrossRef] [Green Version]
- Futamase, T. Gravitational lensing in cosmology. Int. J. Mod. Phys. D 2015, 24, 1530011. [Google Scholar] [CrossRef]
- Cunha, P.V.P.; Herdeiro, C.A.R. Shadows and strong gravitational lensing: A brief review. Gen. Relativ. Gravit. 2018, 50, 42. [Google Scholar] [CrossRef] [Green Version]
- Takizawa, K.; Ono, T.; Asada, H. Gravitational deflection angle of light: Definition by an observer and its application to an asymptotically nonflat spacetime. Phys. Rev. D 2020, 101, 104032. [Google Scholar] [CrossRef]
- Ishihara, A.; Suzuki, Y.; Ono, T.; Kitamura, T.; Asada, H. Gravitational bending angle of light for finite distance and the Gauss–Bonnet theorem. Phys. Rev. D 2016, 94, 084015. [Google Scholar] [CrossRef] [Green Version]
- Takizawa, K.; Ono, T.; Asada, H. Gravitational lens without asymptotic flatness: Its application to the Weyl gravity. Phys. Rev. D 2020, 102, 064060. [Google Scholar] [CrossRef]
- Gibbons, G.W.; Werner, M.C. Applications of the Gauss–Bonnet theorem to gravitational lensing. Class. Quantum Gravity 2008, 25, 235009. [Google Scholar] [CrossRef]
- Werner, M.C. Gravitational lensing in the Kerr-Randers optical geometry. Gen. Relativ. Gravit. 2012, 44, 3047–3057. [Google Scholar] [CrossRef] [Green Version]
- Halla, M.; Perlick, V. Application of the Gauss–Bonnet theorem to lensing in the NUT metric. Gen. Relativ. Gravit. 2020, 52, 112. [Google Scholar] [CrossRef]
- Kapsabelis, E.; Kevrekidis, P.G.; Stavrinos, P.C.; Triantafyllopoulos, A. Schwarzschild-Finsler-Randers spacetime: Geodesics, dynamical analysis and deflection angle. Eur. Phys. J. C 2022, 82, 1098. [Google Scholar] [CrossRef]
- Kostelecky, V.A. Riemann-Finsler geometry and Lorentz-violating kinematics. Phys. Lett. B 2011, 701, 137–143. [Google Scholar] [CrossRef] [Green Version]
- Shen, B. Gravitational Lensing Effect in the Universe with a Finsler Background. arXiv 2023, submitted.
- Asada, H. Images for a binary gravitational lens from a single real algebraic equation. Astron. Astrophys. 2002, 390, L11. [Google Scholar] [CrossRef]
- Bozza, V. Comparison of approximate gravitational lens equations and a proposal for an improved new one. Phys. Rev. D 2008, 78, 103005. [Google Scholar] [CrossRef] [Green Version]
- Takizawa, K.; Asada, H. Gravitational lens on de Sitter background. Phys. Rev. D 2022, 105, 084022. [Google Scholar] [CrossRef]
- Izumi, K.; Hagiwara, C.; Nakajima, K.; Kitamura, T.; Asada, H. Gravitational lensing shear by an exotic lens object with negative convergence or negative mass. Phys. Rev. D 2013, 88, 024049. [Google Scholar] [CrossRef] [Green Version]
- Hezaveh, Y.D.; Holder, G.P. Effects of strong gravitational lensing on millimeter-wave galaxy number counts. Astrophys. J. 2011, 734, 52. [Google Scholar] [CrossRef]
- Chagoya, J.; Ortiz, C.; Rodriguez, B.; Roque, A.A. Strong gravitational lensing by DHOST black holes. Class. Quantum Gravity 2021, 38, 075026. [Google Scholar] [CrossRef]
- Wei, S.-W.; Liu, Y.-X.; Fu, C.-E.; Yang, K. Strong field limit analysis of gravitational lensing in Kerr-Taub-NUT spacetime. J. Cosmol. Astropart. Phys. 2012, 10, 053. [Google Scholar] [CrossRef] [Green Version]
- Jin, X.H.; Gao, Y.X.; Liu, D.J. Strong gravitational lensing of a 4-dimensional Einstein–Gauss–Bonnet black hole in homogeneous plasma. Int. J. Mod. Phys. D 2020, 29, 2050065. [Google Scholar] [CrossRef]
- Bozza, V.; Scarpetta, G. Strong deflection limit of black hole gravitational lensing with arbitrary source distances. Phys. Rev. D 2007, 76, 083008. [Google Scholar] [CrossRef] [Green Version]
- Bozza, V. Gravitational lensing in the strong field limit. Phys. Rev. D 2002, 66, 103001. [Google Scholar] [CrossRef] [Green Version]
