Extending Our Knowledge about the 229Th Nuclear Isomer
Abstract
:1. Introduction
2. Towards Radiative Lifetime Measurements
2.1. Stopping Cell and Extraction RFQ
2.2. Quadrupole Mass Separators
2.3. Cryogenic Paul Trap
2.4. Sr Ion Source and Ion Bender
2.5. Cooling Lasers and HFS Lasers
2.6. Measurement Scheme
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seiferle, B.; von der Wense, L.; Bilous, P.V.; Amersdorffer, I.; Lemell, C.; Libisch, F.; Stellmer, S.; Schumm, T.; Düllmann, C.E.; Pálffy, A.; et al. Energy of the 229Th nuclear clock transition. Nature 2019, 573, 243–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sikorsky, T.; Geist, J.; Hengstler, D.; Kempf, S.; Gastaldo, L.; Enss, C.; Mokry, C.; Runke, J.; Düllmann, C.E.; Wobrauschek, P.; et al. Measurement of the 229Th Isomer Energy with a Magnetic Microcalorimeter. Phys. Rev. Lett. 2020, 125, 142503. [Google Scholar] [CrossRef] [PubMed]
- Peik, E.; Tamm, C. Nuclear laser spectroscopy of the 3.5 eV transition in Th-229. Europhys. Lett. 2003, 61, 181. [Google Scholar] [CrossRef] [Green Version]
- Campbell, C.J.; Radnaev, A.G.; Kuzmich, A.; Dzuba, V.A.; Flambaum, V.V.; Derevianko, A. Single-Ion Nuclear Clock for Metrology at the 19th Decimal Place. Phys. Rev. Lett. 2012, 108, 120802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peik, E.; Schumm, T.; Safronova, M.S.; Pálffy, A.; Weitenberg, J.; Thirolf, P.G. Nuclear clocks for testing fundamental physics. Quantum Sci. Technol. 2021, 6, 034002. [Google Scholar] [CrossRef]
- Thirolf, P.G.; Seiferle, B.; von der Wense, L. The 229-thorium isomer: Doorway to the road from the atomic clock to the nuclear clock. J. Phys. B At. Mol. Opt. Phys. 2019, 52, 203001. [Google Scholar] [CrossRef]
- Thirolf, P.G.; Seiferle, B.; von der Wense, L. Fundamental Constants: Improving Our Knowledge on the 229mThorium Isomer: Toward a Test Bench for Time Variations of Fundamental Constants (Ann. Phys. 5/2019). Ann. Der Phys. 2019, 531, 1800381. [Google Scholar] [CrossRef] [Green Version]
- Beeks, K.; Sikorsky, T.; Schumm, T.; Thielking, J.; Okhapkin, M.V.; Peiket, E. The thorium-229 low-energy isomer and the nuclear clock. Nat. Rev. Phys. 2021, 3, 238–248. [Google Scholar] [CrossRef]
- Karpeshin, F.F.; Trzhaskovskaya, M.B. Bound internal conversion versus nuclear excitation by electron transition: Revision of the theory of optical pumping of the 229mTh isomer. Phys. Rev. C 2017, 95, 034310. [Google Scholar] [CrossRef]
- Strizhov, V.F.; Tkalya, E.V. Decay channel of low-lying isomer state of the Th-229 nucleus. Possibilities of experimental investigation. Sov. Phys. JETP 1991, 72, 387. [Google Scholar]
- Tkalya, E.V.; Schneider, C.; Jeet, J.; Hudson, E.R. Radiative lifetime and energy of the low-energy isomeric level in 229Th. Phys. Rev. C 2015, 92, 054324. [Google Scholar] [CrossRef] [Green Version]
