Two-Center Basis Generator Method Calculations for Li3+, C3+ and O3+ Ion Impact on Ground State Hydrogen
Abstract
:1. Introduction
2. Theoretical Method
3. Results and Discussion
3.1. Li-H(1s)
3.2. C-H(1s)
3.3. O-H(1s)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
TC-BGM | Two-center basis generator method |
TDSE | Time-dependent Schödinger equation |
OPM | Optimized potential model |
GSZ | Green–Sellin–Zachor |
TC-AOCC-GTO | Two-center atomic orbital close-coupling with Gaussian-type orbitals |
MOCC | Molecular orbital close-coupling |
END | Electron nuclear dynamics |
Appendix A
E(keV/u) | Li-H(1s) | C-H(1s) | O-H(1s) | |||
---|---|---|---|---|---|---|
n = 2 | n = 3 | n = 2 | n = 3 | n = 2 | n = 3 | |
1 | 0.010 | 0.001 | 0.019 | 0.001 | 0.007 | <0.001 |
2 | 0.053 | 0.005 | 0.084 | 0.009 | 0.076 | 0.007 |
3 | 0.053 | 0.005 | 0.097 | 0.012 | 0.173 | 0.015 |
4 | 0.045 | 0.007 | 0.068 | 0.016 | 0.179 | 0.021 |
6 | 0.185 | 0.048 | 0.205 | 0.026 | 0.298 | 0.086 |
8 | 0.276 | 0.074 | 0.442 | 0.098 | 0.341 | 0.071 |
12 | 0.241 | 0.063 | 0.449 | 0.102 | 0.480 | 0.102 |
16 | 0.280 | 0.086 | 0.421 | 0.130 | 0.570 | 0.125 |
20 | 0.360 | 0.108 | 0.460 | 0.145 | 0.580 | 0.215 |
30 | 0.860 | 0.321 | 0.920 | 0.320 | 0.940 | 0.245 |
40 | 1.090 | 0.416 | 1.590 | 0.358 | 1.400 | 0.436 |
60 | 1.820 | 0.535 | 2.630 | 0.630 | 2.170 | 0.620 |
80 | 2.556 | 0.705 | 2.981 | 0.950 | 2.800 | 0.718 |
100 | 2.930 | 0.800 | 3.070 | 1.060 | 3.250 | 0.920 |
E(keV/u) | Li-H(1s) | C-H(1s) | O-H(1s) |
---|---|---|---|
1 | 2.57 | 4.45 | 27.26 |
2 | 4.92 | 6.61 | 23.95 |
3 | 7.24 | 9.59 | 23.09 |
4 | 9.25 | 12.00 | 23.00 |
6 | 13.86 | 15.10 | 21.10 |
8 | 16.57 | 15.87 | 19.79 |
12 | 19.20 | 16.74 | 18.25 |
16 | 19.70 | 17.27 | 18.09 |
20 | 19.15 | 17.06 | 17.59 |
30 | 16.02 | 14.40 | 14.74 |
40 | 12.11 | 10.89 | 11.06 |
60 | 6.21 | 5.66 | 5.52 |
80 | 3.03 | 2.92 | 2.68 |
100 | 1.64 | 1.59 | 1.53 |
E(keV/u) | Li-H(1s) | C-H(1s) | O-H(1s) |
---|---|---|---|
1 | <0.001 | 0.002 | 0.001 |
2 | 0.003 | 0.011 | 0.007 |
3 | 0.006 | 0.026 | 0.030 |
4 | 0.014 | 0.028 | 0.034 |
6 | 0.042 | 0.082 | 0.115 |
8 | 0.087 | 0.172 | 0.115 |
12 | 0.155 | 0.352 | 0.350 |
16 | 0.245 | 0.487 | 0.502 |
20 | 0.466 | 0.731 | 0.660 |
30 | 1.760 | 2.340 | 2.173 |
40 | 4.215 | 4.056 | 4.019 |
60 | 7.236 | 6.757 | 6.811 |
80 | 8.141 | 8.003 | 8.118 |
100 | 8.198 | 8.320 | 8.209 |
References
- Cravens, T.E. Heliospheric X-ray Emission Associated with Charge Transfer of the Solar Wind with Interstellar Neutrals. Astrophys. J. 2000, 532, L153. [Google Scholar] [CrossRef]
- Abu-Haija, O.; Wardwell, J.A.; Kamber, E.Y. Electron capture by O3+ ions from He, H2O and CO2. J. Phys. Conf. Ser. 2007, 58, 195–198. [Google Scholar] [CrossRef] [Green Version]
- Bruhns, H.; Kreckel, H.; Savin, D.W.; Seely, D.G.; Havener, C.C. Low-energy charge transfer for collisions of Si3+ with atomic hydrogen. Phys. Rev. A 2008, 77, 064702. [Google Scholar] [CrossRef] [Green Version]
