BAl4Mg−/0/+: Global Minima with a Planar Tetracoordinate or Hypercoordinate Boron Atom
Abstract
:1. Introduction
2. Computational Details
3. Results and Discussion
3.1. Thermal Stability
3.2. Kinetic Stability
3.3. Natural Bond Orbital Analysis
3.4. Molecular Orbital Analysis
3.5. Adaptive Natural Density Partitioning (AdNDP) Analysis
3.6. NICS Analysis
3.7. AIM Analysis
3.8. ALMO-EDA
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADMP | Atom-Centered Density Matrix Propagation |
AIMD | Ab Initio Molecular Dynamics |
AdNDP | Adaptive Natural Density Partitioning |
CMOs | Canonical Molecular Orbitals |
DFT | Density Functional Theory |
ELF | Electron Localization Function |
MD | Molecular Dynamics |
NBO | Natural Bond Order |
NPA | Natural Population Analysis |
NICS | Nucleus Independent Chemical Shift |
ptB | Planar Tetracoordinate Boron |
phC | Planar Hypercoordinate Carbon |
ppB | Planar Pentacoordinate Boron |
WBI | Wiberg Bond Index |
References
- Monkhorst, H.J. Activation Energy for Interconversion of Enantiomers Containing an Asymmetric Carbon Atom without Breaking Bonds. Chem. Commun. 1968, 1111–1112. [Google Scholar] [CrossRef]
- Hoffmann, R.; Alder, R.W.; Wilcox, C.F. Planar Tetracoordinate Carbon. J. Am. Chem. Soc. 1970, 92, 4992–4993. [Google Scholar] [CrossRef]
- Würthwein, E.U.; von Ragué Schleyer, P. Planar Tetracoordinate Silicon. Angew. Chem. Int. Ed. Engl. 1979, 18, 553–554. [Google Scholar] [CrossRef]
- Boldyrev, A.; Li, X.; Wang, L.S. Experimental Observation of Pentaatomic Tetracoordinate Planar Si- and Ge-Containing Molecules: and MAl4. Angew. Chem. Int. Ed. 2000, 39, 3307–3310. [Google Scholar] [CrossRef]
- Ebner, F.; Greb, L. Calix[4]pyrrole Hydridosilicate: The Elusive Planar Tetracoordinate Silicon Imparts Striking Stability to Its Anionic Silicon Hydride. J. Am. Chem. Soc. 2018, 140, 17409–17412. [Google Scholar] [CrossRef]
- Ghana, P.; Rump, J.; Schnakenburg, G.; Arz, M.I.; Filippou, A.C. Planar Tetracoordinated Silicon (ptSi): Room-Temperature Stable Compounds Containing Anti-van’t Hoff/Le Bel Silicon. J. Am. Chem. Soc. 2020, 143, 420–432. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, F.; Zhou, Z.; Chen, Z. SiC2 Silagraphene and Its One-Dimensional Derivatives: Where Planar Tetracoordinate Silicon Happens. J. Am. Chem. Soc. 2011, 133, 900–908. [Google Scholar] [CrossRef] [PubMed]
- Yañez, O.; Vásquez-Espinal, A.; Pino-Rios, R.; Ferraro, F.; Pan, S.; Osorio, E.; Merino, G.; Tiznado, W. Exploiting electronic strategies to stabilize a planar tetracoordinate carbon in cyclic aromatic hydrocarbons. Chem. Commun. 2017, 53, 12112–12115. [Google Scholar]
- Xu, J.; Ding, Y.H. Pentaatomic planar tetracoordinate silicon with 14 valence electrons: A large-scale global search of SiXnY (n + m = 4; q = 0, ±1, −2; X, Y = main group elements from H to Br). J. Comput. Chem. 2015, 36, 355–360. [Google Scholar] [CrossRef] [PubMed]
- Thimmakondu, V.S.; Thirumoorthy, K. Si3C2H2 Isomers with A Planar Tetracoordinate Carbon or Silicon Atom(s). Comput. Theor. Chem. 2019, 1157, 40–46. [Google Scholar] [CrossRef] [Green Version]
- Von Ragué Schleyer, P.; Boldyrev, A.I. A New, General Strategy for Achieving Planar Tetracoordinate Geometries for Carbon and Other Second Row Periodic Elements. J. Chem. Soc. Chem. Commun. 1991, 1536–1538. [Google Scholar] [CrossRef]
- Menzel, M.; Steiner, D.; Winkler, H.J.; Schweikart, D.; Mehle, S.; Fau, S.; Frenking, G.; Massa, W.; Berndt, A. Compounds with Planar Tetracoordinate Boron Atoms: Anti van’t Hoff/Le Bel Geometries without Metal Centers. Angew. Chem. Int. Ed. Engl. 1995, 34, 327–329. [Google Scholar] [CrossRef]
