Hawking Radiation from the Boundary Scalar Field and the Information Loss Paradox
Abstract
:1. Introduction
2. The BTZ Black Hole
2.1. The Entropy of the BTZ Black Hole
2.2. The Hawking Radiation on the Horizon
3. The Kerr Black Hole
3.1. The Entropy of the Kerr Black Hole
3.2. The Hawking Radiation on the Horizon
4. Hawking Radiation Is Pure
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hawking, S.W. Black hole explosions. Nature 1974, 248, 30–31. [Google Scholar] [CrossRef]
- Hawking, S.W. Particle Creation by Black Holes. Commun. Math. Phys. 1975, 43, 199–220. [Google Scholar] [CrossRef]
- Hawking, S.W. Breakdown of Predictability in Gravitational Collapse. Phys. Rev. 1976, D14, 2460–2473. [Google Scholar] [CrossRef]
- Chakraborty, S.; Lochan, K. Black Holes: Eliminating Information or Illuminating New Physics? Universe 2017, 3, 55. [Google Scholar] [CrossRef] [Green Version]
- Marolf, D. The Black Hole information problem: Past, present, and future. Rept. Prog. Phys. 2017, 80, 92001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Good, M.R.R.; Linder, E.V.; Wilczek, F. Moving mirror model for quasithermal radiation fields. Phys. Rev. 2020, D101, 25012. [Google Scholar] [CrossRef] [Green Version]
- Almheiri, A.; Engelhardt, N.; Marolf, D.; Maxfield, H. The entropy of bulk quantum fields and the entanglement wedge of an evaporating black hole. J. High Energy Phys. 2019, 12, 63. [Google Scholar] [CrossRef] [Green Version]
- Almheiri, A.; Mahajan, R.; Maldacena, J.; Zhao, Y. The Page curve of Hawking radiation from semiclassical geometry. J. High Energy Phys. 2020, 3, 149. [Google Scholar] [CrossRef] [Green Version]
- Almheiri, A.; Hartman, T.; Maldacena, J.; Shaghoulian, E.; Tajdini, A. The entropy of Hawking radiation. Rev. Mod. Phys. 2021, 93, 35002. [Google Scholar] [CrossRef]
- Penington, G.; Shenker, S.H.; Stanford, D.; Yang, Z. Replica wormholes and the black hole interior. J. High Energy Phys. 2022, 3, 205. [Google Scholar] [CrossRef]
- Almheiri, A.; Hartman, T.; Maldacena, J.; Shaghoulian, E.; Tajdini, A. Replica Wormholes and the Entropy of Hawking Radiation. J. High Energy Phys. 2020, 5, 13. [Google Scholar] [CrossRef]
- Carlip, S. Black Hole Thermodynamics. Int. J. Mod. Phys. 2014, D23, 1430023. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Black holes and entropy. Phys. Rev. 1973, D7, 2333–2346. [Google Scholar] [CrossRef]
- Bekenstein, J.D. The quantum mass spectrum of the Kerr black hole. Lett. Nuovo Cim. 1974, 11, 467. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Quantum black holes as atoms. In Proceedings of the 8th Marcel Grossmann Meeting, MG8, Jerusalem, Israel, 22–27 June 1997; pp. 92–111. [Google Scholar]
- Maggiore, M. The Physical interpretation of the spectrum of black hole quasinormal modes. Phys. Rev. Lett. 2008, 100, 141301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukhanov, V.F. Are black holes quantized? JETP Lett. 1986, 44, 63–66, Pisma Zh. Eksp. Teor. Fiz. 1986, 44, 50. [Google Scholar]
- Bekenstein, J.D.; Mukhanov, V.F. Spectroscopy of the quantum black hole. Phys. Lett. 1995, B360, 7–12. [Google Scholar] [CrossRef] [Green Version]
- Hod, S. Bohr’s correspondence principle and the area spectrum of quantum black holes. Phys. Rev. Lett. 1998, 81, 4293. [Google Scholar] [CrossRef] [Green Version]
- Cardoso, V.; Foit, V.F.; Kleban, M. Gravitational wave echoes from black hole area quantization. J. Cosmol. Astropart. Phys. 2019, 1908, 6. [Google Scholar] [CrossRef] [Green Version]
- Wang, J. Microscopic states of Kerr black holes from boundary-bulk correspondence. Chin. Phys. 2021, C45, 015107. [Google Scholar] [CrossRef]
- Banados, M.; Teitelboim, C.; Zanelli, J. The Black hole in three-dimensional space-time. Phys. Rev. Lett. 1992, 69, 1849–1851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J. Fractional charge of quasi-particles on the horizon of black holes. arXiv 2019, arXiv:1907.01209. [Google Scholar]
- Krishnan, B. Quasi-local black hole horizons. In Springer Handbook of Spacetime; Ashtekar, A., Petkov, V., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 527–555. [Google Scholar]
- Parikh, M.K. The Volume of black holes. Phys. Rev. 2006, D73, 124021. [Google Scholar] [CrossRef] [Green Version]
- Ballik, W.; Lake, K. The volume of stationary black holes and the meaning of the surface gravity. arXiv 2010, arXiv:1005.1116. [Google Scholar]
- Bekenstein, J.D.; Mayo, A.E. Black holes are one-dimensional. Gen. Rel. Grav. 2001, 33, 2095–2099. [Google Scholar] [CrossRef]
- Carlip, S. Effective Conformal Descriptions of Black Hole Entropy. Entropy 2011, 13, 1355–1379. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Haldane, F. Entanglement Spectrum as a Generalization of Entanglement Entropy: Identification of Topological Order in Non-Abelian Fractional Quantum Hall Effect States. Phys. Rev. Lett. 2008, 101, 10504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, X.-L.; Katsura, H.; Ludwig, A.W.W. General relationship between the entanglement spectrum and the edge state spectrum of topological quantum states. Phys. Rev. Lett. 2012, 108, 196402. [Google Scholar] [CrossRef] [Green Version]
- de Nova, J.R.M.; Golubkov, K.; Kolobov, V.I.; Steinhauer, J. Observation of thermal Hawking radiation and its temperature in an analogue black hole. Nature 2019, 569, 688–691. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J. Hawking Radiation from the Boundary Scalar Field and the Information Loss Paradox. Universe 2023, 9, 154. https://doi.org/10.3390/universe9030154
Wang J. Hawking Radiation from the Boundary Scalar Field and the Information Loss Paradox. Universe. 2023; 9(3):154. https://doi.org/10.3390/universe9030154
Chicago/Turabian StyleWang, Jingbo. 2023. "Hawking Radiation from the Boundary Scalar Field and the Information Loss Paradox" Universe 9, no. 3: 154. https://doi.org/10.3390/universe9030154
APA StyleWang, J. (2023). Hawking Radiation from the Boundary Scalar Field and the Information Loss Paradox. Universe, 9(3), 154. https://doi.org/10.3390/universe9030154