- Minkov, N.; Pálffy, A. Reduced Transition Probabilities for the Gamma Decay of the 7.8 eV Isomer in 229Th. Phys. Rev. Lett. 2017, 118, 212501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seiferle, B.; von der Wense, L.; Thirolf, P.G. Lifetime Measurement of the 229Th Nuclear Isomer. Phys. Rev. Lett. 2017, 118, 042501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haettner, E.; Plaß, W.R.; Czok, U.; Dickel, T.; Geissel, H.; Kinsel, W.; Petrick, M.; Schäfer, T.; Scheidenberger, C. A versatile triple radiofrequency quadrupole system for cooling, mass separation and bunching of exotic nuclei. Nucl. Instrum. Methods A 2018, 880, 138–151. [Google Scholar] [CrossRef]
- von der Wense, L.; Seiferle, B.; Laatiaoui, M.; Neumayr, J.B.; Maier, H.-J.; Wirth, H.-F.; Mokry, C.; Mokry, J.; Eberhardt, K.; Düllmann, C.E.; et al. Direct detection of the 229Th nuclear clock transition. Nature 2016, 533, 47–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moritz, D.; Scharl, K.; Ding, S.; Seiferle, B.; von der Wense, L.; Zacherl, F.; Löbell, L.; Thirolf, P.G. A cryogenic Paul trap setup for the determination of the ionic radiative lifetime of 229Th3+. 2022; in preparation. [Google Scholar]
- Schwarz, M.; Versolato, O.O.; Windberger, A.; Brunner, F.R.; Ballance, T.; Eberle, S.N.; Ullrich, J.; Schmidt, P.O.; Hansen, A.K.; Gingell, A.D.; et al. Cryogenic linear Paul trap for cold highly charged ion experiments. Rev. Sci. Instrum. 2012, 83, 083115. [Google Scholar] [CrossRef] [PubMed]
- Leopold, T.; King, S.A.; Micke, P.; Bautista-Salvador, A.; Heip, J.C.; Ospelkaus, C.; Crespo López-Urrutia, J.R.; Schmidt, P.O. A cryogenic radio-frequency ion trap for quantum logic spectroscopy of highly charged ions. Rev. Sci. Instrum. 2019, 90, 073201. [Google Scholar] [CrossRef] [PubMed]
- Campbell, C.J.; Radnaev, A.G.; Kuzmich, A. Wigner Crystals of 229Th for Optical Excitation of the Nuclear Isomer. Phys. Rev. Lett. 2011, 106, 223001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Removille, S.; Dubessy, R.; Dubost, B.; Glorieux, Q.; Coudreau, T.; Guibal, S.; Likforman, J.-P.; Guidoni, L. Trapping and cooling of Sr+ ions: Strings and large clouds. J. Phys. B At. Mol. Opt. Phys. 2009, 42, 154014. [Google Scholar] [CrossRef] [Green Version]
- Madej, A.A.; Marmet, L.; Bernard, J.E. Rb atomic absorption line reference for single Sr+ laser cooling systems. Appl. Phys. B 1998, 67, 229–234. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seiferle, B.; Moritz, D.; Scharl, K.; Ding, S.; Zacherl, F.; Löbell, L.; Thirolf, P.G. Extending Our Knowledge about the 229Th Nuclear Isomer. Atoms 2022, 10, 24. https://doi.org/10.3390/atoms10010024
Seiferle B, Moritz D, Scharl K, Ding S, Zacherl F, Löbell L, Thirolf PG. Extending Our Knowledge about the 229Th Nuclear Isomer. Atoms. 2022; 10(1):24. https://doi.org/10.3390/atoms10010024
Chicago/Turabian StyleSeiferle, Benedict, Daniel Moritz, Kevin Scharl, Shiqian Ding, Florian Zacherl, Lilli Löbell, and Peter G. Thirolf. 2022. "Extending Our Knowledge about the 229Th Nuclear Isomer" Atoms 10, no. 1: 24. https://doi.org/10.3390/atoms10010024
APA StyleSeiferle, B., Moritz, D., Scharl, K., Ding, S., Zacherl, F., Löbell, L., & Thirolf, P. G. (2022). Extending Our Knowledge about the 229Th Nuclear Isomer. Atoms, 10(1), 24. https://doi.org/10.3390/atoms10010024