- Berndt, A. Classical and Nonclassical Methyleneboranes. Angew. Chem. Int. Ed. Engl. 1993, 32, 985–1009. [Google Scholar] [CrossRef]
- Sateesh, B.; Srinivas Reddy, A.; Narahari Sastry, G. Towards Design of the Smallest Planar Tetracoordinate Carbon and Boron Systems. J. Comput. Chem. 2007, 28, 335–343. [Google Scholar] [CrossRef]
- Cui, Z.H.; Contreras, M.; Ding, Y.H.; Merino, G. Planar Tetracoordinate Carbon versus Planar Tetracoordinate Boron: The Case of CB4 and Its Cation. J. Am. Chem. Soc. 2011, 133, 13228–13231. [Google Scholar] [CrossRef]
- Feng, W.; Zhu, C.; Liu, X.; Zhang, M.; Geng, Y.; Zhao, L.; Su, Z. A BPt4S4 Cluster: A Planar Tetracoordinate Boron System with Three Charges All at Their Global Energy Minima. New J. Chem. 2020, 44, 767–772. [Google Scholar] [CrossRef]
- Li, S.D.; Ren, G.M.; Miao, C.Q.; Jin, Z.H. M4H4X: Hydrometals (M = Cu, Ni) Containing Tetracoordinate Planar Nonmetals (X = B, C, N, O). Angew. Chem. Int. Ed. 2004, 43, 1371–1373. [Google Scholar] [CrossRef]
- Ebner, F.; Wadepohl, H.; Greb, L. Calix[4]pyrrole Aluminate: A Planar Tetracoordinate Aluminum(III) Anion and Its Unusual Lewis Acidity. J. Am. Chem. Soc. 2019, 141, 18009–18012. [Google Scholar] [CrossRef]
- Ebner, F.; Mainik, P.; Greb, L. Calix[4]pyrrolato Aluminates: The Effect of Ligand Modification on the Reactivity of Square-Planar Aluminum Anions. Chem. Eur. J. 2021, 27, 5120–5124. [Google Scholar] [CrossRef]
- Cui, Z.H.; Ding, Y.H. (X = N, P, As): Penta-atomic Planar Tetracoordinate Nitrogen with N-X multiple bonding. Phys. Chem. Chem. Phys. 2011, 13, 5960–5966. [Google Scholar] [CrossRef]
- Jimenez-Izal, E.; Saeys, M.; Alexandrova, A.N. Metallic and Magnetic 2D Materials Containing Planar Tetracoordinated C and N. J. Phys. Chem. C 2016, 120, 21685–21690. [Google Scholar] [CrossRef] [Green Version]
- Li, S.D.; Ren, G.M.; Miao, C.Q. (M4H3X)2B2O2: Hydrometal Complexes (M = Ni, Mg) Containing Double Tetracoordinate Planar Nonmetal Centers (X = C, N). J. Phys. Chem. A 2005, 109, 259–261. [Google Scholar] [CrossRef] [PubMed]
- Driess, M.; Aust, J.; Merz, K.; van Wüllen, C. van’t Hoff-Le Bel Stranger: Formation of a Phosphonium Cation with a Planar Tetracoordinate Phosphorus Atom. Angew. Chem. Int. Ed. 1999, 38, 3677–3680. [Google Scholar] [CrossRef]
- Wang, H.; Liu, F.L. Theoretical Study on Neutral Molecules with Square Planar Tetracoordinate Oxygen O(B)4 Arrangements. ACS Omega 2020, 5, 24513–24519. [Google Scholar] [CrossRef]
- Castillo-Toraya, G.; Orozco-Ic, M.; Dzib, E.; Zarate, X.; Ortíz-Chi, F.; Cui, Z.H.; Barroso, J.; Merino, G. Planar Tetracoordinate Fluorine Atoms. Chem. Sci. 2021, 12, 6699–6704. [Google Scholar] [CrossRef] [PubMed]
- Erker, G. Planar-Tetracoordinate Carbon: Making Stable Anti-van’t Hoff/Le Bel Compounds. Comment. Inorg. Chem. 1992, 13, 111–131. [Google Scholar] [CrossRef]
- Röttger, D.; Erker, G. Compounds Containing Planar-Tetracoordinate Carbon. Angew. Chem. Int. Ed. Engl. 1997, 36, 812–827. [Google Scholar] [CrossRef]
- Cotton, F.A.; Millar, M. The Probable Existence of A Triple Bond Between Two Vanadium Atoms. J. Am. Chem. Soc. 1977, 99, 7886. [Google Scholar] [CrossRef]
- Boldyrev, A.I.; Simons, J. Tetracoordinated Planar Carbon in Pentaatomic Molecules. J. Am. Chem. Soc. 1998, 120, 7967–7972. [Google Scholar] [CrossRef]
- Li, X.; Wang, L.S.; Boldyrev, A.I.; Simons, J. Tetracoordinated Planar Carbon in the Al4C− Anion. A Combined Photoelectron Spectroscopy and ab Initio Study. J. Am. Chem. Soc. 1999, 121, 6033–6038. [Google Scholar] [CrossRef]
