Dynamics of Twisted Electron Impact Ionization of CH4 and NH3 Molecule
Abstract
:1. Introduction
2. Theory
2.1. “Twisted” Electron Ionization Cross Section
2.2. Average over the Impact Parameter
2.3. Superposition of Two Bessel Beams
3. Results and Discussions
3.1. Ionization from Orbitals of p-Type Character of the Targets
3.2. Ionization from Orbitals of s-Type Character of the Targets
3.3. Angular Profiles for the (TDCS) for the Macroscopic Molecular Targets
3.3.1. (TDCS) from Orbitals of p-Type Character of the Targets
3.3.2. (TDCS) from Orbitals of s-Type Character of the Targets
3.4. TDCS from the Coherent Superposition of Bessel Beams
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Torres, J.P.; Torner, L. Twisted Photons: Applications of Light with Orbital Angular Momentum; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Molina-Terriza, G.; Torres, J.P.; Torner, L. Twisted photons. Nat. Phys. 2007, 3, 305–310. [Google Scholar] [CrossRef]
- Bliokh, K.; Ivanov, I.; Guzzinati, G.; Clark, L.; Van Boxem, R.; Béché, A.; Juchtmans, R.; Alonso, M.; Schattschneider, P.; Nori, F.; et al. Theory and applications of free-electron vortex states. Phys. Rep. 2017, 690, 1–70. [Google Scholar] [CrossRef]
- Lloyd, S.M.; Babiker, M.; Thirunavukkarasu, G.; Yuan, J. Electron vortices: Beams with orbital angular momentum. Rev. Mod. Phys. 2017, 89, 035004. [Google Scholar] [CrossRef]
- Larocque, H.; Kaminer, I.; Grillo, V.; Leuchs, G.; Padgett, M.J.; Boyd, R.W.; Segev, M.; Karimi, E. ‘Twisted’ electrons. Contemp. Phys. 2018, 59, 126–144. [Google Scholar] [CrossRef]
- Ivanov, I.P. Promises and challenges of high-energy vortex states collisions. Prog. Part. Nucl. Phys. 2022, 127, 103987. [Google Scholar] [CrossRef]
- Bliokh, K.Y.; Bliokh, Y.P.; Savel’ev, S.; Nori, F. Semiclassical Dynamics of Electron Wave Packet States with Phase Vortices. Phys. Rev. Lett. 2007, 99, 190404. [Google Scholar] [CrossRef]
- Uchida, M.; Tonomura, A. Generation of electron beams carrying orbital angular momentum. Nature 2010, 464, 737–739. [Google Scholar] [CrossRef]
- Verbeeck, J.; Tian, H.; Schattschneider, P. Production and application of electron vortex beams. Nature 2010, 467, 301–304. [Google Scholar] [CrossRef]
- Mafakheri, E.; Tavabi, A.H.; Lu, P.H.; Balboni, R.; Venturi, F.; Menozzi, C.; Gazzadi, G.C.; Frabboni, S.; Sit, A.; Dunin-Borkowski, R.E.; et al. Realization of electron vortices with large orbital angular momentum using miniature holograms fabricated by electron beam lithography. Appl. Phys. Lett. 2017, 110, 093113. [Google Scholar] [CrossRef]
- Tavabi, A.H.; Rosi, P.; Roncaglia, A.; Rotunno, E.; Beleggia, M.; Lu, P.H.; Belsito, L.; Pozzi, G.; Frabboni, S.; Tiemeijer, P.; et al. Generation of electron vortex beams with over 1000 orbital angular momentum quanta using a tunable electrostatic spiral phase plate. Appl. Phys. Lett. 2022, 121, 073506. [Google Scholar] [CrossRef]
- Juchtmans, R.; Béché, A.; Abakumov, A.; Batuk, M.; Verbeeck, J. Using electron vortex beams to determine chirality of crystals in transmission electron microscopy. Phys. Rev. B 2015, 91, 094112. [Google Scholar] [CrossRef]