- Chung, H.K. Data for Atomic Processes of Neutral Beams in Fusion Plasma Summary Report of the First Research Coordination Meeting; Technical Report; International Atomic Energy Agency (IAEA): Austria, Vienna, 2017. [Google Scholar]
- Shah, M.B.; Goffe, T.V.; Gilbody, H.B. Electron capture and loss by fast lithium ions in H and H2. J. Phys. B 1978, 11, 2–6. [Google Scholar] [CrossRef]
- Fritsch, W.; Lin, C.D. Electron transfer in Li3+ +H collisions at low and intermediate energies. J. Phys. B 1982, 15, L281–L287. [Google Scholar] [CrossRef]
- Murakami, I.; Yan, J.; Sato, H.; Kimura, M.; Janev, R.K.; Kato, T. Excitation, ionization, and electron capture cross sections for collisions of Li3+ with ground state and excited hydrogen atoms. At. Data Nucl. Data Tables 2008, 94, 161–222. [Google Scholar] [CrossRef]
- Janev, R.; Phaneuf, R.; Hunter, H. Recommmended cross sections for electron capture and ionization in collisions of Cq+ and Oq+ ions with H, He, and H2. At. Data Nucl. Data Tables 1988, 40, 249. [Google Scholar] [CrossRef]
- Errea, L.F.; Herrero, B.; Méndez, L.; Mó, O.; Riera, A. Charge exchange and excitation in C3+ + H collisions: I. molecular calculations. J. Phys. B 1991, 24, 4049–4060. [Google Scholar] [CrossRef]
- Guevara, N.L.; Teixeira, E.; Hall, B.; Öhrn, Y.; Deumens, E.; Sabin, J.R. Charge transfer in collisions of the effectively-one-electron isocharged ions Si3+,C3+, and O3+ with atomic hydrogen. Phys. Rev. A 2011, 83, 052709. [Google Scholar] [CrossRef] [Green Version]
- Zapukhlyak, M.; Kirchner, T.; Lüdde, H.J.; Knoop, S.; Morgenstern, R.; Hoekstra, R. Inner- and outer-shell electron dynamics in proton collisions with sodium atoms. J. Phys. B 2005, 38, 2353. [Google Scholar] [CrossRef]
- Lüdde, H.J.; Kalkbrenner, T.; Horbatsch, M.; Kirchner, T. Nonperturbative scaling behavior for net ionization of biologically relevant molecules by multiply charged heavy-ion impact. Phys. Rev. A 2020, 101, 062709. [Google Scholar] [CrossRef]
- Lüdde, H.J.; Jorge, A.; Horbatsch, M.; Kirchner, T. Net electron capture in collisions of multiply charged projectiles with biologically relevant molecules. Atoms 2020, 8, 59. [Google Scholar] [CrossRef]
- Leung, A.C.K.; Kirchner, T. Proton impact on ground and excited states of atomic hydrogen. Eur. Phys. J. D 2019, 73, 246. [Google Scholar] [CrossRef]
- Engel, E.; Vosko, S.H. Accurate optimized-potential-model solutions for spherical spin-polarized atoms: Evidence for limitations of the exchange-only local spin-density and generalized-gradient approximations. Phys. Rev. A 1993, 47, 2800. [Google Scholar] [CrossRef] [PubMed]
- Green, A.E.S.; Sellin, D.L.; Zachor, A.S. Analytic Independent-Particle Model for Atoms. Phys. Rev. 1969, 184, 1. [Google Scholar] [CrossRef]
- Szydlik, P.P.; Green, A.E. Independent-particle-model potentials for ions and neutral atoms with Z ≤ 18. Phys. Rev. A 1974, 9, 1885–1894. [Google Scholar] [CrossRef]
- Kramida, A.; Raichenko, Y.; Reader, J. NIST Atomic Spectra Database (Version 5.9). 2021. Available online: https://www.nist.gov/pml/atomic-spectra-database (accessed on 14 January 2022).
