Optical Soliton Perturbation with Parabolic Law Nonlinearity
Abstract
:1. Introduction
Governing Model
2. Improved Extended Tanh-Function Approach (Succinct Recapitulation)
- Step 1: Use the traveling wave transformation
- Step 4: Substitute (5) into (4), along with (6). As a result of this substitution, we obtain a polynomial of . By collecting all terms of the same power in this polynomial and equating them to zero, we have an overdetermined system of algebraic equations that may be solved by Maple or Mathematica to obtain the unknown parameters k, v, , , and . Consequently, we obtain the exact solutions of (2).
3. Application to the Model
- Result (1): If we set , we obtainThen, the solution corresponding to (1) are bright soliton solutions with
- Result (2):
- Case (1): If we set and , we obtain
- (i)
- Then, the solution corresponding to (1) are bright soliton solutions with
- (ii)
- Then, the solution corresponding to (1) are singular soliton solutions, with
- Case (2): If we set and , we obtain
- Then, the corresponding solution of (1) is Jacobi’s elliptic cosine function.
- We achieve a bright soliton solution with if we select .
- Case (3): If we set and , we obtain
- Then, the solution corresponding to (1) is Jacobi’s elliptic function of the third kind.
- We achieve a bright soliton solution with if we select .
- Case (4): If we set and , we obtain
- (i)
- Then, the solutions corresponding to (1) are Jacobi’s elliptic sine function.
- We achieve a dark soliton solution with if we select .
- (ii)
- Then, the solution corresponding to (1) is
- We achieve a singular soliton solution with if we select .
- Jacobi elliptic functions are indicated by the symbols , and , where m is the elliptic modulus.
- The elliptic Jacobian functions transform into hyperbolic ones when :
- The elliptic Jacobian functions transform into trigonometric ones when :
- Result (3): If we set , we obtain
- Then, the solution corresponding to (1) is Weierstrass’s elliptic function.
- Result (4): If we set , we obtain
- Then, the solution corresponding to (1) is
- Result (5):
- Case (1): If we set and , we obtain
- Then, the solution corresponding to (1) is
- Case (2): If we set , we obtain
- Then, the solution corresponding to (1) is
- Result (6):
- Case (1): If we set , we obtain
- Then, the solution corresponding to (1) is a singular soliton with
- Case (2): If we set and , we obtain
- Then, the solution corresponding to (1) are dark soliton solutions with
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kudryashov, N.A. Optical solitons of the model with arbitrary refractive index. Optik 2020, 224, 165767. [Google Scholar] [CrossRef]
- Kudryashov, N.A.; Biswas, A. Optical solitons of nonlinear Schrödinger’s equation with arbitrary dual-power law parameters. Optik 2022, 252, 168497. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Governed optical solitons of the generalized Schrödinger equation with dual-power law of refractive index. Optik 2022, 266, 169619. [Google Scholar] [CrossRef]
- Ozisik, M. On the optical soliton solution of the (1 + 1)–dimensional perturbed NLSE in optical nano-fibers. Optik 2022, 250, 168233. [Google Scholar] [CrossRef]
- Ozisik, M.; Secer, A.; Bayram, M.; Aydin, H. An encyclopedia of Kudryashov’s integrability approaches applicable to optoelectronic devices. Optik 2022, 265, 169499. [Google Scholar] [CrossRef]
- Tang, L. Optical solitons and traveling wave solutions for the higher-order nonlinear Schrödinger equation with derivative non-Kerr nonlinear terms. Optik 2022, 271, 170115. [Google Scholar] [CrossRef]
- Tang, L. Bifurcation analysis and multiple solitons in birefringent fibers with coupled Schrödinger–Hirota equation. Chaos Solitons Fractals 2022, 161, 112383. [Google Scholar] [CrossRef]
- Tang, L. Bifurcations and optical solitons for the coupled nonlinear Schrödinger equation in optical fiber Bragg gratings. J. Opt. 2022. [Google Scholar] [CrossRef]
- Zhong, Y.; Triki, H.; Zhou, Q. Analytical and numerical study of chirped optical solitons in a spatially inhomogeneous polynomial law fiber with parity–time symmetry potential. Commun. Theor. Phys. 2023, 75, 025003. [Google Scholar] [CrossRef]
- Zhou, Q. Influence of parameters of optical fibers on optical soliton interactions. Chin. Phys. Lett. 2022, 39, 010501. [Google Scholar] [CrossRef]
- Zeng, L.; Zeng, J. Preventing critical collapse of higher-order solitons by tailoring unconventional optical diffraction and nonlinearities. Commun. Phys. 2020, 3, 26. [Google Scholar] [CrossRef] [Green Version]
- Kengne, E.; Liu, W.-M. Modulational instability and soliton control in a cubic-quintic dissipative Gross-Pitaevskii equation with distributed coefficients. J. Phys. B At. Mol. Opt. Phys. 2020, 53, 215003. [Google Scholar] [CrossRef]
- Chen, J.; Zeng, J. Dark matter-wave gap solitons of Bose-Einstein condensates trapped in optical lattices with competing cubic-quintic nonlinearities. Chaos Solitons Fractals 2021, 150, 111149. [Google Scholar] [CrossRef]
- Stephanovich, V.A.; Olchawa, W.; Kirichenko, E.V.; Dugaev, V.K. 1D solitons in cubic-quintic fractional nonlinear Schrödinger model. Sci. Rep. 2022, 12, 15031. [Google Scholar] [CrossRef] [PubMed]
- Manikandan, K.; Aravinthan, D.; Sudharsan, J.B.; Vadivel, R. Optical solitons in the generalized space–time fractional cubic-quintic nonlinear Schrödinger equation with a -symmetric potential. Optik 2022, 271, 170105. [Google Scholar] [CrossRef]
- Yang, Z.; Hon, Y.C. An Improved Modified Extended tanh-Function Method. Z. Für Naturforschung 2006, 61, 103–115. [Google Scholar] [CrossRef]
- Ma, W.-X. Matrix integrable fourth-order nonlinear Schrödinger equations and their exact soliton solutions. Chin. Phys. Lett. 2022, 39, 100201. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arnous, A.H.; Samir, I.; Biswas, A.; González-Gaxiola, O.; Moraru, L.; Iticescu, C.; Moldovanu, S.; Alghamdi, A.A. Optical Soliton Perturbation with Parabolic Law Nonlinearity. Universe 2023, 9, 155. https://doi.org/10.3390/universe9030155
Arnous AH, Samir I, Biswas A, González-Gaxiola O, Moraru L, Iticescu C, Moldovanu S, Alghamdi AA. Optical Soliton Perturbation with Parabolic Law Nonlinearity. Universe. 2023; 9(3):155. https://doi.org/10.3390/universe9030155
Chicago/Turabian StyleArnous, Ahmed H., Islam Samir, Anjan Biswas, Oswaldo González-Gaxiola, Luminita Moraru, Catalina Iticescu, Simona Moldovanu, and Abdulah A. Alghamdi. 2023. "Optical Soliton Perturbation with Parabolic Law Nonlinearity" Universe 9, no. 3: 155. https://doi.org/10.3390/universe9030155
APA StyleArnous, A. H., Samir, I., Biswas, A., González-Gaxiola, O., Moraru, L., Iticescu, C., Moldovanu, S., & Alghamdi, A. A. (2023). Optical Soliton Perturbation with Parabolic Law Nonlinearity. Universe, 9(3), 155. https://doi.org/10.3390/universe9030155