- Juchtmans, R.; Verbeeck, J. Local orbital angular momentum revealed by spiral-phase-plate imaging in transmission-electron microscopy. Phys. Rev. A 2016, 93, 023811. [Google Scholar] [CrossRef]
- Thirunavukkarasu, G.; Thirunavukkarasu, G.; Yuan, J.; Babiker, M. Observation of gold nanoparticles movements under sub-10 nm vortex electron beams in an aberration corrected TEM. In Proceedings of the 15th European Microscopy Congresss; Stokes, D., Hutchison, J., Eds.; Royal Microscopical Society: Manchester, UK, 2012. [Google Scholar]
- Jesacher, A.; Fürhapter, S.; Bernet, S.; Ritsch-Marte, M. Shadow Effects in Spiral Phase Contrast Microscopy. Phys. Rev. Lett. 2005, 94, 233902. [Google Scholar] [CrossRef]
- Serbo, V.; Ivanov, I.P.; Fritzsche, S.; Seipt, D.; Surzhykov, A. Scattering of twisted relativistic electrons by atoms. Phys. Rev. A 2015, 92, 012705. [Google Scholar] [CrossRef]
- Dhankhar, N.; Choubisa, R. Electron impact single ionization of hydrogen molecule by twisted electron beam. J. Phys. B At. Mol. Opt. Phys. 2020, 54, 015203. [Google Scholar] [CrossRef]
- Gong, M.; Cheng, Y.; Zhang, S.B.; Chen, X. Twisted-electron-impact single ionization of an H2O molecule by multicenter distorted-wave calculations. Phys. Rev. A 2022, 106, 012818. [Google Scholar] [CrossRef]
- Bartschat, K.; Kushner, M.J. Electron collisions with atoms, ions, molecules, and surfaces: Fundamental science empowering advances in technology. Proc. Natl. Acad. Sci. USA 2016, 113, 7026–7034. [Google Scholar] [CrossRef]
- Dunn, W.B. Chapter two—Mass Spectrometry in Systems Biology: An Introduction. In Methods in Systems Biology; Methods in Enzymology; Jameson, D., Verma, M., Westerhoff, H.V., Eds.; Academic Press: Cambridge, MA, USA, 2011; Volume 500, pp. 15–35. [Google Scholar] [CrossRef]
- Girazian, Z.; Mahaffy, P.; Lillis, R.J.; Benna, M.; Elrod, M.; Fowler, C.M.; Mitchell, D.L. Ion Densities in the Nightside Ionosphere of Mars: Effects of Electron Impact Ionization. Geophys. Res. Lett. 2017, 44, 11248–11256. [Google Scholar] [CrossRef]
- Kynienė, A.; Kučas, S.; Masys, Š.; Jonauskas, V. Electron-impact ionization of Fe8+. A&A 2019, 624, A14. [Google Scholar] [CrossRef]
- Caleman, C.; Ortiz, C.; Marklund, E.; Bultmark, F.; Gabrysch, M.; Parak, F.G.; Hajdu, J.; Klintenberg, M.; Tîmneanu, N. Radiation damage in biological material: Electronic properties and electron impact ionization in urea. EPL (Europhys. Lett.) 2009, 85, 18005. [Google Scholar] [CrossRef]
- Yavuz, M.; Okumus, N.; Ozer, Z.N.; Ulu, M.; Dogan, M.; Sahlaoui, M.; Benmansour, H.; Bouamoud, M. Double Differential Cross Sections for Methane Molecules at Intermediate Energies. J. Phys. Conf. Ser. 2014, 488, 052031. [Google Scholar] [CrossRef]
- Yavuz, M.; Ozer, Z.N.; Ulu, M.; Champion, C.; Dogan, M. Experimental and theoretical double differential cross sections for electron impact ionization of methane. J. Chem. Phys. 2016, 144, 164305. [Google Scholar] [CrossRef]
- Tachino, C.A.; Monti, J.M.; Fojón, O.A.; Champion, C.; Rivarola, R.D. Single electron ionization of NH3 and CH4 by swift proton impact. J. Phys. Conf. Ser. 2015, 583, 012020. [Google Scholar] [CrossRef]
