Stabilizing Frequency of a Diode Laser to a Reference Transition of Molecular Iodine through Modulation Transfer Spectroscopy
Abstract
:1. Introduction
2. Iodine Spectra
3. Experimental Setup
4. Results and Discussions
4.1. SAS Signal
4.2. Laser Stabilization
4.3. Noise Density Profile
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huntemann, N.; Sanner, C.; Lipphardt, B.; Tamm, C.; Peik, E. Single ion atomic clock with 3 × 10−18 systematic uncertainty. Phys. Rev. Lett. 2016, 116, 063001. [Google Scholar] [CrossRef] [PubMed]
- Ludlow, A.D.; Boyd, M.M.; Ye, J.; Peik, E.; Schmidt, P.O. Optical atomic clocks. Rev. Mod. Phys. 2015, 87, 637–701. [Google Scholar] [CrossRef]
- Häffner, H.; Roos, C.F.; Blatt, R. Quantum computing with trapped ions. Phys. Rep. 2008, 469, 155–203. [Google Scholar] [CrossRef]
- Hosaka, K.; Webster, S.A.; Blythe, P.J.; Stannard, A.; Beaton, D.; Margolis, H.S.; Lea, S.N.; Gill, P. Optical Frequency Standards and Clocks Based on Single Trapped Ions. IEEE Trans. Instrum. Meas. 2005, 54, 759. [Google Scholar] [CrossRef]
- Maleki, L.; Prestage, J. Applications of clocks and frequency standards: From the routine to tests of fundamental models. Metrologia 2005, 42, S145–S153. [Google Scholar] [CrossRef]
- Wineland, D.J.; Leibfried, D. Quantum information processing and metrology with trapped ions. Laser Phys. Lett. 2011, 8, 175–188. [Google Scholar] [CrossRef]
- Preston, D.W. Doppler-free saturated absorption: Laser Spectroscopy. Am. J. Phys. 1996, 64, 1432. [Google Scholar] [CrossRef]
- Debs, J.E.; Robins, N.P.; Lance, A.; Kruger, M.B.; Close, J.D. Piezo-locking a diode laser with saturated absorption spectroscopy. Appl. Opt. 2008, 47, 5163. [Google Scholar] [CrossRef]
- Hall, J.L.; Bordé, C.J.; Uehara, K. Direct optical resolution of recoil effect using saturated absorption spectroscopy. Phys. Rev. Lett. 1976, 37, 1339–1342. [Google Scholar] [CrossRef]
- Roy, A.; De, S.; Arora, B.; Sahoo, B.K. Accurate determination of black-body radiation shift, magic and tune-out wavelengths for the 6S1/2→5D3/2 clock transition in Yb+. J. Appl. Phys. B 2017, 50, 205201. [Google Scholar]
- Yang, P.; Feng, S. Fabry–Perot cavity locking with phase-locked frequency-synthesized light. J. Opt. Soc. Am. B 2017, 34, 533–537. [Google Scholar] [CrossRef]
- Alnis, J.; Matveev, A.; Kolachevsky, N.; Udem, T.; Hänsch, T.W. Subhertz linewidth diode lasers by stabilization to vibrationally and thermally compensated ultralow-expansion glass Fabry–Perot cavities. Phys. Rev. A 2008, 77, 053809. [Google Scholar] [CrossRef]
- Drever, R.W.P.; Hall, J.L.; Kowalski, F.V.; Hough, J.; Ford, G.M.; Munley, A.J.; Ward, H. Laser phase and frequency stabilization using an optical resonator. Appl. Phys. B 1983, 31, 97–105. [Google Scholar] [CrossRef]
- Black, E.D. An introduction to Pound–Drever–Hall laser frequency stabilization. Am. J. Phys. 2001, 69, 79–87. [Google Scholar] [CrossRef]
- Roy, A. Developing Experimental Setup for Trapped Ion Based Optical Atomic Clock. Ph.D. Thesis, Academy of Scientific and Innovative Research, New Delhi, India, 2019. [Google Scholar]
- Roy, A.; Sharma, L.; Panja, S.; De, S. “Loop Stabilized” Improved Transfer Cavity-Based Laser Frequency Stabilization. IEEE J. Quantum Electron. 2022, 58, 1–6. [Google Scholar] [CrossRef]
- Riedle, E.; Ashworth, S.H.; Farrell, J., Jr.; Nesbittc, D.J. Stabilization and precise calibration of a continuous-wave difference frequency spectrometer by use of a simple transfer cavity. Rev. Sci. Instrum. 1994, 65, 42. [Google Scholar] [CrossRef]
- Subhankara, S.; Restelli, A.; Wang, Y.; Rolston, S.L.; Porto, J.V. Microcontroller based scanning transfer cavity lock for long-term laser frequency stabilization. Rev. Sci. Instrum. 2019, 90, 043115. [Google Scholar] [CrossRef]
