Novel Free Differential Algebras for Supergravity
Abstract
:1. Ingredients
1.1. Free Differential Algebras (FDAs)
1.2. Free Integro-Differential Algebras (FIDAs)
- 1.
- Notice that among the integral cocycles, in the case of unimodular superalgebras, we always have the highest form integral cocycle
- 2.
- There might be the possibility (see for example the discussed in the forthcoming section) that is not enough to complete the FIDA. Indeed, if is even, the integral form is even and its potential is odd. Therefore, the product
1.3. Hilbert–Poincaré Series
2. Examples
2.1. Toy Model Example
2.2. Abelian Group Manifold Example: U(1|1)
2.3. Non-Abelian Group Manifold Example: OSp(1|2)
2.4. Coset Manifold Example: OSp(1|4)/SO(1,3)
3. Hodge Dual Operator, Dual Cocycles and Harmonic Cocycles
3.1. D = 4
3.2. D = 6
3.3. D = 11
4. Conclusions and Outlook
Funding
Acknowledgments
Conflicts of Interest
1 | In the original paper [1], R. D’Auria and P. Fré referred to commutative semi free differential algebras as “Cartan integrable systems”. In nowadays literature, the semi free differential algebras used in supergravity are misnamed as “FDA”s. We keep the same terminology in the present work. |
2 | Under a generic infinitesimal transformation , where are the infinitesimal parameters of the transformation, transforms as
|
3 | Expressing in terms of the potentials , we have , which implies that , but if all are replaced by , we can redefine the contributions on the left hand side of Equation (30) by exact terms. |
4 | The computation is presented in a separate paper [32]. |
References
- D’Auria, R.; Fré, P. Geometric Supergravity in d = 11 and Its Hidden Supergroup. Nucl. Phys. B 1982, 201, 101–140, Erratum in Nucl. Phys. B 1982, 206, 496.. [Google Scholar] [CrossRef]
- Wess, J.; Zumino, B. Superspace Formulation of Supergravity. Phys. Lett. B 1977, 66, 361–364. [Google Scholar] [CrossRef]
- Ne’eman, Y.; Regge, T. Gravity and Supergravity as Gauge Theories on a Group Manifold. Phys. Lett. B 1978, 74, 54. [Google Scholar] [CrossRef]
- D’Adda, A.; D’Auria, R.; Fré, P.; Regge, T. Geometrical Formulation of Supergravity Theories on Orthosymplectic Supergroup Manifolds. Riv. Nuovo Cim. 1980, 3, 1–81. [Google Scholar] [CrossRef]
- D’Auria, R.; Fré, P.; Regge, T. Graded Lie Algebra Cohomology and Supergravity. Riv. Nuovo Cim. 1980, 3, 1–36. [Google Scholar] [CrossRef]
- Van Nieuwenhuizen, P. Supergravity. Phys. Rept. 1981, 68, 189–398. [Google Scholar] [CrossRef]
- Regge, T. The Group Manifold Approach to Unified Gravity. Conf. Proc. C 1983, 8306271, 933. [Google Scholar]
- Gates, S.J., Jr.; Grisaru, M.T.; Roček, M.; Siegel, W. Superspace, or One Thousand and One Lessons in Supersymmetry. arXiv 1983, arXiv:hep-th/0108200. [Google Scholar]
- Wess, J.; Bagger, J. Supersymmetry and Supergravity; Princeton University Press: Princeton, NJ, USA, 1992; p. 259. [Google Scholar]
- Castellani, L.; D’Auria, R.; Fre, P. “Supergravity and Superstrings: A Geometric Perspective. Vol. 1: Mathematical Foundations,” “Supergravity and Superstrings: A Geometric Perspective. Vol. 2: Supergravity,” and “Supergravity and Superstrings: A Geometric Perspective. Vol. 3: Superstrings”; World Scientific: Singapore, 1991; ISBN 9971500388/9789971500382. [Google Scholar]
