Experimental Cross Sections for Electron-Impact Single, Double, and Triple Ionization of La+
Abstract
:1. Introduction
2. Experiment
3. Results
4. Summary and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 2017, 119, 161101. [Google Scholar] [CrossRef] [PubMed]
- Metzger, B.D. Kilonovae. Living Rev. Relativ. 2020, 23, 1. [Google Scholar] [CrossRef]
- Kasen, D.; Metzger, B.; Barnes, J.; Quataert, E.; Ramirez-Ruiz, E. Origin of the heavy elements in binary neutron-star mergers from a gravitational-wave event. Nature 2017, 551, 80–84. [Google Scholar] [CrossRef] [PubMed]
- Watson, D.; Hansen, C.J.; Selsing, J.; Koch, A.; Malesani, D.B.; Andersen, A.C.; Fynbo, J.P.U.; Arcones, A.; Bauswein, A.; Covino, S.; et al. Identification of strontium in the merger of two neutron stars. Nature 2019, 574, 497. [Google Scholar] [CrossRef] [PubMed]
- Holmbeck, E.M.; Barnes, J.; Lund, K.A.; Sprouse, T.M.; McLaughlin, G.C.; Mumpower, M.R. Superheavy elements in kilonovae. Astrophys. J. 2023, 951, L13. [Google Scholar] [CrossRef]
- Radžiūtė, L.; Gaigalas, G.; Kato, D.; Rynkun, P.; Tanaka, M. Extended Calculations of Energy Levels and Transition Rates for Singly Ionized Lanthanide Elements. I. Pr–Gd. Astrophys. J. 2020, 248, 17. [Google Scholar] [CrossRef]
- Domoto, N.; Tanaka, M.; Wanajo, S.; Kawaguchi, K. Signatures of r-process elements in kilonova spectra. Astrophys. J. 2021, 913, 26. [Google Scholar] [CrossRef]
- Carvajal Gallego, H.; Berengut, J.C.; Palmeri, P.; Quinet, P. Atomic data and opacity calculations in La V–X ions for the investigation of kilonova emission spectra. Mon. Not. R. Astron. Soc. 2022, 513, 2302. [Google Scholar] [CrossRef]
- Banerjee, S.; Tanaka, M.; Kato, D.; Gaigalas, G.; Kawaguchi, K.; Domoto, N. Opacity of the highly ionized lanthanides and the effect on the early kilonova. Astrophys. J. 2022, 934, 117. [Google Scholar] [CrossRef]
- Domoto, N.; Tanaka, M.; Kato, D.; Kawaguchi, K.; Hotokezaka, K.; Wanajo, S. Lanthanide features in near-infrared spectra of kilonovae. Astrophys. J. 2022, 939, 8. [Google Scholar] [CrossRef]
- Ben Nasr, S.; Carvajal Gallego, H.; Deprince, J.; Palmeri, P.; Quinet, P. Atomic data and expansion opacity calculations in two representative 4d transition elements, niobium and silver, of interest for kilonovae studies. Astron. Astrophys. 2023, 678, A67. [Google Scholar] [CrossRef]
- Bondarev, A.I.; Gillanders, J.H.; Cheung, C.; Safronova, M.S.; Fritzsche, S. Calculations of multipole transitions in Sn II for kilonova analysis. Eur. Phys. J. D 2023, 77, 126. [Google Scholar] [CrossRef]
- Ben Nasr, S.; Carvajal Gallego, H.; Deprince, J.; Palmeri, P.; Quinet, P. Comparative study of kilonova opacities for three elements of the sixth period (hafnium, osmium, and gold) from new atomic structure calculations in Hf I-IV, Os I-IV, and Au I-IV. Astron. Astrophys. 2024, 687, A41. [Google Scholar] [CrossRef]
- Gaigalas, G.; Rynkun, P.; Domoto, N.; Tanaka, M.; Kato, D.; Kitovienė, L. Theoretical investigation of energy levels and transitions for Ce III with applications to kilonova spectra. Mon. Not. R. Astron. Soc. 2024, 530, 5220. [Google Scholar] [CrossRef]
- Metzger, B.D.; Martínez-Pinedo, G.; Darbha, S.; Quataert, E.; Arcones, A.; Kasen, D.; Thomas, R.; Nugent, P.; Panov, I.V.; Zinner, N.T. Electromagnetic counterparts of compact object mergers powered by the radioactive decay of r-process nuclei. Mon. Not. R. Astron. Soc. 2010, 406, 2650–2662. [Google Scholar] [CrossRef]
- Tanaka, M.; Hotokezaka, K. Radiative transfer simulations of neutron star merger ejecta. Astrophys. J. 2013, 775, 113. [Google Scholar] [CrossRef]
- Hotokezaka, K.; Tanaka, M.; Kato, D.; Gaigalas, G. Nebular emission from lanthanide-rich ejecta of neutron star merger. Mon. Not. R. Astron. Soc. 2021, 506, 5863. [Google Scholar] [CrossRef]
