Elastic Electron Scattering from Be, Mg, and Ca
Abstract
:1. Introduction
2. Results
2.1. Beryllium
2.2. Magnesium
2.3. Calcium
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Adibzadeh, M.; Theodosiou, C.E. Elastic electron scattering from Ba and Sr. Phys. Rev. A 2004, 70, 52704. [Google Scholar] [CrossRef]
- Adibzadeh, M.; Theodosiou, C.E. Elastic electron scattering from inert-gas atoms. At. Data Nucl. Data Tables 2005, 91, 8. Available online: https://www.sciencedirect.com/science/article/pii/S0092640X05000343 (accessed on 20 May 2024). [CrossRef]
- Available online: https://www.iter.org/fr/mach/blanket (accessed on 20 May 2024).
- Fon, W.C.; Berrington, K.A.; Burke, P.G.; Burke, V.M.; Hibbert, A. Electron impact excitation of n=3 and 4 states of Be. J. Phys. B At. Mol. Opt. Phys. 1992, 25, 507. [Google Scholar] [CrossRef]
- Fursa, D.V.; Bray, I. Convergent close-coupling calculations of electron-beryllium scattering. J. Phys. B At. Mol. Opt. Phys. 1997, 30, L273. [Google Scholar] [CrossRef]
- Fursa, D.V.; Bray, I. Convergent close-coupling calculations of electron scattering on helium-like atoms and ions: Electron-beryllium scattering. J. Phys. B At. Mol. Opt. Phys. 1997, 30, 5895. [Google Scholar] [CrossRef]
- Bartschat, K.; Burke, P.G.; Scott, M.P. Electron impact excitation of beryllium. J. Phys. B At. Mol. Opt. Phys. 1996, 29, L769. [Google Scholar] [CrossRef]
- Bartschat, K.; Burke, P.G.; Scott, M.P. R-matrix with pseudo-states calculation for electron collisions with neutral beryllium. J. Phys. At. Mol. Opt. Phys. 1997, 30, 5915. [Google Scholar] [CrossRef]
- Fink, M.; Ingram, J. Theoretical electron scattering amplitudes and spin polarizations: Electron energies 100 to 1500 eV Part II. Be, N, O, Al, Cl, V, Co, Cu, As, Nb, Ag, Sn, Sb, I, and Ta targets. At. Data Nucl. Data Tables 1972, 4, 129. Available online: https://www.sciencedirect.com/science/article/pii/S0092640X72800032 (accessed on 20 May 2024). [CrossRef]
- Fabrikant, I.I. Atomic Processes; Zinatne: Riga, Latvia, 1975; p. 80. [Google Scholar]
- Kaushik, Y.D.; Khare, S.P.; Kumar, A. Critical points for electron-beryllium elastic scattering. J. Phys. B At. Mol. Phys. 1983, 16, 3609. [Google Scholar] [CrossRef]
- Yuan, J.; Zhang, Z. The low-lying shape resonances in low-energy electron scattering with Be, Mg and Ca atoms. J. Phys. B At. Mol. Opt. Phys. 1989, 22, 2751. [Google Scholar] [CrossRef]
- Zatsarinny, O.; Bartschat, K.; Fursa, D.V.; Bray, I. Calculations for electron-impact excitation and ionization of beryllium. J. Phys. B At. Mol. Opt. Phys. 2016, 49, 235701. [Google Scholar] [CrossRef]
- McEachran, R.P.; Blanco, F.; Garcia, G.; Brunger, M.J. A Relativistic Complex Optical Potential Calculation for Electron–Beryllium Scattering: Recommended Cross Sections. J. Phys. Chem. Ref. Data 2018, 47, 33103. [Google Scholar] [CrossRef]
- Stix, M. The Sun, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2012; ISBN 978-3-642-56042-2. [Google Scholar]
- Blagoev, A.; Popov, T.; Pilosoff, N.; Ogoyski, A.; Rusinov, I. Investigation of the interactions of long-lived excited atoms in the afterglow of gas discharge plasma. J. Phys. Conf. Ser. 2006, 44, 80. [Google Scholar] [CrossRef]
- Sanche, L. Nanoscopic aspects of radiobiological damage: Fragmentation induced by secondary low-energy electrons. Mass Spectrom. Rev. 2002, 21, 349. Available online: https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/abs/10.1002/mas.10034 (accessed on 20 May 2024). [CrossRef]
- Barklem, P.S. Accurate abundance analysis of late-type stars: Advances in atomic physics. Astron. Astrophys. Rev. 2016, 24, 9. [Google Scholar] [CrossRef]