- Tóth, I.; Nagy, L.; Campeanu, R.I. Triple-differential cross sections for the ionization of NH3 by positron impact. Eur. Phys. J. D 2016, 70, 170. [Google Scholar] [CrossRef]
- Lahmam-Bennani, A.; Naja, A.; Casagrande, E.M.S.; Okumus, N.; Cappello, C.D.; Charpentier, I.; Houamer, S. Dynamics of electron impact ionization of the outer and inner valence (1t2 and 2a1) molecular orbitals of CH4 at intermediate and large ion recoil momentum. J. Phys. B At. Mol. Opt. Phys. At. Mol. Opt. Phys. 2009, 42, 165201. [Google Scholar] [CrossRef]
- Mir, R.E.; Casagrande, E.M.S.; Naja, A.; Cappello, C.D.; Houamer, S.; Omar, F.E. Triple differential cross sections for the ionization of the valence states of NH3 by electron impact. J. Phys. B At. Mol. Opt. Phys. 2015, 48, 175202. [Google Scholar] [CrossRef]
- Mouawad, L.; El Bitar, Z.; Osman, A.; Khalil, M.; Hervieux, P.A.; Dal Cappello, C. Triply Differential Ionization Cross Sections of atomic and molecular targets by single electron impact. EPJ Web Conf. 2018, 170, 01012. [Google Scholar] [CrossRef]
- Bouchikhi, A.; Sahlaoui, M.; Lasri, B.; Sekkal, A.; Bouamoud, M. Electron-impact ionization of the CH4 and NH3 molecules in coplanar symmetric and asymmetric geometries. J. Phys. B At. Mol. Opt. Phys. 2018, 52, 015201. [Google Scholar] [CrossRef]
- Nixon, K.L.; Murray, A.J.; Chaluvadi, H.; Ning, C.; Madison, D.H. Low energy (e,2e) studies from CH4: Results from symmetric coplanar experiments and molecular three-body distorted wave theory. J. Chem. Phys. 2011, 134, 174304. [Google Scholar] [CrossRef] [PubMed]
- Ali, E.; Granados, C.; Sakaamini, A.; Harvey, M.; Ancarani, L.U.; Murray, A.J.; Dogan, M.; Ning, C.; Colgan, J.; Madison, D. Triple differential cross sections for electron-impact ionization of methane at intermediate energy. J. Chem. Phys. 2019, 150, 194302. [Google Scholar] [CrossRef]
- Nixon, K.L.; Murray, A.J.; Chaluvadi, H.; Ning, C.; Colgan, J.; Madison, D.H. Low energy (e,2e) coincidence studies of NH3: Results from experiment and theory. J. Chem. Phys. 2013, 138, 174304. [Google Scholar] [CrossRef] [PubMed]
- Tóth, I.; Nagy, L. Triple-differential cross-section calculations for the ionization of CH4 by electron impact. J. Phys. B At. Mol. Opt. Phys. At. Mol. Opt. Phys. 2010, 43, 135204. [Google Scholar] [CrossRef]
- Lin, C.Y.; McCurdy, C.W.; Rescigno, T.N. Theoretical study of (e,2e) from outer- and inner-valence orbitals of CH4: A complex Kohn treatment. Phys. Rev. A 2014, 89, 052718. [Google Scholar] [CrossRef]
- Castro, C.M.G. Application of Generalized Sturmian Basis Functions to Molecular Systems. Ph.D. Thesis, Université de Lorraine, Metz, France, 2016. [Google Scholar]
- Granados-Castro, C.M.; Ancarani, L.U. Electron impact ionization of the outer valence orbital 1t2 of CH4. Eur. Phys. J. D 2017, 71, 65. [Google Scholar] [CrossRef]
- Gong, M.; Li, X.; Zhang, S.B.; Liu, L.; Wu, Y.; Wang, J.; Qu, Y.; Chen, X. Theoretical study of (e,2e) processes for valence orbitals of CH4 using a multicenter distorted-wave method. Phys. Rev. A 2017, 96, 042703. [Google Scholar] [CrossRef]