- Kuzenko, S.M.; Buchbinder, I.L. Ideas and Methods of Supersymmetry and Supergravity or A Walk through Superspace: A Walk Through Superspace; Taylor & Francis: Abingdon, UK, 1998; ISBN 978-1-4200-5051-6/978-0-7503-0506-8/978-0-367-80253-0. [Google Scholar] [CrossRef]
- Chryssomalakos, C.; de Azcarraga, J.A.; Izquierdo, J.M.; Bueno, J.C.P. The Geometry of branes and extended superspaces. Nucl. Phys. B 2000, 567, 293–330. [Google Scholar] [CrossRef]
- Bandos, I.A.; de Azcarraga, J.A.; Izquierdo, J.M.; Picon, M.; Varela, O. On the underlying gauge group structure of D = 11 supergravity. Phys. Lett. B 2004, 596, 145–155. [Google Scholar] [CrossRef]
- Bandos, I.A.; de Azcarraga, J.A.; Picon, M.; Varela, O. On the formulation of D = 11 supergravities and the composite nature of its three-form gauge field. Ann. Phys. 2005, 317, 238–279. [Google Scholar] [CrossRef]
- de Azcarraga, J.A. Superbranes, D = 11 CJS supergravity and enlarged superspace coordinates/fields correspondence. AIP Conf. Proc. 2005, 767, 243–267. [Google Scholar] [CrossRef]
- Sati, H.; Schreiber, U.; Stasheff, J. L∞ Algebra Connections and Applications to String- and Chern-Simons n-Transport; Birkhäuser Basel: Basel, Switzerland, 2009. [Google Scholar] [CrossRef]
- Fiorenza, D.; Schreiber, U.; Stasheff, J. Čech cocycles for differential characteristic classes: An ∞-Lie theoretic construction. Adv. Theor. Math. Phys. 2012, 16, 149–250. [Google Scholar] [CrossRef]
- Fre, P.; Grassi, P.A. Free Differential Algebras, Rheonomy, and Pure Spinors. arXiv 2008, arXiv:0801.3076. [Google Scholar]
- Fre, P. M-theory FDA, twisted tori and Chevalley cohomology. Nucl. Phys. B 2006, 742, 86–123. [Google Scholar] [CrossRef]
- Castellani, L.; Catenacci, R.; Grassi, P.A. Supergravity Actions with Integral Forms. Nucl. Phys. B 2014, 889, 419–442. [Google Scholar] [CrossRef]
- Castellani, L.; Catenacci, R.; Grassi, P.A. The Geometry of Supermanifolds and New Supersymmetric Actions. Nucl. Phys. B 2015, 899, 112–148. [Google Scholar] [CrossRef]
- Castellani, L.; Catenacci, R.; Grassi, P.A. The Integral Form of Supergravity. J. High Energy Phys. 2016, 10, 49. [Google Scholar] [CrossRef]
- Castellani, L.; Catenacci, R.; Grassi, P.A. Super Quantum Mechanics in the Integral Form Formalism. Ann. Henri Poincaré 2018, arXiv:1706.0470419, 1385–1417. [Google Scholar] [CrossRef]
- Castellani, L.; Catenacci, R.; Grassi, P.A. Wess-Zumino and Super Yang-Mills Theories in D = 4 Integral Superspace. arXiv 2017, arXiv:1711.07194. [Google Scholar]
- Catenacci, R.; Cremonini, C.A.; Grassi, P.A.; Noja, S. Cohomology of Lie Superalgebras: Forms, Integral Forms and Coset Superspaces. arXiv 2020, arXiv:2012.05246. [Google Scholar]
- Cremonini, C.A.; Grassi, P.A. Generalised Cocycles and Super p-Branes. arXiv 2022, arXiv:2206.03394. [Google Scholar]
- Castellani, L.; Catenacci, R.; Grassi, P.A. Hodge Dualities on Supermanifolds. Nucl. Phys. B 2015, 899, 570. [Google Scholar] [CrossRef]
- Castellani, L.; Catenacci, R.; Grassi, P.A. Integral representations on supermanifolds: Super Hodge duals, PCOs and Liouville forms. Lett. Math. Phys. 2017, 107, 167–185. [Google Scholar] [CrossRef]
- Sullivan, D. Infinitesimal computations in topology. Publ. MathÉmatiques L’Ihes 1977, 47, 269–331. [Google Scholar]