- Couturier, L.; Nosske, I.; Hu, F.; Tan, C.; Qiao, C.; Jiang, Y.H.; Chen, P.; Weidemüller, M. Laser frequency stabilization using a commercial wavelength meter. Rev. Sci. Instrum. 2018, 89, 043103. [Google Scholar] [CrossRef]
- Saleh, K.; Millo, J.; Didier, A.; Kersale, Y.; Lacroute, C. Frequency stability of a wavelength meter and applications to laser frequency stabilization. Appl. Opt. 2015, 32, 9446–9449. [Google Scholar] [CrossRef]
- Kobtsev, S.; Kandrushin, S.; Potekhin, A. Long-term frequency stabilization of a continuous-wave tunable laser with the help of a precision wavelengthmeter. Appl. Opt. 2007, 46, 5840–5843. [Google Scholar] [CrossRef]
- De, S.; Sharma, A. Indigenisation of the Quantum Clock: An Indispensable Tool for Modern Technologies. Atoms 2023, 11, 71. [Google Scholar] [CrossRef]
- Nop, G.N.; Poudyal, D.; Smith, J.D.H. Ytterbium ion trap quantum computing: The current state-of-the-art. AVS Quantum Sci. 2021, 3, 044101. [Google Scholar] [CrossRef]
- Levenson, M.D.; Schawlow, A.L. Hyperfine Interactions in Molecular Iodine. Phy. Rev. A 1972, 6, 10. [Google Scholar] [CrossRef]
- Cariou, J.; Luc, P. Atlas du Spectre d’Absorption de la Molecule d’Iode 21,100 cm−1–23,800 cm−1; CNRS: Orsay, France, 1980. [Google Scholar]
- Gerstenkorn, S.; Luc, P. Atlas du Spectre d’Absorption de la Molecule d’Iode 15,600 cm−1–17,600 cm−1; Laboratoire Aimé Cotton, CNRS II: Orsay, France, 1977. [Google Scholar]
- Gerstenkorn, S.; Luc, P. Atlas du Spectre d’Absorption de la Molecule d’Iode 17,500 cm−1–20,000 cm−1; Laboratoire Aimé Cotton, CNRS II: Orsay, France, 1977. [Google Scholar]
- Gerstenkorn, S.; Luc, P. Atlas du Spectre d’Absorption de la Molecule d’Iode 14,000 cm−1–15,600 cm−1; Laboratoire Aimé Cotton, CNRS II: Orsay, France, 1978. [Google Scholar]
- Gerstenkorn, S.; Luc, P. Atlas du Spectre d’Absorption de la Molecule d’Iode 19,700 cm−1–20,035 cm−1; CNRS: Orsay, France, 1983. [Google Scholar]
- Gerstenkorn, S.; Verges, J. Atlas du Spectre d’Absorption de la Molecule d’Iode 7220 cm−1–11,200 cm−1; Laboratoire Aimé Cotton, CNRS II: Orsay, France, 1982. [Google Scholar]
- Herzberg, G. Molecular Spectra and Molecular Structure I. Spectra of Diatomic Molecules, 2nd ed.; D. Van Nostrand Company, Inc.: Princeton, NY, USA, 1950. [Google Scholar]
- Olmschenk, S.; Younge, K.; Moehring, D.; Matsukevich, D.; Maunz, P.; Monroe, C. Manipulation and detection of a trapped Yb+ hyperfine qubit. Phys. Rev. A 2007, 76, 052314. [Google Scholar] [CrossRef]
- Knöckel, H.; Bodermann, B.; Tiemann, E. High precision description of the rovibronic structure of the I2 B - X spectrum. Eur. Phys. J. D 2004, 28, 199. [Google Scholar]
- Shirley, J.H. Modulation transfer processes in optical heterodyne saturation spectroscopy. Opt. Lett. 1982, 11, 537. [Google Scholar] [CrossRef] [PubMed]
- Jaatinen, E.; Brown, N. Sequential frequency locking of three He-Ne lasers with ine external iodine stabilizer. Metrologia 1997, 34, 309. [Google Scholar] [CrossRef]
- Jaatinen, E.; Chartier, J.M. Possible influence of residual amplitude modulation when using modulation transfer with iodine transitions at 543 nm. Metrologia 1998, 35, 75. [Google Scholar] [CrossRef]
- McCarron, D.; King, S.; Cornish, S. Modulation transfer spectroscopy in atomic rubidium. Meas. Sci. Technol. 2008, 19, 105601. [Google Scholar] [CrossRef]
- Snyder, J.J.; Raj, R.K.; Bloch, D.; Ducloy, M. High-sensitivity nonlinear spectroscopy using a frequency-offset pump. Opt. Lett. 1980, 5, 163–165. [Google Scholar] [CrossRef]
- Hall, J.L.; Holberg, L.; Baer, T.; Robinson, H.G. Optical heterodyne saturation spectroscopy. App. Phys. Lett. 1981, 39, 680. [Google Scholar] [CrossRef]
- Bjorklund, G.C.; Levenson, M.D. Sub-Doppler frequency-modulation spectroscopy of I2. Phys. Rev. A 1981, 24, 166. [Google Scholar] [CrossRef]