- Houamer, S.; Chinoune, M.; Cappello, C.D. Theoretical study of (e, 2e) process of atomic and molecular targets*. Eur. Phys. J. D 2017, 71, 17. [Google Scholar] [CrossRef]
- Mir, R.E.; Kaja, K.; Naja, A.; Casagrande, E.M.S.; Houamer, S.; Cappello, C.D. New investigation of the electron-impact ionization of the intermediate valence state of ammonia. J. Phys. B At. Mol. Opt. Phys. 2020, 54, 015201. [Google Scholar] [CrossRef]
- Harris, A.L.; Plumadore, A.; Smozhanyk, Z. Ionization of hydrogen by electron vortex beam. J. Phys. B At. Mol. Opt. Phys. 2019, 52, 094001. [Google Scholar] [CrossRef]
- Plumadore, A.; Harris, A.L. Projectile transverse momentum controls emission in electron vortex ionization collisions. J. Phys. B At. Mol. Opt. Phys. 2020, 53, 205205. [Google Scholar] [CrossRef]
- Dhankhar, N.; Choubisa, R. Triple-differential cross section for the twisted-electron-impact ionization of the water molecule. Phys. Rev. A 2022, 105, 062801. [Google Scholar] [CrossRef]
- Dhankhar, N.; Banerjee, S.; Choubisa, R. Twisted electron impact single ionization coincidence cross-sections for noble gas atoms. J. Phys. At. Mol. Opt. Phys. At. Mol. Opt. Phys. 2022, 55, 165202. [Google Scholar] [CrossRef]
- Mandal, A.; Dhankhar, N.; Sébilleau, D.; Choubisa, R. Semirelativistic (e,2e) study with a twisted electron beam on Cu and Ag. Phys. Rev. A 2021, 104, 052818. [Google Scholar] [CrossRef]
- Moccia, R. One-Center Basis Set SCF MO’s. I. HF, CH4, and SiH4. J. Chem. Phys. 1964, 40, 2164–2176. [Google Scholar] [CrossRef]
- Moccia, R. One-Center Basis Set SCF MO’s. II. NH3, NH4+, PH3, PH4+. J. Chem. Phys. 1964, 40, 2176–2185. [Google Scholar] [CrossRef]
- Champion, C.; Hanssen, J.; Hervieux, P.A. Influence of molecular orientation on the multiple differential cross sections for the (e,2e) process on a water molecule. Phys. Rev. A 2005, 72, 059906. [Google Scholar] [CrossRef]
- Karlovets, D.V.; Kotkin, G.L.; Serbo, V.G.; Surzhykov, A. Scattering of twisted electron wave packets by atoms in the Born approximation. Phys. Rev. A 2017, 95, 032703. [Google Scholar] [CrossRef]
- Khajuria, Y.; Tripathi, D.N. Geometry effects on the (e,2e) triple differential cross sections of Li+, Na+, and K+. Phys. Rev. A 1999, 59, 1197–1207. [Google Scholar] [CrossRef]
- Surzhykov, A.; Seipt, D.; Serbo, V.G.; Fritzsche, S. Interaction of twisted light with many-electron atoms and ions. Phys. Rev. A 2015, 91, 013403. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dhankhar, N.; Neha; Choubisa, R. Dynamics of Twisted Electron Impact Ionization of CH4 and NH3 Molecule. Atoms 2023, 11, 82. https://doi.org/10.3390/atoms11050082
Dhankhar N, Neha, Choubisa R. Dynamics of Twisted Electron Impact Ionization of CH4 and NH3 Molecule. Atoms. 2023; 11(5):82. https://doi.org/10.3390/atoms11050082
Chicago/Turabian StyleDhankhar, Nikita, Neha, and Rakesh Choubisa. 2023. "Dynamics of Twisted Electron Impact Ionization of CH4 and NH3 Molecule" Atoms 11, no. 5: 82. https://doi.org/10.3390/atoms11050082
APA StyleDhankhar, N., Neha, & Choubisa, R. (2023). Dynamics of Twisted Electron Impact Ionization of CH4 and NH3 Molecule. Atoms, 11(5), 82. https://doi.org/10.3390/atoms11050082