- Noja, S. On the geometry of forms on supermanifolds. Differ. Geom. Appl. 2023, 88, 101999. [Google Scholar] [CrossRef]
- Castellani, L.; Fré, P.; Giani, F.; Pilch, K.; van Nieuwenhuizen, P. Beyond d=11 Supergravity and Cartan Integrable Systems. Phys. Rev. D 1982, 26, 1481. [Google Scholar] [CrossRef]
- Cremonini, C.A.; Grassi, P.A.; Noris, R.; Ravera, L. Supergravities and Branes from Hilbert-Poincaré Series. arXiv 2022, arXiv:2211.10454. [Google Scholar]
- Andrianopoli, L.; D’Auria, R.; Ravera, L. Hidden Gauge Structure of Supersymmetric Free Differential Algebras. J. High Energy Phys. 2016, 8, 95. [Google Scholar] [CrossRef]
- Andrianopoli, L.; D’Auria, R.; Ravera, L. More on the Hidden Symmetries of 11D Supergravity. Phys. Lett. B 2017, 772, 578. [Google Scholar] [CrossRef]
- Ravera, L. Hidden Role of Maxwell Superalgebras in the Free Differential Algebras of D = 4 and D = 11 Supergravity. Eur. Phys. J. C 2018, arXiv:1801.0886078, 211. [Google Scholar] [CrossRef]
- Cremonini, C.A.; Grassi, P.A. Pictures from Super Chern-Simons Theory. J. High Energy Phys. 2020, 3, 43. [Google Scholar] [CrossRef]
- Derksen, H.; Kemper, G. Computational Invariant Theory; Springer: New York, NY, USA, 2002. [Google Scholar]
- Procesi, C. Lie Groups: An Approach through Invariants and Representations; Springer: New York, NY, USA, 2007; ISBN 0-387-26040-4. [Google Scholar]
- Pouliot, P. Molien function for duality. J. High Energy Phys. 1999, 1, 21. [Google Scholar] [CrossRef]
- Weyl, H. Classical Groups: Their Invariants and Representations; Princeton University Press: Princeton, NJ, USA, 1939; Reprint 1997. [Google Scholar]
- Catenacci, R.; Grassi, P.A.; Noja, S. Superstring Field Theory, Superforms and Supergeometry. J. Geom. Phys. 2020, 148, 103559. [Google Scholar] [CrossRef]
- Fuks, D.B. Cohomology of Infinite-Dimensional Lie Algebras. In Monographs in Contemporary Mathematics (MCMA); Springer: New York, NY, USA, 2012. [Google Scholar] [CrossRef]
- Castellani, L.; Grassi, P.A. Hodge Duality and Supergravity. arXiv 2023, arXiv:2305.06034 [hep-th]. [Google Scholar]
- Grassi, P.A. Remarks on the Integral Form of D = 11 Supergravity. J. Phys. Conf. Ser. 2023, arXiv:2304.017432531, 012010. [Google Scholar] [CrossRef]
- Castellani, L.; Perotto, A. Free differential algebras: Their use in field theory and dual formulation. Lett. Math. Phys. 1996, 38, 321. [Google Scholar] [CrossRef]
- Castellani, L. Lie Derivatives along Antisymmetric Tensors, and the M-TheorySuperalgebra. J. Phys. Math. 2011, 3, 110504. [Google Scholar] [CrossRef]
- Castellani, L. Extended Lie derivatives and a new formulation of D = 11 supergravity. J. Phys. Math. 2011, 3, 110505. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grassi, P.A. Novel Free Differential Algebras for Supergravity. Universe 2023, 9, 376. https://doi.org/10.3390/universe9080376
Grassi PA. Novel Free Differential Algebras for Supergravity. Universe. 2023; 9(8):376. https://doi.org/10.3390/universe9080376
Chicago/Turabian StyleGrassi, Pietro Antonio. 2023. "Novel Free Differential Algebras for Supergravity" Universe 9, no. 8: 376. https://doi.org/10.3390/universe9080376
APA StyleGrassi, P. A. (2023). Novel Free Differential Algebras for Supergravity. Universe, 9(8), 376. https://doi.org/10.3390/universe9080376