- Keese, R. Carbon Flatland: Planar Tetracoordinate Carbon and Fenestranes. Chem. Rev. 2006, 106, 4787–4808. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zhang, X.; Yu, S.; Ding, Y.H.; Bowen, K.H. Identifying the Hydrogenated Planar Tetracoordinate Carbon: A Combined Experimental and Theoretical Study of CAl4H and CAl4H−. J. Phys. Chem. Lett. 2017, 8, 2263–2267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Zhang, H.F.; Wang, L.S.; Geske, G.; Boldyrev, A. Pentaatomic Tetracoordinate Planar Carbon, [CAl4]2−: A New Structural Unit and Its Salt Complexes. Angew. Chem. Int. Ed. 2000, 39, 3630–3632. [Google Scholar] [CrossRef]
- Collins, J.B.; Dill, J.D.; Jemmis, E.D.; Apeloig, Y.; von Ragué Schleyer, P.; Seeger, R.; Pople, J.A. Stabilization of Planar Tetracoordinate Carbon. J. Am. Chem. Soc. 1976, 98, 5419–5427. [Google Scholar] [CrossRef]
- Merino, G.; Méndez-Rojas, M.A.; Beltrán, H.I.; Corminboeuf, C.; Heine, T.; Vela, A. Theoretical Analysis of the Smallest Carbon Cluster Containing a Planar Tetracoordinate Carbon. J. Am. Chem. Soc. 2004, 126, 16160–16169. [Google Scholar] [CrossRef]
- Suresh, C.H.; Frenking, G. Direct 1-3 Metal-Carbon Bonding and Planar Tetracoordinated Carbon in Group 6 Metallacyclobutadienes. Organometallics 2010, 29, 4766–4769. [Google Scholar] [CrossRef]
- Thirumoorthy, K.; Karton, A.; Thimmakondu, V.S. From High-Energy C7H2 Isomers with A Planar Tetracoordinate Carbon Atom to An Experimentally Known Carbene. J. Phys. Chem. A 2018, 122, 9054–9064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raghunathan, S.; Yadav, K.; Rojisha, V.C.; Jaganade, T.; Prathyusha, V.; Bikkina, S.; Lourderaj, U.; Priyakumar, U.D. Transition Between [R]- and [S]-Stereoisomers without Bond Breaking. Phys. Chem. Chem. Phys. 2020, 22, 14983–14991. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.M.; Ganz, E.; Chen, Z.; Wang, Z.X.; von Ragué Schleyer, P. Four Decades of the Chemistry of Planar Hypercoordinate Compounds. Angew. Chem. Int. Ed. 2015, 54, 9468–9501. [Google Scholar] [CrossRef]
- Zheng, H.F.; Yu, S.; Hu, T.D.; Xu, J.; Ding, Y.H. CAl3X (X = B/Al/Ga/In/Tl) with 16 Valence Electrons: Can Planar Tetracoordinate Carbon Be Stable? Phys. Chem. Chem. Phys. 2018, 20, 26266–26272. [Google Scholar] [CrossRef]
- Yañez, O.; Vásquez-Espinal, A.; Báez-Grez, R.; Rabanal-León, W.A.; Osorio, E.; Ruiz, L.; Tiznado, W. Carbon Rings Decorated with Group 14 Elements: New Aromatic Clusters Containing Planar Tetracoordinate Carbon. New J. Chem. 2019, 43, 6781–6785. [Google Scholar]
- Thirumoorthy, K.; Thimmakondu, V.S. Flat Crown Ethers with Planar Tetracoordinate Carbon Atoms. Int. J. Quantum Chem. 2021, 121, e26479. [Google Scholar] [CrossRef]
- Yadav, K.; Lourderaj, U.; Priyakumar, U.D. Stereomutation in Tetracoordinate Centers via Stabilization of Planar Tetracoordinated Systems. Atoms 2021, 9, 79. [Google Scholar] [CrossRef]
- Van’t Hoff, J.H. A Suggestion Looking to the Extension Into Space of the Structural Formulas at Present Used in Chemistry. And A Note Upon the Relation Between the Optical Activity and the Chemical Constitution of Organic Compounds. Arch. Neerl. Sci. Exactes Nat. 1874, 9, 445–454. [Google Scholar]
- Le-Bel, J.A. On the Relations Which Exist Between the Atomic Formulas of Organic Compounds and the Rotatory Power of Their Solutions. Bull. Soc. Chim. Fr. 1874, 22, 337–347. [Google Scholar]