- Holweger, H. The solar abundance of calcium and collision broadening of Ca i- and Ca ii-Fraunhofer lines by hydrogen. Sol. Phys. 1972, 25, 14. [Google Scholar] [CrossRef]
- Chmielewski, Y. The infrared triplet lines of ionized calcium as a diagnostic tool for F, G, K-type stellar atmospheres. Astron. Astrophys. 2000, 353, 666. [Google Scholar]
- Thorén, P. Removal of the calcium underabundance in cool metal rich Galatic disk dwarfs. Astron. Astrophys. 2000, 358, L21. [Google Scholar]
- Burrow, P.D.; Comer, J. Low energy resonant scattering of electron from magnesium. J. Phys. B At. Mol. Phys. 1975, 8, L92. [Google Scholar] [CrossRef]
- Burrow, P.D.; Michejda, J.A.; Comer, J. Low-energy electron scattering from Mg, Zn, Cd and Hg: Shape resonances and electron affinities. J. Phys. B At. Mol. Phys. 1976, 9, 3225. [Google Scholar] [CrossRef]
- Kazakov, S.M.; Khristoforov, O.V. Use of electron spectroscopy to investigate resonance phenomena and post-collisional-interaction effects in collisions between electrons and magnesium atoms. Zh. Eksp. Teor. Fiz. 1982, 82, 1772. [Google Scholar]
- Williams, W.; Trajmar, S. Electron impact excitation of magnesium at 10, 20 and 40 eV impact energies. J. Phys. B At. Mol. Phys. 1978, 11, 2021. [Google Scholar] [CrossRef]
- Predojevi, B.; Pej, V.; Filipovi, D.M.; Ševi, D.; Marinkovi, B.P. Elastic electron scattering by a magnesium atom. J. Phys. B At. Mol. Opt. Phys. 2007, 40, 1853. [Google Scholar] [CrossRef]
- van Blerkom, J.K. Low-energy electron scatter by Mg I. J. Phys. B At. Mol. Phys. 1970, 3, 932. [Google Scholar] [CrossRef]
- Fabrikant, I.I. Low-energy electron scattering by atomic magnesium. J. Phys. B At. Mol. Phys. 1974, 7, 91. [Google Scholar] [CrossRef]
- Fabrikant, I.I. Calculation of electron scattering cross sections for magnesium and barium. J. Phys. B At. Mol. Phys. 1980, 13, 603. [Google Scholar] [CrossRef]
- Gregory, D.; Fink, M. Theoretical electron scattering amplitudes and spin polarizations: Electron energies 100 to 1500 eV Part III. Li, Na, Mg, P, K, Ca, Sc, Mn, Ga, Br, Sr, Mo, Rh, Cd, Ba, W, and Os targets. At. Data Nucl. Data Tables 1974, 14, 39. Available online: https://www.sciencedirect.com/science/article/pii/S0092640X7480029X (accessed on 20 May 2024). [CrossRef]
- Khare, S.P.; Kumar, A.; Lata, K. Elastic scattering of electrons and positrons by magnesium atoms at intermediate energies. J. Phys. B At. Mol. Phys. 1983, 16, 4419. [Google Scholar] [CrossRef]
- Yuan, J.; Zhang, Z. Enhanced spin polarization of elastic electron scattering from alkaline-earth-metal atoms in Ramsauer-Townsend and low-lying shape resonance regions. Phys. Rev. A 1993, 48, 2018. [Google Scholar] [CrossRef]
- Mitroy, J.; McCarthy, I.E. Differential cross sections and Stokes parameters for electron-magnesium scattering. J. Phys. B At. Mol. Opt. Phys. 1989, 22, 641. [Google Scholar] [CrossRef]
- Pandya, C.; Patel, P.; Baluja, K.L. Differntial scattering cross sections for elastic electron-magnesium scattering. Rom. Journ. Phys. 2011, 56, 172. [Google Scholar]
- Zatsarinny, O.; Bartschat, K.; Gedeon, S.; Gedeon, V.; Lazur, V.; Nagy, E. Cross sections for electron scattering from magnesium. Phys. Rev. A 2009, 79, 52709. [Google Scholar] [CrossRef]
- McEachran, R.P.; Blanco, F.; Garcia, G.; Stokes, P.W.; White, R.D.; Brunger, M.J. Integral cross sections for electron–magnesium scattering over a broad energy range (0–5000 eV). J. Phys. Chem. Ref. Data 2018, 47, 043104. [Google Scholar] [CrossRef]
- Romanyuk, N.I.; Shpenik, O.B.; Zapesochnyi, I.P. Cross sections and characteristics of electron scattering by calcium, strontium, and barium atoms. JETP Lett. 1980, 32, 452. [Google Scholar]