- Donley, E.A.; Heavner, T.P.; Levi, F.; Tataw, M.O.; Jefferts, S.R. Double-pass acousto-optic modulator system. Rev. Sci. Instrum. 2005, 76, 063112. [Google Scholar] [CrossRef]
- Knöckel, H.; Tiemann, E. Basics and Usage of the Program IodineSpec5; Institut für Quantenoptik, Universität Hannover: Hanover, Germany, 2013. [Google Scholar]
- Martin, F.; Bacis, R.; Churassy, S.; Vergés, J. Laser-induced-fluorescence Fourier transform spectrometry of the X0g+ state of I2: Extensive analysis of the B0u+→ X0g+ fluorescence spectrum of 127I2. J. Mol. Spectr. 1986, 116, 71. [Google Scholar] [CrossRef]
- Cerny, D.; Bacis, R.; Vergés, J. Laser-induced-fluorescence Fourier transform spectrometry of the X0g+ state of I2: Extensive analysis of the B0u+→ X0g+ florescence spectrum of 127I, 129I and 129I2. J. Mol. Spectr. 1986, 116, 458. [Google Scholar] [CrossRef]
- Bodermann, H.; Knöckel, E.; Tiemann, E. Widely usable interpolation formulae for hyperfine splittings in the 127I2 spectrum. Eur. Phys. J. D 2002, 19, 31. [Google Scholar] [CrossRef]
- Bodermann, B. Untersuchung zur Realisierung eines Durchstimmbaren, Hochpräzisen Frequenzstandards im NIR und zur Erweiterung des Spektralbereiches mit Hilfe des 127I2-Moleküls. Ph.D. Thesis, Universität Hannover, Hanover, Germany, 1998. [Google Scholar]
- Salumbides, E.J.; Eikema, K.S.E.; Ubachs, W.; Hollenstein, U.; Knöckel, H.; Tiemann, E. The hyperfine structure of 129I2 and 127I 129I in the B3 - X1∑+g band system. Mol. Phys. 2006, 104, 2641. [Google Scholar] [CrossRef]
- Salumbides, E.J.; Eikema, K.S.E.; Hollenstein, W.U.; Knöckel, H.; Tiemann, E. Improved potentials and Born-Oppenheimer corrections by new measurements of transitions of 129I2 and 127I 129I in the B3 - X1∑+g band system. Eur. Phys. J. D 2008, 47, 171. [Google Scholar] [CrossRef]
- Demtröder, W. Laser Spectroscopy: Basic Concepts and Instrumentation, 3rd ed.; Springer: Heidelberg, Germany, 2002. [Google Scholar]
- Metcalf, H.J.; Van der Straten, P. Laser Cooling and Trapping, 1st ed.; Springer: New York, NY, USA, 1999. [Google Scholar]
- Windowing Signals. Available online: https://www.physik.uzh.ch/local/teaching/SPI301/LV-2015-Help/lvanlsconcepts.chm/Windowing{_}Signals.html (accessed on 24 November 2022).
Peak | Component of R(78) (1–11) | Frequency (MHz) (from IodineSpec5) (Offset = +405,654,000 MHz) | Frequency (MHz) (from Experiment) (Offset = +405,654,000 MHz) | FWHM (MHz) (from IodineSpec5) | FWHM (MHz) (from Experiment) |
---|---|---|---|---|---|
1 | a1 | 74 | 189(60) | 15(2) | 23(3) |
2 | a2–a5 | 368 | 218(60) | 25(4) | 35(4) |
3 | a6–a9 | 516 | 396(60) | 31(5) | 40(6) |
4 | a10 | 662 | 584(60) | 15(2) | 21(2) |
5 | a11–a14 | 811 | 749(60) | 26(4) | 39(5) |
6 | a15 | 957 | 923(60) | 15(3) | 23(4) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, L.; Roy, A.; Panja, S.; De, S. Stabilizing Frequency of a Diode Laser to a Reference Transition of Molecular Iodine through Modulation Transfer Spectroscopy. Atoms 2023, 11, 83. https://doi.org/10.3390/atoms11050083
Sharma L, Roy A, Panja S, De S. Stabilizing Frequency of a Diode Laser to a Reference Transition of Molecular Iodine through Modulation Transfer Spectroscopy. Atoms. 2023; 11(5):83. https://doi.org/10.3390/atoms11050083
Chicago/Turabian StyleSharma, Lakhi, Atish Roy, Subhasis Panja, and Subhadeep De. 2023. "Stabilizing Frequency of a Diode Laser to a Reference Transition of Molecular Iodine through Modulation Transfer Spectroscopy" Atoms 11, no. 5: 83. https://doi.org/10.3390/atoms11050083
APA StyleSharma, L., Roy, A., Panja, S., & De, S. (2023). Stabilizing Frequency of a Diode Laser to a Reference Transition of Molecular Iodine through Modulation Transfer Spectroscopy. Atoms, 11(5), 83. https://doi.org/10.3390/atoms11050083