CO Dissociation Induced by 1 keV/u Ar2+ Ion
Abstract
:1. Introduction
2. Experimental Setup
3. Results and Discussion
3.1. One-Dimensional TOF Spectrum
3.2. Two-Dimensional TOF Spectrum
3.3. Potential Curves
3.4. KER
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kohno, M.; Sofue, Y. The CO-to-H2 conversion factor of Galactic giant molecular clouds using CO isotopologues: High-resolution XCO Maps. Mon. Not. R. Astron. Soc. 2023, 527, 9290–9302. [Google Scholar] [CrossRef]
- Pandey, A.; Bapat, B.; Shamasundar, K.R. Charge Symmetric Dissociation of Doubly Ionized N 2 and CO Molecules. J. Chem. Phys. 2014, 140, 034319. [Google Scholar] [CrossRef]
- Pandey, A.; Saha, K.; Bapat, B.; Kumar, P.; Banerjee, S.B.; Subramanian, K.P. Probing High-Lying N2++ and CO++ States via Energy-Selective Fragment Spectra. J. Phys. B At. Mol. Opt. Phys. 2016, 49, 135102. [Google Scholar] [CrossRef]
- Bocharova, I.A.; Alnaser, A.S.; Thumm, U.; Niederhausen, T.; Ray, D.; Cocke, C.L.; Litvinyuk, I.V. Time-Resolved Coulomb-Explosion Imaging of Nuclear Wave-Packet Dynamics Induced in Diatomic Molecules by Intense Few-Cycle Laser Pulses. Phys. Rev. A 2011, 83, 013417. [Google Scholar] [CrossRef]
- Sandhu, A.S.; Gagnon, E.; Santra, R.; Sharma, V.; Li, W.; Ho, P.; Ranitovic, P.; Cocke, C.L.; Murnane, M.M.; Kapteyn, H.C. Observing the Creation of Electronic Feshbach Resonances in Soft X-ray-Induced O2 Dissociation. Science 2008, 322, 1081–1085. [Google Scholar] [CrossRef]
- Mathur, D.; Krishnakumar, E.; Nagesha, K.; Marathe, V.R.; Krishnamurthi, V.; Rajgara, F.A.; Raheja, U.T. Dissociation of Highly Charged CO q+ (q>or=2) Ions via Non-Coulombic Potential Energy Curves. J. Phys. B At. Mol. Opt. Phys. 1993, 26, L141–L146. [Google Scholar] [CrossRef]
- Yang, Y.K.; Cheng, Y.J.; Wu, Y.; Qu, Y.Z.; Wang, J.G.; Zhang, S.B. Particle Scattering and Resonances Involving Avoided Crossing. New J. Phys. 2020, 22, 123022. [Google Scholar] [CrossRef]
- Lablanquie, P.; Delwiche, J.; Hubin-Franskin, M.J.; Nenner, I.; Morin, P.; Ito, K.; Eland, J.H.D.; Robbe, J.M.; Gandara, G.; Fournier, J.; et al. Experimental and Theoretical Investigation of the Spectroscopy and Dynamics of Multiply Charged CO Cations. Phys. Rev. A 1989, 40, 5673–5689. [Google Scholar] [CrossRef]
- Cosby, P.C. Electron-Impact Dissociation of Carbon Monoxide. J. Chem. Phys. 1993, 98, 7804–7818. [Google Scholar] [CrossRef]
- Masuoka, T.; Nakamura, E. Single-, Double-, and Triple-Photoionization Cross Sections of Carbon Monoxide (CO) and Ionic Fragmentation of CO+, CO2+, and CO3+. Phys. Rev. A 1993, 48, 4379–4389. [Google Scholar] [CrossRef]
- Lundqvist, M.; Baltzer, P.; Edvardsson, D.; Karlsson, L.; Wannberg, B. Novel Time of Flight Instrument for Doppler Free Kinetic Energy Release Spectroscopy. Phys. Rev. Lett. 1995, 75, 1058–1061. [Google Scholar] [CrossRef]
- Gong, X.; Jiang, W.; Tong, J.; Qiang, J.; Lu, P.; Ni, H.; Lucchese, R.; Ueda, K.; Wu, J. Asymmetric Attosecond Photoionization in Molecular Shape Resonance. Phys. Rev. X 2022, 12, 011002. [Google Scholar] [CrossRef]