- Pognan, Q.; Grumer, J.; Jerkstrand, A.; Wanajo, S. NLTE spectra of kilonovae. Mon. Not. R. Astron. Soc. 2023, 526, 5220. [Google Scholar] [CrossRef]
- Quinet, P.; Palmeri, P. Current status and developments of the atomic database on rare-earths at Mons University (DREAM). Atoms 2020, 8, 18. [Google Scholar] [CrossRef]
- Peart, B.; Dolder, K. Measurements of cross sections for inner- and outer-shell ionization of Rb+, Cs+, Ca+ and Sr+ ions by electron impact. J. Phys. B 1975, 8, 56. [Google Scholar] [CrossRef]
- Hertling, D.R.; Feeney, R.K.; Hughes, D.W.; Sayle II, W.E. Absolute experimental cross sections for the electron impact single, double, triple, and quadruple ionization of Cs+ ions. J. Appl. Phys. 1982, 53, 5427. [Google Scholar] [CrossRef]
- Thomason, J.W.G.; Peart, B.; Hayton, S.J.T. The double ionization of Cs+ and Sr+ by energy-resolved electrons. J. Phys. B 1997, 30, 749–756. [Google Scholar] [CrossRef]
- Peart, B.; Underwood, J.R.A.; Dolder, K. Autoionisation and threshold ionisation of Ba+ by energy-resolved electrons. J. Phys. B 1989, 22, 1679. [Google Scholar] [CrossRef]
- Tinschert, K.; Müller, A.; Hofmann, G.; Salzborn, E. Electron-impact single and double ionization of Ba2+ and Ba3+ ions. Phys. Rev. A 1991, 43, 3522–3534. [Google Scholar] [CrossRef] [PubMed]
- Knopp, H.; Böhme, C.; Jacobi, J.; Ricz, S.; Schippers, S.; Müller, A. Electron-impact multiple ionization of Baq+ ions (1 ≤ q ≤ 13) via resonant 3d excitation. Nucl. Instrum. Methods Phys. Res. B 2003, 205, 433. [Google Scholar] [CrossRef]
- Müller, A.; Tinschert, K.; Hofmann, G.; Salzborn, E.; Dunn, G.H.; Younger, S.M.; Pindzola, M.S. Electron-impact ionization of Laq+ ions (q=1, 2, 3). Phys. Rev. A 1989, 40, 3584–3598. [Google Scholar] [CrossRef] [PubMed]
- Aichele, K.; Arnold, W.; Hathiramani, D.; Scheuermann, F.; Salzborn, E.; Mitnik, D.M.; Griffin, D.C.; Colgan, J.; Pindzola, M.S. Experimental and theoretical study of electron-impact ionization of atomic ions in the Sm isonuclear sequence. Phys. Rev. A 2001, 64, 052706. [Google Scholar] [CrossRef]
- Falk, R.A.; Dunn, G.H.; Gregory, D.C.; Crandall, D.H. Measurement of the contribution of excitation autoionization to electron-impact ionization of ions: Ti3+, Zr3+, Hf3+, and Ta3+. Phys. Rev. A 1983, 27, 762–770. [Google Scholar] [CrossRef]
- Stenke, M.; Aichele, K.; Harthiramani, D.; Hofmann, G.; Steidl, M.; Völpel, R.; Salzborn, E. Electron-impact single-ionization of singly and multiply charged tungsten ions. J. Phys. B 1995, 28, 2711–2721. [Google Scholar] [CrossRef]
- Schury, D.; Borovik Jr., A.; Ebinger, B.; Spruck, K.; Jin, F.; Müller, A.; Schippers, S. Electron-impact single ionisation of Wq+ ions: Experiment and theory for 11 ≤ q ≤ 18. J. Phys. B 2020, 53, 015201. [Google Scholar] [CrossRef]
- Loch, S.D.; Ludlow, J.A.; Pindzola, M.S.; Scheuermann, F.; Kramer, K.; Fabian, B.; Huber, K.; Salzborn, E. Electron-impact ionization of Pbq+ ions for q = 1 − 10. Phys. Rev. A 2005, 72, 032713. [Google Scholar] [CrossRef]
- Loch, S.D.; Pindzola, M.S.; Badnell, N.R.; Scheuermann, F.; Kramer, K.; Huber, K.; Salzborn, E. Electron-impact ionization of Biq+ for q = 1 − 10. Phys. Rev. A 2004, 70, 052714. [Google Scholar] [CrossRef]
- Ebinger, B.; Borovik, A., Jr.; Molkentin, T.; Müller, A.; Schippers, S. Commissioning of a powerful electron gun for electron-ion crossed-beams experiments. Nucl. Instrum. Methods Phys. Res. B 2017, 408, 317. [Google Scholar] [CrossRef]
- Jacobi, J.; Knopp, H.; Schippers, S.; Müller, A.; Loch, S.D.; Witthoeft, M.; Pindzola, M.S.; Ballance, C.P. Strong contributions of indirect processes to the electron-impact ionization cross section of Sc+ ions. Phys. Rev. A 2004, 70, 042717. [Google Scholar] [CrossRef]