- Alchera, N.; Bonici, M.; Cardinale, R.; Domi, A.; Maggiore, N.; Righi, C.; Tosi, S. Analysis of the Angular Dependence of Time Delay in Gravitational Lensing. Symmetry 2018, 10, 246. [Google Scholar] [CrossRef] [Green Version]
- Hojjati, A.; Kim, A.G.; Linder, E.V. Robust strong lensing time delay estimation. Phys. Rev. D 2013, 87, 123512. [Google Scholar] [CrossRef] [Green Version]
- Mandelbaum, R. Instrumental systematics and weak gravitational lensing. J. Instrum. 2015, 10, C05017. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, B.; Durrer, R.; Schafer, B.M. Intrinsic and extrinsic correlations of galaxy shapes and sizes in weak lensing data. Mon. Not. R. Astron. Soc. 2021, 505, 2594–2609. [Google Scholar] [CrossRef]
- Fleury, P.; Larena, J.; Uzan, J.P. Weak Gravitational Lensing of Finite Beams. Phys. Rev. Lett. 2017, 119, 191101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Waerbeke, L. Shear and magnification: Cosmic complementarity. Mon. Not. R. Astron. Soc. 2010, 401, 2093–2100. [Google Scholar] [CrossRef] [Green Version]
- Heydenreich, S.; Schneider, P.; Hildebrandt, H.; Asgari, M.; Heymans, C.; Joachimi, B.; Kuijken, K.; Lin, C.-A.; Troster, T.; van den Busch, J.L. The effects of varying depth in cosmic shear surveys. Astron. Astrophys. 2020, 634, A104. [Google Scholar] [CrossRef]
- Taylor, P.L.; Bernardeau, F.; Huff, E. x-cut Cosmic shear: Optimally removing sensitivity to baryonic and nonlinear physics with an application to the Dark Energy Survey year 1 shear data. Phys. Rev. D 2021, 103, 043531. [Google Scholar] [CrossRef]
- Nicola, A.; Dunkley, J.; Spergel, D.N. Joint cosmology and mass calibration from thermal Sunyaev-Zel’dovich cluster counts and cosmic shear. Phys. Rev. D 2020, 102, 083505. [Google Scholar] [CrossRef]
- Mancini, A.S.; Taylor, P.L.; Reischke, R.; Kitching, T.; Pettorino, V.; Schafer, B.M.; Zieser, B.; Merket, M. 3D cosmic shear: Numerical challenges, 3D lensing random fields generation, and Minkowski functionals for cosmological inference. Phys. Rev. D 2018, 98, 103507. [Google Scholar] [CrossRef] [Green Version]
- Lewis, A.; Challinor, A. Weak gravitational lensing of the CMB. Phys. Rep.-Rev. Sec. Phys. Lett. 2006, 429, 1–65. [Google Scholar] [CrossRef] [Green Version]
- Hamana, T.; Shirasaki, M.; Lin, Y.T. Weak-lensing clusters from HSC survey first-year data: Mitigating the dilution effect of foreground and cluster-member galaxies. Publ. Astron. Soc. Jpn. 2020, 72, 78. [Google Scholar] [CrossRef]
- Lombardi, M.; Rosati, P.; Blakeslee, J.P.; Ettori, S.; Demarco, R.; Ford, H.C.; Illingworth, G.D.; Clampin, M.; Hartig, G.F.; Benítez, N. Hubble Space Telescope ACS weak-lensing analysis of the galaxy cluster RDCS 1252.9-2927 at z=1.24. Astron. J. 2005, 623, 42. [Google Scholar] [CrossRef] [Green Version]
- Lu, T.; Zhang, J.; Dong, F.; Li, Y.; Liu, D.; Fu, L.; Li, G.; Fan, Z. Testing PSF Interpolation in Weak Lensing with Real Data. Astron. J. 2017, 153, 197. [Google Scholar] [CrossRef] [Green Version]
- Erben, T.; Waerbeke, L.; Bertin, E.; Mellier, Y.; Schneider, P. How accurately can we measure weak gravitational shear? Astron. Astrophys. 2001, 366, 717–735. [Google Scholar] [CrossRef] [Green Version]
- Kannawadi, A.; Hoekstra, H.; Miller, L.; Viola, M.; Conti, I.F.; Herbonnet, R.; Erben, T.; Heymans, C.; Hildebrandt, H.; Kuijken, K.; et al. Towards emulating cosmic shear data: Revisiting the calibration of the shear measurements for the Kilo-Degree Survey. Astron. Astrophys. 2019, 624, A92. [Google Scholar] [CrossRef] [Green Version]