- Cui, Z.H.; Ding, Y.H.; Cabellos, J.L.; Osorio, E.; Islas, R.; Restrepo, A.; Merino, G. Planar tetracoordinate carbons with a double bond in CAl3E clusters. Phys. Chem. Chem. Phys. 2015, 17, 8769–8775. [Google Scholar] [CrossRef] [PubMed]
- Nandula, A.; Trinh, Q.T.; Saeys, M.; Alexandrova, A.N. Origin of Extraordinary Stability of Square-Planar Carbon Atoms in Surface Carbides of Cobalt and Nickel. Angew. Chem. Int. Ed. 2015, 54, 5312–5316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, J.C.; Feng, L.Y.; Dong, C.; Zhai, H.J. Ternary 12-electron CBe3X (X = H, Li, Na, Cu, Ag) Clusters: Planar Tetracoordinate Carbons and Superalkali Cations. Phys. Chem. Chem. Phys. 2019, 21, 22048–22056. [Google Scholar] [CrossRef] [PubMed]
- Thirumoorthy, K.; Cooksy, A.; Thimmakondu, V.S. Si2C5H2 Isomers – Search Algorithms Versus Chemical Intuition. Phys. Chem. Chem. Phys. 2020, 22, 5865–5872. [Google Scholar] [CrossRef] [PubMed]
- Jimenez-Halla, J.O.C.; Wu, Y.B.; Wang, Z.X.; Islas, R.; Heine, T.; Merino, G. CAl4Be and CAl3Be: Global Minima with A Planar Pentacoordinate Carbon Atom. Chem. Commun. 2010, 46, 8776–8778. [Google Scholar] [CrossRef] [PubMed]
- Crigger, C.; Wittmaack, B.K.; Tawfik, M.; Merino, G.; Donald, K.J. Plane and Simple: Planar Tetracoordinate Carbon Centers in Small Molecules. Phys. Chem. Chem. Phys. 2012, 14, 14775. [Google Scholar] [CrossRef] [PubMed]
- Priyakumar, U.D.; Sastry, G.N. A system with three contiguous planar tetracoordinate carbons is viable: A computational study on a C6H isomer. Tetrahedron Lett. 2004, 45, 1515–1517. [Google Scholar] [CrossRef]
- Vogt-Geisse, S.; Wu, J.I.C.; von Ragué Schleyer, P.; Schaefer, H.F. Bonding, aromaticity, and planar tetracoordinated carbon in Si2CH2 and Ge2CH2. J. Mol. Model 2015, 21, 217. [Google Scholar] [CrossRef]
- Job, N.; Karton, A.; Thirumoorthy, K.; Cooksy, A.L.; Thimmakondu, V.S. Theoretical Studies of SiC4H2 Isomers Delineate Three Low-Lying Silylidenes Are Missing in the Laboratory. J. Phys. Chem. A 2020, 124, 987–1002. [Google Scholar] [CrossRef] [PubMed]
- Thirumoorthy, K.; Chandrasekaran, V.; Cooksy, A.L.; Thimmakondu, V.S. Kinetic Stability of Si2C5H2 Isomer with a Planar Tetracoordinate Carbon Atom. Chemistry 2021, 3, 13–27. [Google Scholar] [CrossRef]
- Job, N.; Khatun, M.; Thirumoorthy, K.; CH, S.S.R.; Chandrasekaran, V.; Anoop, A.; Thimmakondu, V.S. CAl4Mg0/−: Global Minima with a Planar Tetracoordinate Carbon Atom. Atoms 2021, 9, 24. [Google Scholar] [CrossRef]
- Saumya, M.J.; Raghi, K.R.; Sherin, D.R.; Haridas, K.R.; Manojkumar, T.K. Butterfly Methanes: Designing a Novel Class of anti-van’t Hoff Carbons. ChemPhysChem 2020, 21, 2272–2278. [Google Scholar] [CrossRef]
- Das, P.; Chattaraj, P.K. In Silico Studies on Selected Neutral Molecules, CGa2Ge2, CAlGaGe2, and CSiGa2Ge Containing Planar Tetracoordinate Carbon. Atoms 2021, 9, 65. [Google Scholar] [CrossRef]
- Becker, S.; Dietze, H.J. Cluster Ions in the Laser Mass Spectra of Boron Carbide. Int. J. Mass Spectrom. 1988, 82, 287–298. [Google Scholar] [CrossRef]
- Pei, Y.; An, W.; Ito, K.; von Ragué Schleyer, P.; Zeng, X.C. Planar Pentacoordinate Carbon in CAl: A Global Minimum. J. Am. Chem. Soc. 2008, 130, 10394–10400. [Google Scholar] [CrossRef]
- Guo, J.C.; Feng, L.Y.; Zhang, X.Y.; Zhai, H.J. Star-Like CBe5Au Cluster: Planar Pentacoordinate Carbon, Superalkali Cation, and Multifold (π and σ) Aromaticity. J. Phys. Chem. A 2018, 122, 1138–1145. [Google Scholar] [CrossRef]