- Jin, F.; Borovik, A.; Döhring, B.M.; Ebinger, B.; Müller, A.; Schippers, S. Experimental and theoretical total cross sections for single and double ionization of the open-4d-shell ions Xe12+, Xe13+, and Xe14+ by electron impact. Eur. Phys. J. D 2024, 78, 68. [Google Scholar] [CrossRef]
- Müller, A.; Huber, K.; Tinschert, K.; Becker, R.; Salzborn, E. An improved crossed-beams technique for the measurement of absolute cross sections for electron impact ionisation of ions and its application to Ar+ ions. J. Phys. B 1985, 18, 2993. [Google Scholar] [CrossRef]
- Brötz, F.; Trassl, R.; McCullough, R.W.; Arnold, W.; Salzborn, E. Design of compact all-permanent magnet electron cyclotron resonance (ECR) ion sources for atomic physics experiments. Phys. Scr. 2001, T92, 278–280. [Google Scholar] [CrossRef]
- Rinn, K.; Müller, A.; Eichenauer, H.; Salzborn, E. Development of single-particle detectors for keV ions. Rev. Sci. Instrum. 1982, 53, 829–837. [Google Scholar] [CrossRef]
- Defrance, P.; Brouillard, F.; Claeys, W.; Wassenhove, G.V. Crossed beam measurement of absolute cross sections: An alternative method and its application to the electron impact ionisation of He+. J. Phys. B 1981, 14, 103–110. [Google Scholar] [CrossRef]
- Müller, A.; Hofmann, G.; Weissbecker, B.; Stenke, M.; Tinschert, K.; Wagner, M.; Salzborn, E. Correlated two-electron transitions in electron-impact ionization of Li+ ions. Phys. Rev. Lett. 1989, 63, 758–761. [Google Scholar] [CrossRef] [PubMed]
- Müller, A.; Borovik, A.; Huber, K.; Schippers, S.; Fursa, D.V.; Bray, I. Double-K-vacancy states in electron-impact single ionization of metastable two-electron N5+(1s 2s 3S1) ions. Phys. Rev. A 2014, 90, 010701. [Google Scholar] [CrossRef]
- Liu, P.; Zeng, J.; Borovik, A.; Schippers, S.; Müller, A. Electron-impact ionization of Xe24+ ions: Theory versus experiment. Phys. Rev. A 2015, 92, 012701. [Google Scholar] [CrossRef]
- Ebinger, B.; Liu, P.; Borovik, A., Jr.; Müller, A.; Zeng, J.; Schippers, S. Resonant and nonresonant indirect electron-impact single ionization of beryllium-like carbon ions via K-shell excitation. J. Phys. B 2019, 52, 035202. [Google Scholar] [CrossRef]
- Döhring, B.M.; Borovik, A., Jr.; Huber, K.; Schippers, S. Commissioning of a fine-step electron energy scan-system for electron-ion-crossed-beams experiments. In preparation.
- Kramida, A.; Ralchenko, Y.; Reader, J. ; NIST ASD Team. NIST Atomic Spectra Database (Version 5.11.0); NIST: Gaithersburg, MD, USA, 2023. [Google Scholar] [CrossRef]
- Hahn, M.; Müller, A.; Savin, D.W. Electron-impact multiple-ionization cross sections for atoms and ions of helium through zinc. Astrophys. J. 2017, 850, 122. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Döhring, B.M.; Borovik, A., Jr.; Gocht, F.; Huber, K.; Schippers, S. Experimental Cross Sections for Electron-Impact Single, Double, and Triple Ionization of La+. Atoms 2025, 13, 14. https://doi.org/10.3390/atoms13020014
Döhring BM, Borovik A Jr., Gocht F, Huber K, Schippers S. Experimental Cross Sections for Electron-Impact Single, Double, and Triple Ionization of La+. Atoms. 2025; 13(2):14. https://doi.org/10.3390/atoms13020014
Chicago/Turabian StyleDöhring, B. Michel, Alexander Borovik, Jr., Florian Gocht, Kurt Huber, and Stefan Schippers. 2025. "Experimental Cross Sections for Electron-Impact Single, Double, and Triple Ionization of La+" Atoms 13, no. 2: 14. https://doi.org/10.3390/atoms13020014
APA StyleDöhring, B. M., Borovik, A., Jr., Gocht, F., Huber, K., & Schippers, S. (2025). Experimental Cross Sections for Electron-Impact Single, Double, and Triple Ionization of La+. Atoms, 13(2), 14. https://doi.org/10.3390/atoms13020014