- Romanyuk, N.I.; Shpenik, O.B.; Papp, F.F.; Chernysheva, I.V.; Mandi, I.A.; Kelemen, V.A.; Sabad, E.P.; Remeta, E.Y. Study of low-energy scattering of electrons by Mg and Ca atoms using an optimized trochoidal spectrometer. Ukr. Fiz. Zh. 1992, 37, 1639. [Google Scholar]
- Milisavljevi, S.; Ševi, D.; Chauhan, R.K.; Pej, V.; Filipovi, D.M.; Srivastava, R.; Marinkovi, B.P. Differential and integrated cross sections for the elastic electron scattering by calcium atom. J. Phys. B At. Mol. Opt. Phys. 2005, 38, 2371. [Google Scholar] [CrossRef]
- Khare, S.P.; Kumar, A.; Vijayshri. Elastic scattering of electrons and positrons by the Ca atom. J. Phys. B At. Mol. Phys. 1985, 18, 1827. [Google Scholar] [CrossRef]
- Cribakin, C.; Gul’tsev, B.; Ivanov, V.; Kuchiev, M.; Tan, A. Momentum transfer cross sections for slow electron elastic scattering on Ca, Sr and Ba atoms. Phys. Lett. A 1992, 164, 73. Available online: https://www.sciencedirect.com/science/article/pii/0375960192909085 (accessed on 20 May 2024). [CrossRef]
- Yuan, J. Intra-atomic relativistic effects on the spin polarization in low-energy electron scattering from Ca, Sr, Ba, and Yb atoms. Phys. Rev. A 1995, 52, 4647. [Google Scholar] [CrossRef]
- Yuan, J.; Fritsche, L. Electron scattering by Ca atoms and photodetachment of Ca− ions: An R-matrix study. Phys. Rev. A 1997, 55, 1020. [Google Scholar] [CrossRef]
- Yuan, J.; Lin, C.D. Effect of core-valence electron correlation in low-energy electron scattering with Ca atoms. Phys. Rev. A 1998, 58, 2824. [Google Scholar] [CrossRef]
- Raj, D.; Kumar, A. Cross sections for electron scattering by a Ca atom at intermediate energy. J. Phys. B At. Mol. Opt. Phys. 2007, 40, 3101. [Google Scholar] [CrossRef]
- Zatsarinny, O.; Bartschat, K.; Gedeon, S.; Gedeon, V.; Lazur, V. Low-energy electron scattering from Ca atoms and photodetachment of Ca−. Phys. Rev. A 2006, 74, 052708. [Google Scholar] [CrossRef]
- Zatsarinny, O.; Parker, H.; Bartschat, K. Electron-impact excitation and ionization of atomic calcium at intermediate energies. Phys. Rev. A 2019, 99, 012706. [Google Scholar] [CrossRef]
- Wei, J.; Li, B.; Chen, X. Elastic electron scattering from A@Cn(A = Ca, Mg, n = 60, 20). J. Phys. B At. Mol. Opt. Phys. 2020, 53, 205202. [Google Scholar] [CrossRef]
- Furness, J.B.; McCarthy, I.E. Semiphenomenological optical model for electron scattering on atoms. J. Phys. B At. Mol. Phys. 1973, 6, 2280. [Google Scholar] [CrossRef]
- Kolb, D.; Johnson, W.R.; Shorer, P. Electric and magnetic susceptibilities and shielding factors for closed-shell atoms and ions of high nuclear charge. Phys. Rev. A 1982, 26, 19. [Google Scholar] [CrossRef]
- Sherman, N. Coulomb Scattering of Relativistic Electrons by Point Nuclei. Phys. Rev. 1956, 103, 1601. [Google Scholar] [CrossRef]
- Kessler, J. Electron Spin Polarization by Low-Energy Scattering from Unpolarized Targets. Rev. Mod. Phys. 1969, 41, 3. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adibzadeh, M.; Theodosiou, C.E.; Harmon, N.J. Elastic Electron Scattering from Be, Mg, and Ca. Atoms 2024, 12, 33. https://doi.org/10.3390/atoms12060033
Adibzadeh M, Theodosiou CE, Harmon NJ. Elastic Electron Scattering from Be, Mg, and Ca. Atoms. 2024; 12(6):33. https://doi.org/10.3390/atoms12060033
Chicago/Turabian StyleAdibzadeh, Mehrdad, Constantine E. Theodosiou, and Nicholas J. Harmon. 2024. "Elastic Electron Scattering from Be, Mg, and Ca" Atoms 12, no. 6: 33. https://doi.org/10.3390/atoms12060033
APA StyleAdibzadeh, M., Theodosiou, C. E., & Harmon, N. J. (2024). Elastic Electron Scattering from Be, Mg, and Ca. Atoms, 12(6), 33. https://doi.org/10.3390/atoms12060033