- Castro, A.C.; Martínez-Guajardo, G.; Johnson, T.; Ugalde, J.M.; Wu, Y.B.; Mercero, J.M.; Heine, T.; Donald, K.J.; Merino, G. CBe5E-(E = Al, Ga, In, Tl): Planar Pentacoordinate Carbon in Heptaatomic Clusters. Phys. Chem. Chem. Phys. 2012, 14, 14764–14768. [Google Scholar] [CrossRef] [PubMed]
- Ravell, E.; Jalife, S.; Barroso, J.; Orozco-Ic, M.; Hernandez-Juarez, G.; Ortiz-Chi, F.; Pan, S.; Cabellos, J.L.; Merino, G. Structure and Bonding in CE (E = Al − Tl) Clusters: Planar Tetracoordinate Carbon vs Pentacoordinate Carbon. Chem.-Asian J. 2018, 13, 1467–1473. [Google Scholar] [CrossRef] [PubMed]
- Pan, S.; Cabellos, J.L.; Orozco-Ic, M.; Chattaraj, P.K.; Zhao, L.; Merino, G. Planar Pentacoordinate Carbon in CGa Derivatives. Phys. Chem. Chem. Phys. 2018, 20, 12350–12355. [Google Scholar] [CrossRef] [PubMed]
- Vassilev-Galindo, V.; Pan, S.; Donald, J.K.; Merino, G. Planar Pentacoordinate Carbons. Nat. Chem. Rev. 2018, 2, 0114. [Google Scholar] [CrossRef]
- Thimmakondu, V.S. Hypervalent Carbon Atoms in a Ferrocene Dication Derivative-[Fe(Si2C5H2)2]2+. ChemRxiv 2021. [Google Scholar] [CrossRef]
- Exner, K.; von Ragué Schleyer, P. Planar Hexacoordinate Carbon: A Viable Possibility. Science 2000, 290, 1937–1940. [Google Scholar] [CrossRef]
- Averkiev, B.B.; Zubarev, D.Y.; Wang, L.M.; Huang, W.; Wang, L.S.; Boldyrev, A.I. Carbon Avoids Hypercoordination in CB, CB, and C2B Planar Carbon-Boron Clusters. J. Am. Chem. Soc. 2008, 130, 9248–9250. [Google Scholar] [CrossRef] [PubMed]
- Ito, K.; Chen, Z.; Corminboeuf, C.; Wannere, C.S.; Zhang, X.H.; Li, Q.S.; von Ragué Schleyer, P. Myriad Planar Hexacoordinate Carbon Molecules Inviting Synthesis. J. Am. Chem. Soc. 2007, 129, 1510–1511. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.B.; Duan, Y.; Lu, G.; Lu, H.G.; Yang, P.; von Ragué Schleyer, P.; Merino, G.; Islas, R.; Wang, Z.X. D3h CN3Be and CO3Li: Viable Planar Hexacoordinate Carbon Prototypes. Phys. Chem. Chem. Phys. 2012, 14, 14760–14763. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.F.; Han, S.J.; Wu, Y.B.; Lu, H.G.; Lu, G. Thermodynamic Stability versus Kinetic Stability: Is the Planar Hexacoordinate Carbon Species D3h CN3Mg Viable? J. Phys. Chem. A 2014, 118, 3319–3325. [Google Scholar] [CrossRef]
- Zhai, H.J.; Alexandrova, A.N.; Birch, K.A.; Boldyrev, A.I.; Wang, L.S. Hepta- and Octacoordinate Boron in Molecular Wheels of Eight- and Nine-Atom Boron Clusters: Observation and Confirmation. Angew. Chem. Int. Ed. 2003, 42, 6004–6008. [Google Scholar] [CrossRef]
- Kalita, A.J.; Rohman, S.S.; Kashyap, C.; Ullah, S.S.; Guha, A.K. Double aromaticity in a BBe6H cluster with a planar hexacoordinate boron structure. Chem. Commun. 2020, 56, 12597–12599. [Google Scholar] [CrossRef] [PubMed]
- Averkiev, B.B.; Wang, L.M.; Huang, W.; Wang, L.S.; Boldyrev, A.I. Experimental and Theoretical Investigations of CB8-: Towards Rational Design of Hypercoordinated Planar Chemical Species. Phys. Chem. Chem. Phys. 2009, 11, 9840. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, R.; Baishya, D.; Mahapatra, S. Photodetachment Spectroscopy of Carbon Doped Anionic Boron Cluster, CB9-: A Theoretical Study. Chem. Phys. 2018, 515, 679–691. [Google Scholar] [CrossRef]
- Kalita, A.J.; Rohman, S.S.; Kashyap, C.; Ullah, S.S.; Baruah, I.; Guha, A.K. Planar Pentacoordinate Nitrogen in a Pseudo-Double-Aromatic NBe5H Cluster. Inorg. Chem. 2020, 59, 17880–17883. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, F.; Li, Y.; Chen, Z. Semi-Metallic Be5C2 Monolayer Global Minimum with Quasi-Planar Pentacoordinate Carbons and Negative Poisson’s Ratio. Nat. Commun. 2016, 7, 11488. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Liao, Y.; Chen, Z. Be2C Monolayer with Quasi-Planar Hexacoordinate Carbons: A Global Minimum Structure. Angew. Chem. Int. Ed. 2014, 53, 7248–7252. [Google Scholar] [CrossRef]
