Elastic Scattering of Slow Electrons by Noble Gases—The Effective Range Theory and the Rigid Sphere Model
Abstract
:1. Introduction
2. Theoretical Models
2.1. Modified Effective Range Theory
2.2. Rigid Sphere Approach
3. Results
3.1. MERT
3.1.1. Helium
3.1.2. Neon
3.1.3. Argon
3.1.4. Krypton
3.1.5. Xenon
3.1.6. MERT Parameters
3.2. Rigid Sphere Model
4. Summary
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MCMC−MERT | Markov Chain Monte Carlo−Modified Effective Range Analysis |
TCS | Total Cross−Sections |
MTCS | Momentum Transfer Cross−Sections |
DCS | Differential Cross−Sections |
Probability Density Function | |
He | Helium |
Ne | Neon |
Ar | Argon |
Kr | Krypton |
Xe | Xenon |
References
- Zecca, A.; Karwasz, G.P.; Brusa, R.S. One century of experiments on electron-atom and molecule scattering: A critical review of integral cross-sections. Rev. Nuovo Cim. 1996, 19, 3. [Google Scholar] [CrossRef]
- Szmytkowski, C.; Możejko, P. Recent total cross section measurements in electron scattering from molecules. Eur. Phys. J. D 2020, 74, 90. [Google Scholar]
- Zatsarinny, O.; Bartschat, K. B-spline Breit–Pauli R-matrix calculations for electron collisions with neon atoms. J. Phys. B 2004, 37, 2173. [Google Scholar] [CrossRef]
- Zatsarinny, O.; Bartschat, K. B-spline Breit–Pauli R-matrix calculations for electron collisions with argon atoms. J. Phys. B 2004, 37, 4693. [Google Scholar] [CrossRef]
- Godyak, A.; Piejak, R.B. Abnormally low electron energy and heating-mode transition in a low-pressure argon rf discharge at 13.56 MHz. Phys. Rev. Lett. 1990, 65, 996. [Google Scholar] [CrossRef]
- Song, M.-Y.; Yoon, J.-S.; Cho, H.; Itikawa, Y.; Karwasz, G.P.; Kokoouline, V.; Nakamura, Y.; Tennyson, J. Cross Sections for Electron Collisions with Methane. J. Phys. Chem. Ref. Data 2017, 44, 023101. [Google Scholar] [CrossRef] [Green Version]
- Song, M.-Y.; Yoon, J.-S.; Cho, H.; Itikawa, Y.; Karwasz, G.P.; Kokoouline, V.; Nakamura, Y.; Tennyson, J. Cross Sections for Electron Collisions with Acetylene. J. Phys. Chem. Ref. Data 2017, 46, 013106. [Google Scholar] [CrossRef] [Green Version]
- Bethe, H.A. Theory of the Effective Range in Nuclear Scattering. Phys. Rev. 1949, 76, 38. [Google Scholar] [CrossRef]
- Blatt, J.M.; Jackson, J.D. On the interpretation of neutron-proton scattering data by the Schwinger Variational Method. Phys. Rev. 1949, 26, 18. [Google Scholar] [CrossRef]
- O’Malley, T.F.; Spruch, L.; Rosenberg, L. Modification of EffectiveRange Theory in the Presence of a Long-Range (r-4) Potential. J. Math. Phys. 1961, 2, 491. [Google Scholar] [CrossRef]
- Malley, T.F.O.; Spruch, L.; Rosenberg, L. Low-Energy Scattering of a Charged Particle by a Neutral Polarizable System. Phys. Rev. 1962, 125, 1300. [Google Scholar] [CrossRef]
- O’Malley, T.F. Extrapolation of Electron—Rare Gas Atom Cross Sections to Zero Energy. Phys. Rev. 1963, 130, 1020. [Google Scholar] [CrossRef]
- Mann, A.; Linder, F. Low-energy electron scattering from halomethanes. I. Elastic differential cross section for e-CF4 scattering. J. Phys. B At. Mol. Opt. Phys. 1992, 25, 533. [Google Scholar] [CrossRef]
- Lunt, S.L.; Randell, J.; Ziesel, J.-P.; Mrotzek, G.; Field, D. Very low energy electron scattering in some hydrocarbons and perfluorocarbons. J. Phys. B At. Mol. Opt. Phys. 1998, 31, 4225. [Google Scholar] [CrossRef]
- Ferch, J.; Granitza, B.; Masche, C.; Raith, W. Electron-argon total cross section measurements at low energies by time-of-flight spectroscopy. J. Phys. B 1985, 18, 967. [Google Scholar] [CrossRef]
- Karwasz, G.P.; Karbowski, A.; Idziaszek, Z.; Brusa, R.S. Total cross sections for positron scattering on benzene—Angular resolution corrections. Nucl. Instrum. Methods Phys. Res. Sect. B 2008, 266, 471. [Google Scholar] [CrossRef]