- Andersen, L.H.; Posthumus, J.H.; Vahtras, O.; Ågren, H.; Elander, N.; Nunez, A.; Scrinzi, A.; Natiello, M.; Larsson, M. Very Slow Spontaneous Dissociation of CO2+ Observed by Means of a Heavy Ion Storage Ring. Phys. Rev. Lett. 1993, 71, 1812–1815. [Google Scholar] [CrossRef]
- Penent, F.; Hall, R.I.; Panajotović, R.; Eland, J.H.D.; Chaplier, G.; Lablanquie, P. New Method for the Study of Dissociation Dynamics of State-Selected Doubly Charged Ions: Application to CO2+. Phys. Rev. Lett. 1998, 81, 3619–3622. [Google Scholar] [CrossRef]
- Bouhnik, J.P.; Gertner, I.; Rosner, B.; Amitay, Z.; Heber, O.; Zajfman, D.; Sidky, E.Y.; Ben-Itzhak, I. Measurements of the Mean Lifetime and Kinetic-Energy Release of Metastable CO2+. Phys. Rev. A 2001, 63, 032509. [Google Scholar] [CrossRef]
- Andersen, T.; Kjeldsen, H.; Knudsen, H.; Folkmann, F. Absolute Cross Section for Photoionization of CO+ Leading to Longlived Metastable CO2+. J. Phys. B At. Mol. Opt. Phys. 2001, 34, L327–L332. [Google Scholar] [CrossRef]
- Hinojosa, G.; Covington, A.M.; Phaneuf, R.A.; Sant’Anna, M.M.; Hernandez, R.; Covington, I.R.; Domínguez, I.; Bozek, J.D.; Schlachter, A.S.; Álvarez, I.; et al. Formation of Long-Lived CO2+ via Photoionization of CO+. Phys. Rev. A 2002, 66, 032718. [Google Scholar] [CrossRef]
- Šedivcová, T.; Žd’ánská, P.R.; Špirko, V.; Fišer, J. Computed Lifetimes of Metastable States of CO2+. J. Chem. Phys. 2006, 124, 214303. [Google Scholar] [CrossRef]
- Mrugała, F. A Computational Study of Metastable States of CO2+. J. Chem. Phys. 2008, 129, 064314. [Google Scholar] [CrossRef]
- Masuoka, T. Kinetic-Energy Release in the Dissociation of CO2+. J. Chem. Phys. 1994, 101, 322–327. [Google Scholar] [CrossRef]
- Hikosaka, Y.; Eland, J. Dissociative Double Photoionisation of CO below the CO++ Threshold. Chem. Phys. 2004, 299, 147–154. [Google Scholar] [CrossRef]
- Osipov, T.; Weber, T.; Rescigno, T.N.; Lee, S.Y.; Orel, A.E.; Schöffler, M.; Sturm, F.P.; Schössler, S.; Lenz, U.; Havermeier, T.; et al. Formation of Inner-Shell Autoionizing CO+ States below the CO2+ Threshold. Phys. Rev. A 2010, 81, 011402. [Google Scholar] [CrossRef]
- Zhang, P.; Yan, S.; Ma, X.; Shen, L.; Xu, S.; Zhu, X.L.; Feng, W.T.; Zhao, D.M. Observation of the Indirect (e, 3e) Process of CO. J. Phys. B At. Mol. Opt. Phys. 2018, 51, 185203. [Google Scholar] [CrossRef]
- Ullrich, J.; Moshammer, R.; Dorn, A.; D Dörner, R.; Schmidt, L.P.H.; Schmidt-B Cking, H. Recoil-Ion and Electron Momentum Spectroscopy: Reaction-Microscopes. Rep. Prog. Phys. 2003, 66, 1463–1545. [Google Scholar] [CrossRef]
- Moshammer, R.; Unverzagt, M.; Schmitt, W.; Ullrich, J.; Schmidt-Böcking, H. A 4π recoil-ion electron momentum analyzer: A high-resolution “microscope” for the investigation of the dynamics of atomic, molecular and nuclear reactions. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 1996, 108, 425–445. [Google Scholar] [CrossRef]