- Minyaev, R.M.; Gribanova, T.N.; Minkin, V.I.; Starikov, A.G.; Hoffmann, R. Planar and Pyramidal Tetracoordinate Carbon in Organoboron Compounds. J. Org. Chem. 2005, 70, 6693. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, P.; Liang, J.; Jia, W.; Cao, Z. Theoretical study on a family of organic molecules with planar tetracoordinate carbon. J. Mol. Struct. THEOCHEM 2010, 941, 41–46. [Google Scholar] [CrossRef]
- Islas, R.; Heine, T.; Ito, K.; von Ragué Schleyer, P.; Merino, G. Boron Rings Enclosing Planar Hypercoordinate Group 14 Elements. J. Am. Chem. Soc. 2007, 129, 14767. [Google Scholar] [CrossRef]
- Erhardt, S.; Frenking, G.; Chen, Z.; von Ragué Schleyer, P. Aromatic Boron Wheels with More than One Carbon Atom in the Center: C2B8, C3B, and C5B. Angew. Chem. Int. Ed. 2005, 44, 1078–1082. [Google Scholar] [CrossRef] [PubMed]
- Nandi, S.; McAnanama-Brereton, S.R.; Waller, M.P.; Anoop, A. A Tabu-Search Based Strategy for Modeling Molecular Aggregates and Binary Reactions. Comput. Theor. Chem. 2017, 1111, 69–81. [Google Scholar] [CrossRef]
- Khatun, M.; Majumdar, R.S.; Anoop, A. A Global Optimizer for Nanoclusters. Front. Chem. 2019, 7, 644. [Google Scholar] [CrossRef] [PubMed]
- Neese, F. Software Update: The ORCA Program System, Version 4.0. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2018, 8, e1327. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Wang, Y. Generalized Gradient Approximation for the Exchange-Correlation Hole of a Many-Electron System. Phys. Rev. B 1996, 54, 16533. [Google Scholar] [CrossRef] [Green Version]
- Weigend, F.; Ahlrichs, R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [Green Version]
- Becke, A.D.; Johnson, E.R. Exchange-Hole Dipole Moment and the Dispersion Interaction. J. Chem. Phys. 2005, 122, 154104. [Google Scholar] [CrossRef]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef]
- Chai, J.D.; Head-Gordon, M. Long-Range Corrected Hybrid Density Functionals with Damped Atom–Atom Dispersion Corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620. [Google Scholar] [CrossRef] [Green Version]
- Krishnan, R.; Binkley, J.S.; Seeger, R.; Pople, J.A. Self-Consistent Molecular Orbital Methods. XX. A Basis Set for Correlated Wave Functions. J. Chem. Phys. 1980, 72, 650–654. [Google Scholar] [CrossRef]
- Clark, T.; Chandrasekhar, J.; Spitznagel, G.W.; von Ragué Schleyer, P. Efficient Diffuse Function-Augmented Basis Sets for Anion Calculations. III. The 3-21+G Basis Set for First-Row Elements, Li-F. J. Comput. Chem. 1983, 4, 294–301. [Google Scholar] [CrossRef]
- Montgomery, J.A.; Frisch, M.J.; Ochterski, J.W.; Petersson, G.A. A Complete Basis Set Model Chemistry. VI. Use of Density Functional Geometries and Frequencies. J. Chem. Phys. 1999, 110, 2822–2827. [Google Scholar] [CrossRef]
- Bauernschmitt, R.; Ahlrichs, R. Stability Analysis for Solutions of the Closed Shell Kohn–Sham Equation. J. Chem. Phys. 1996, 104, 9047–9052. [Google Scholar] [CrossRef]
- Schlegel, H.B.; Millam, J.M.; Iyengar, S.S.; Voth, G.A.; Daniels, A.D.; Scuseria, G.E.; Frisch, M.J. Ab Initio Molecular Dynamics: Propagating the Density Matrix with Gaussian Orbitals. J. Chem. Phys. 2001, 114, 9758–9763. [Google Scholar] [CrossRef]
- Zubarev, D.Y.; Boldyrev, A.I. Developing Paradigms of Chemical Bonding: Adaptive Natural Density Partitioning. Phys. Chem. Chem. Phys. 2008, 10, 5207–5217. [Google Scholar] [CrossRef] [PubMed]