- Seljak, U.; Zaldarriaga, M. Measuring dark matter power spectrum from cosmic microwave background. Phys. Rev. Lett. 1999, 82, 2636–2639. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Zhang, P.J.; Luo, W.T. Approaching the CRAMER-RAO bound in weak lensing with PDF symmetrization. Astron. J. 2017, 834, 8. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Dong, F.; Li, H.; Li, X.; Li, Y.; Liu, D.; Luo, W.; Fu, L.; Li, G.; Fan, Z. Testing Shear Recovery with Field Distortion. Astron. J. 2019, 875, 48. [Google Scholar] [CrossRef]
- Gomez, G.; Lopez, R. The Canarias Type Ia Supernova Archive. II. A standard spectral evolution sequence. Astron. J. 1998, 115, 1096. [Google Scholar] [CrossRef]
- Kim, K.Y.; Lee, H.W.; Myung, Y.S. On the Ricci dark energy model. Gen. Relativ. Gravit. 2011, 43, 1095–1101. [Google Scholar] [CrossRef]
- Saadat, H.; Saadat, A.M. Time-Dependent Dark Energy Density and Holographic DE Model with Interaction. Int. J. Theor. Phys. 2011, 50, 1358–1366. [Google Scholar] [CrossRef]
- Mukhopadhyay, U.; Ray, S.; Choudhury, S.B.D. Lambda-CDM universe: A phenomenological approach with many possibilities. Int. J. Mod. Phys. D 2008, 17, 301–309. [Google Scholar] [CrossRef] [Green Version]
- Stachowski, A.; Szydlowski, M. Dynamical system approach to running Lambda cosmological models. Eur. Phys. J. C 2016, 76, 606. [Google Scholar] [CrossRef] [Green Version]
- Yang, R.J.; Zhang, S.N. The age problem in the ΛCDM model. Mon. Not. R. Astron. Soc. 2010, 407, 1835–1841. [Google Scholar] [CrossRef] [Green Version]
- Gruen, D.; Friedrich, O.; Amara, A.; Bacon, D.; Bonnett, C.; Harley, W.; Jain, B.; Jarvis, M.; Kacprzak, T.; Krause, E.; et al. Weak lensing by galaxy troughs in DES Science Verification data. Mon. Not. R. Astron. Soc. 2016, 455, 3367–3380. [Google Scholar] [CrossRef] [Green Version]
- Rubin, V.C.; Ford, W.K. Rotation of andromeda nebula from a spectroscopic survey of emission regions. Astrophys. J. 1970, 159, 379. [Google Scholar] [CrossRef]
- Thompson, R.; Dave, R.; Nagamine, K. The rise and fall of a challenger: The Bullet Cluster in Lambda cold dark matter simulations. Mon. Not. R. Astron. Soc. 2015, 452, 3030–3037. [Google Scholar] [CrossRef] [Green Version]
- Press, W.H.; Schechter, P. Formation of galaxies and clusters of galaxies by self-similar gravitational condensation. Astron. J. 1974, 187, 425–438. [Google Scholar] [CrossRef]
- Farina, M.; Pappadopulo, D.; Strumia, A. CDMS stands for Constrained Dark Matter Singlet. Phys. Lett. B 2010, 688, 329–331. [Google Scholar] [CrossRef] [Green Version]
- Di Mauro, M.; Donato, F.; Fornengo, N.; Vittino, A. Dark matter vs. astrophysics in the interpretation of AMS-02 electron and positron data. J. Cosmol. Astropart. Phys. 2016, 20116, 031. [Google Scholar] [CrossRef]
- Salvatelli, V.; Marchini, A.; Lopez-Honorez, L.; Mena, O. New constraints on coupled dark energy from the Planck satellite experiment. Phys. Rev. D 2013, 88, 023531. [Google Scholar] [CrossRef] [Green Version]
- Stril, A.; Cahn, R.N.; Linder, E.V. Testing standard cosmology with large-scale structure. Mon. Not. R. Astron. Soc. 2010, 404, 239–246. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, B.; Yu, M. Geometric Outlines of the Gravitational Lensing and Its Astronomic Applications. Universe 2023, 9, 153. https://doi.org/10.3390/universe9030153
Shen B, Yu M. Geometric Outlines of the Gravitational Lensing and Its Astronomic Applications. Universe. 2023; 9(3):153. https://doi.org/10.3390/universe9030153
Chicago/Turabian StyleShen, Bin, and Mingyang Yu. 2023. "Geometric Outlines of the Gravitational Lensing and Its Astronomic Applications" Universe 9, no. 3: 153. https://doi.org/10.3390/universe9030153
APA StyleShen, B., & Yu, M. (2023). Geometric Outlines of the Gravitational Lensing and Its Astronomic Applications. Universe, 9(3), 153. https://doi.org/10.3390/universe9030153