- Schenk, G.; Kirchner, T. Multiple ionization of neon atoms in collisions with bare and dressed ions: A mean-field description considering target response. Phys. Rev. A 2015, 91, 052712. [Google Scholar] [CrossRef]
- Lüdde, H.J.; Horbatsch, M.; Kirchner, T. A screened independent atom model for the description of ion collisions from atomic and molecular clusters. Eur. Phys. J. B 2018, 91, 99. [Google Scholar] [CrossRef] [Green Version]
- Suarez, J.; Guzman, F.; Pons, B.; Errea, L.F. Excitation cross sections for Li3+, Ne10+ and Ar18++H(1s) collisions of interest in fusion plasma diagnostics. J. Phys. B 2013, 46, 095701. [Google Scholar] [CrossRef]
- Agueny, H.; Hansen, J.P.; Dubois, A.; Makhoute, A.; Taoutioui, A.; Sisourat, N. Electron capture, ionization and excitation cross sections for keV collisions between fully stripped ions and atomic hydrogen in ground and excited states. At. Data Nucl. Data Tables 2019, 129–130, 101281. [Google Scholar] [CrossRef]
- Toshima, N. Ionization and charge transfer of atomic hydrogen in collision with multiply charged ions. Phys. Rev. A 1994, 50, 3940–3947. [Google Scholar] [CrossRef] [PubMed]
- Janev, R.K.; Solov’ev, E.A.; Wang, Y. Electron capture, excitation and ionization in slow collisions of ions with ground-state and metastable hydrogen atoms. J. Phys. B 1996, 29, 2497–2514. [Google Scholar] [CrossRef]
- Tseng, H.C.; Lin, C.D. Total and state-selective electron capture cross sections for C3+ +H collisions. J. Phys. B 1999, 32, 5271–5278. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leung, A.C.K.; Kirchner, T. Two-Center Basis Generator Method Calculations for Li3+, C3+ and O3+ Ion Impact on Ground State Hydrogen. Atoms 2022, 10, 11. https://doi.org/10.3390/atoms10010011
Leung ACK, Kirchner T. Two-Center Basis Generator Method Calculations for Li3+, C3+ and O3+ Ion Impact on Ground State Hydrogen. Atoms. 2022; 10(1):11. https://doi.org/10.3390/atoms10010011
Chicago/Turabian StyleLeung, Anthony C. K., and Tom Kirchner. 2022. "Two-Center Basis Generator Method Calculations for Li3+, C3+ and O3+ Ion Impact on Ground State Hydrogen" Atoms 10, no. 1: 11. https://doi.org/10.3390/atoms10010011
APA StyleLeung, A. C. K., & Kirchner, T. (2022). Two-Center Basis Generator Method Calculations for Li3+, C3+ and O3+ Ion Impact on Ground State Hydrogen. Atoms, 10(1), 11. https://doi.org/10.3390/atoms10010011