- Zubarev, D.Y.; Boldyrev, A.I. Revealing Intuitively Assessable Chemical Bonding Patterns in Organic Aromatic Molecules via Adaptive Natural Density Partitioning. J. Org. Chem. 2008, 73, 9251–9258. [Google Scholar] [CrossRef]
- Reed, A.E.; Weinstock, R.B.; Weinhold, F. Natural Population Analysis. J. Chem. Phys. 1985, 83, 735–746. [Google Scholar] [CrossRef]
- Glendening, E.D.; Weinhold, F. Natural Resonance Theory: I. General Formalism. J. Comput. Chem. 1998, 19, 593–609. [Google Scholar] [CrossRef]
- Von Ragué Schleyer, P.; Maerker, C.; Dransfeld, A.; Jiao, H.; van Eikema Hommes, N.J.R. Nucleus-Independent Chemical Shifts: A Simple and Efficient Aromaticity Probe. J. Am. Chem. Soc. 1996, 118, 6317–6318. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16 Revision B.01; Gaussian Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Shao, Y.; Gan, Z.; Epifanovsky, E.; Gilbert, A.T.; Wormit, M.; Kussmann, J.; Lange, A.W.; Behn, A.; Deng, J.; Feng, X.; et al. Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. Mol. Phys. 2015, 113, 184–215. [Google Scholar] [CrossRef] [Green Version]
- Lu, T.; Chen, F. Multiwfn: A Multifunctional Wavefunction Analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098–3100. [Google Scholar] [CrossRef]
- Becke, A.D. Density-Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.F.; Xu, J.; Ding, Y.H. A Sixteen-Valence-Electron Carbon-Group 13 Family with Global Penta-Atomic Planar Tetracoordinate Carbon: An Ionic Strategy. Phys. Chem. Chem. Phys. 2020, 22, 3975–3982. [Google Scholar] [CrossRef] [PubMed]
Type | Species | q | q | q | q | q | q | Valence Electronic Configuration of B |
---|---|---|---|---|---|---|---|---|
ptB | BAlMg (1a) | −2.84 | 0.69 | 0.18 | 0.18 | 0.38 | 0.38 | 2s 2p 2p 2p |
BAlMg (2n) | −2.79 | 0.90 | 0.25 | 0.25 | 0.69 | 0.69 | 2s 2p 2p 2p | |
BAlMg (1c) | −2.74 | 1.13 | 0.33 | 0.33 | 0.97 | 0.97 | 2s 2p 2p 2p | |
ppB | BAlMg (2a) | −2.80 | 0.83 | 0.16 | 0.16 | 0.32 | 0.32 | 2s 2p 2p 2p |
BAlMg (1n) | −2.60 | 1.12 | 0.27 | 0.27 | 0.47 | 0.47 | 2s 2p 2p 2p | |
BAlMg (3c) | −2.57 | 1.47 | 0.44 | 0.44 | 0.61 | 0.61 | 2s 2p 2p 2p |
Type | Species | B1-Mg2 | B1-Al3 | B1-Al4 | B-Al5 | B1-Al6 | WBI on B |
---|---|---|---|---|---|---|---|
ptB | BAlMg (1a) | 0.074 | 0.907 | 0.907 | 0.651 | 0.651 | 3.190 |
BAlMg (2n) | 0.064 | 0.889 | 0.889 | 0.614 | 0.614 | 3.064 | |
BAlMg (1c) | 0.081 | 0.937 | 0.937 | 0.650 | 0.650 | 3.255 | |
ppB | BAlMg (2a) | 0.045 | 0.842 | 0.842 | 0.726 | 0.726 | 3.180 |
BAlMg (1n) | 0.119 | 0.769 | 0.769 | 0.683 | 0.683 | 3.023 | |
BAlMg (3c) | 0.355 | 0.843 | 0.843 | 0.644 | 0.644 | 3.328 |
System | BCP & RCP | (rc) | ∇2(rc) | G(rc) | V(rc) | H(rc) | ELF | −G(rc)/V(rc) | G(rc)/(rc) |
---|---|---|---|---|---|---|---|---|---|
1a | B1-Al5 | 0.0611 | 0.1090 | 0.0505 | −0.0739 | −0.0234 | 0.2250 | 0.6838 | 0.8266 |
B1-Al4 | 0.0705 | 0.1370 | 0.0628 | −0.0912 | −0.0284 | 0.2320 | 0.6884 | 0.8909 | |
B1-Al6 | 0.0611 | 0.1090 | 0.0505 | −0.0739 | −0.0234 | 0.2250 | 0.6838 | 0.8266 | |
RCP | 0.0213 | 0.0135 | 0.0075 | −0.0115 | −0.0041 | 0.2850 | 0.6460 | 0.3492 | |
Al3-Mg2 | 0.0243 | 0.0123 | 0.0088 | −0.0144 | −0.0057 | 0.3090 | 0.6065 | 0.3603 | |
B1-Al3 | 0.0705 | 0.1370 | 0.0628 | −0.0912 | −0.0284 | 0.2320 | 0.6884 | 0.8909 | |
Al4-Mg2 | 0.0243 | 0.0123 | 0.0088 | −0.0144 | −0.0057 | 0.3090 | 0.6065 | 0.3603 | |
2n | B1-Al6 | 0.0611 | 0.1090 | 0.0505 | −0.0738 | −0.0233 | 0.2260 | 0.6839 | 0.8254 |