- Dörner, R.; Mergel, V.; Jagutzki, O.; Spielberger, L.; Ullrich, J.; Moshammer, R.; Schmidt-Böcking, H. Cold Target Recoil Ion Momentum Spectroscopy: A ‘Momentum Microscope’ to View Atomic Collision Dynamics. Phys. Rep. 2000, 330, 95–192. [Google Scholar] [CrossRef]
- Ben-Itzhak, I.; Wells, E.; Stöckli, M.P.; Tawara, H.; Carnes, K.D. Electron capture and fragmentation in Ar11+ + CO collisions. Phys. Scr. 1997, T73, 270–272. [Google Scholar] [CrossRef]
- Tarisien, M.; Adoui, L.; Frémont, F.; Lelièvre, D.; Guillaume, L.; Chesnel, J.Y.; Zhang, H.; Dubois, A.; Mathur, D.; Kumar, S.; et al. Ion-Induced Molecular Fragmentation: Beyond the Coulomb Explosion Picture. J. Phys. B At. Mol. Opt. Phys. 2000, 33, L11–L20. [Google Scholar] [CrossRef]
- Folkerts, H.O.; Schlathölter, T.; Hoekstra, R.; Morgenstern, R. Dissociation of CO Induced by Ions: II. Dissociation Pathways and States. J. Phys. B At. Mol. Opt. Phys. 1997, 30, 5849–5860. [Google Scholar] [CrossRef]
- Folkerts, H.O.; Hoekstra, R.; Morgenstern, R. Velocity and Charge State Dependences of Molecular Dissociation Induced by Slow Multicharged Ions. Phys. Rev. Lett. 1996, 77, 3339–3342. [Google Scholar] [CrossRef]
- Zhu, X.L.; Ma, X.W.; Li, J.Y.; Schmidt, M.; Feng, W.T.; Peng, H.; Xu, J.W.; Zschornack, G.; Liu, H.P.; Zhang, T.M.; et al. A Compact, Flexible Low Energy Experimental Platform of Highly Charged Ions for Atomic Physics Experiments. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2019, 460, 224–229. [Google Scholar] [CrossRef]
- Wiley, W.C.; McLaren, I.H. Time-of-Flight Mass Spectrometer with Improved Resolution. Rev. Sci. Instrum. 1955, 26, 1150–1157. [Google Scholar] [CrossRef]
- Fehre, K.; Trojanowskaja, D.; Gatzke, J.; Kunitski, M.; Trinter, F.; Zeller, S.; Schmidt, L.P.H.; Stohner, J.; Berger, R.; Czasch, A.; et al. Absolute Ion Detection Efficiencies of Microchannel Plates and Funnel Microchannel Plates for Multi-Coincidence Detection. Rev. Sci. Instrum. 2018, 89, 045112. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, S.F.; Zhu, X.L.; Guo, D.L.; Schulz, M.; Voitkiv, A.B.; Zhao, D.M.; Hai, B.; Zhang, M.; Zhang, R.T.; et al. Probing Scattering Phases via Two-Center Interferences in Collisions of He2+ on CO. Phys. Rev. A 2018, 97, 020701. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Zhang, R.; Zhang, S.; Ma, X. CO Dissociation Induced by 1 keV/u Ar2+ Ion. Atoms 2024, 12, 53. https://doi.org/10.3390/atoms12100053
Zhang C, Zhang R, Zhang S, Ma X. CO Dissociation Induced by 1 keV/u Ar2+ Ion. Atoms. 2024; 12(10):53. https://doi.org/10.3390/atoms12100053
Chicago/Turabian StyleZhang, Chijun, Ruitian Zhang, Shaofeng Zhang, and Xinwen Ma. 2024. "CO Dissociation Induced by 1 keV/u Ar2+ Ion" Atoms 12, no. 10: 53. https://doi.org/10.3390/atoms12100053
APA StyleZhang, C., Zhang, R., Zhang, S., & Ma, X. (2024). CO Dissociation Induced by 1 keV/u Ar2+ Ion. Atoms, 12(10), 53. https://doi.org/10.3390/atoms12100053