B1-Al4 | 0.0688 | 0.1250 | 0.0590 | −0.0867 | −0.0277 | 0.2400 | 0.6805 | 0.8583 | |
B1-Al3 | 0.0688 | 0.1250 | 0.0590 | −0.0867 | −0.0277 | 0.2400 | 0.6805 | 0.8583 | |
B1-Al5 | 0.0611 | 0.1090 | 0.0505 | −0.0738 | −0.0233 | 0.2260 | 0.6839 | 0.8254 | |
RCP | 0.0203 | 0.0104 | 0.0056 | −0.0086 | −0.0030 | 0.3840 | 0.6502 | 0.2762 | |
Al4-Mg2 | 0.0273 | 0.0068 | 0.0088 | −0.0159 | −0.0071 | 0.3960 | 0.5536 | 0.3215 | |
Al3-Mg2 | 0.0273 | 0.0068 | 0.0088 | −0.0159 | −0.0071 | 0.3960 | 0.5536 | 0.3215 | |
1c | B1-Al4 | 0.0677 | 0.1040 | 0.0541 | −0.0821 | −0.0281 | 0.2630 | 0.6584 | 0.7985 |
B1-Al3 | 0.0677 | 0.1040 | 0.0541 | −0.0821 | −0.0281 | 0.2630 | 0.6584 | 0.7985 | |
B1-Al6 | 0.0633 | 0.1090 | 0.0521 | −0.0770 | −0.0249 | 0.2350 | 0.6771 | 0.8231 | |
B1-Al5 | 0.0633 | 0.1090 | 0.0521 | −0.0770 | −0.0249 | 0.2350 | 0.6771 | 0.8231 | |
RCP | 0.0197 | 0.0186 | 0.0069 | −0.0092 | −0.0023 | 0.2600 | 0.7533 | 0.3527 | |
Al4-Mg2 | 0.0289 | 0.0076 | 0.0095 | −0.0172 | −0.0077 | 0.4010 | 0.5550 | 0.3303 | |
Al3-Mg2 | 0.0289 | 0.0076 | 0.0095 | −0.0172 | −0.0077 | 0.4010 | 0.5550 | 0.3303 | |
2a | B1-Al3 | 0.0689 | 0.1130 | 0.0570 | −0.0857 | −0.0287 | 0.2540 | 0.6651 | 0.8276 |
B1-Al4 | 0.0689 | 0.1130 | 0.0570 | −0.0857 | −0.0287 | 0.2540 | 0.6651 | 0.8276 | |
B1-Al5 | 0.0625 | 0.1130 | 0.0526 | −0.0769 | −0.0243 | 0.2240 | 0.6841 | 0.8417 | |
B1-Al6 | 0.0625 | 0.1130 | 0.0526 | −0.0769 | −0.0243 | 0.2240 | 0.6841 | 0.8417 | |
B1-Mg2 | 0.0296 | 0.0557 | 0.0189 | −0.0239 | −0.0050 | 0.1550 | 0.7918 | 0.6395 | |
1n | B1-Al4 | 0.0653 | 0.1100 | 0.0538 | −0.0802 | −0.0264 | 0.2430 | 0.6708 | 0.8231 |
B1-Al3 | 0.0653 | 0.1100 | 0.0538 | −0.0802 | −0.0264 | 0.2430 | 0.6708 | 0.8231 | |
B1-Mg2 | 0.0336 | 0.0765 | 0.0248 | −0.0305 | −0.0057 | 0.1460 | 0.8137 | 0.7381 | |
B1-Al6 | 0.0585 | 0.0997 | 0.0472 | −0.0695 | −0.0223 | 0.2250 | 0.6791 | 0.8078 | |
B1-Al5 | 0.0585 | 0.0997 | 0.0472 | −0.0695 | −0.0223 | 0.2250 | 0.6791 | 0.8078 | |
3c | B1-Al5 | 0.0541 | 0.0513 | 0.0343 | −0.0558 | −0.0215 | 0.2960 | 0.6149 | 0.6339 |
B1-Al6 | 0.0541 | 0.0513 | 0.0343 | −0.0558 | −0.0215 | 0.2960 | 0.6149 | 0.6339 | |
B1-Mg2 | 0.0346 | 0.0739 | 0.0247 | −0.0309 | −0.0062 | 0.1540 | 0.7985 | 0.7135 | |
B1-Al4 | 0.0649 | 0.1240 | 0.0564 | −0.0817 | −0.0254 | 0.2220 | 0.6895 | 0.8681 | |
B1-Al3 | 0.0649 | 0.1240 | 0.0564 | −0.0817 | −0.0254 | 0.2220 | 0.6895 | 0.8681 | |
RCP | 0.0378 | 0.0184 | 0.0137 | −0.0229 | −0.0091 | 0.4410 | 0.6006 | 0.3636 | |
Al6-Al5 | 0.0428 | −0.0327 | 0.0061 | −0.0204 | −0.0143 | 0.8580 | 0.2999 | 0.1429 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khatun, M.; Roy, S.; Giri, S.; CH, S.S.R.; Anoop, A.; Thimmakondu, V.S. BAl4Mg−/0/+: Global Minima with a Planar Tetracoordinate or Hypercoordinate Boron Atom. Atoms 2021, 9, 89. https://doi.org/10.3390/atoms9040089
Khatun M, Roy S, Giri S, CH SSR, Anoop A, Thimmakondu VS. BAl4Mg−/0/+: Global Minima with a Planar Tetracoordinate or Hypercoordinate Boron Atom. Atoms. 2021; 9(4):89. https://doi.org/10.3390/atoms9040089
Chicago/Turabian StyleKhatun, Maya, Saikat Roy, Sandip Giri, Sasanka Sankhar Reddy CH, Anakuthil Anoop, and Venkatesan S. Thimmakondu. 2021. "BAl4Mg−/0/+: Global Minima with a Planar Tetracoordinate or Hypercoordinate Boron Atom" Atoms 9, no. 4: 89. https://doi.org/10.3390/atoms9040089
APA StyleKhatun, M., Roy, S., Giri, S., CH, S. S. R., Anoop, A., & Thimmakondu, V. S. (2021). BAl4Mg−/0/+: Global Minima with a Planar Tetracoordinate or Hypercoordinate Boron Atom. Atoms, 9(4), 89. https://doi.org/10.3390/atoms9040089