- Kitajima, M.; Kurokawa, M.; Kishino, T.; Toyoshima, K.; Odagiri, T.; Kato, H.; Anzai, K.; Hoshino, M.; Tanaka, H.; Ito, K. Ultra-low-energy electron scattering cross section measurements of Ar, Kr and Xe employing the threshold photoelectron source. Eur. Phys. J. D 2012, 66, 130. [Google Scholar] [CrossRef]
- Cheng, Y.; Tang, L.Y.; Mitroy, J.; Safronova, M.S. All-order relativistic many-body theory of low-energy electron-atom scattering. Phys. Rev. A 2014, 89, 012701. [Google Scholar] [CrossRef] [Green Version]
- Green, D.; Ludlow, J.A.; Gribakin, G.A. Positron scattering and annihilation on noble-gas atoms. Phys. Rev. A 2014, 90, 032712. [Google Scholar] [CrossRef] [Green Version]
- Buckman, S.J.; Mitroy, J. Analysis of low-energy electron scattering cross sections via effective-range theory. J. Phys. B At. Mol. Phys. 1989, 22, 1365. [Google Scholar] [CrossRef]
- Idziaszek, Z.; Karwasz, G.P. Applicability of modified effective-range theory to positron-atom and positron-molecule scattering. Phys. Rev. A 2006, 73, 064701. [Google Scholar] [CrossRef] [Green Version]
- Fedus, K.; Karwasz, G.P.; Idziaszek, Z. An analytic approach to modified effective range theory for electron and positron elastic scattering. Phys. Rev. A 2013, 88, 012704. [Google Scholar] [CrossRef]
- Fedus, K. Modified effective range analysis of electron scattering from krypton. Phys. Scr. 2014, 89, 105401. [Google Scholar] [CrossRef]
- Fedus, K. Electron Scattering from Neon Via Effective Range Theory. Braz. J. Phys. 2014, 44, 622. [Google Scholar] [CrossRef] [Green Version]
- Fedus, K. Markov Chain Monte Carlo Effective Range Analysis of Low-Energy Electron Elastic Scattering from Xenon. Braz. J. Phys. 2016, 46, 1. [Google Scholar] [CrossRef] [Green Version]
- Lun, D.R.; Amos, K.; Allen, L.J. Inversion of total and differential cross-section data for electron-methane scattering. Phys. Rev. A 1996, 53, 831. [Google Scholar] [CrossRef]
- Fedus, K. A rigid sphere approach to positron elastic scattering by noble gases, molecular hydrogen, nitrogen and methane. Eur. Phys. J. D 2016, 70, 261. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.K.; Fraser, P.A. The contribution of long-range forces to low-energy phaseshifts. J. Phys. B At. Mol. Phys. 1977, 10, 3091. [Google Scholar] [CrossRef]
- Szmytkowski, R. Analytical calculations of scattering lengths in atomic physics. J. Phys. A: Math. Gen. 1995, 28, 7333. [Google Scholar] [CrossRef]
- Gregory, P. Bayesian Logical Data Analysis for the Physical Sciences; Cambridge University Press: New York, NY, USA, 2005. [Google Scholar]
- Fedus, K.; Franz, J.; Karwasz, G.P. Positron scattering on molecular hydrogen: Analysis of experimental and theoretical uncertainties. Phys. Rev. A 2015, 91, 062701. [Google Scholar] [CrossRef] [Green Version]
- Laine, M. MCMC toolbox for Matlab. Available online: https://mjlaine.github.io/mcmcstat/ (accessed on 15 June 2021).
- Haario, H.; Laine, M.; Mira, A.; Saksman, E. DRAM: Efficient adaptive MCMC. Stat. Comput. 2006, 16, 339. [Google Scholar] [CrossRef]
- Buckman, S.J.; Lohmann, B. Low-energy total cross section measurements for electron scattering from helium and argon. J. Phys. B At. Mol. Phys. 1986, 19, 2547. [Google Scholar] [CrossRef]
- Szmytkowski, C.; Maciag, K.; Karwasz, G. Absolute electron-scattering total cross section measurements for noble gas atoms and diatomic molecules. Phys. Scipta 1996, 54, 271. [Google Scholar] [CrossRef] [Green Version]
- Shigemura, K.; Kitajima, M.; Kurokawa, M.; Toyoshima, K.; Odagiri, T.; Suga, A.; Kato, H.; Hoshino, M.; Tanaka, H.; Ito, K. Total cross sections for electron scattering from He and Ne at very low energies. Phys. Rev. A 2014, 89, 022709. [Google Scholar] [CrossRef]
- Fortran Program, MAGBOLTZ 8.9, S.F. Biagi, Sept 2011 (from LXcat database). Available online: https://nl.lxcat.net/home/ (accessed on 1 August 2021).
- Alves, L.L. The IST-Lisbon database on LXCat. J. Phys. Conf. Ser. 2014, 565, 1. [Google Scholar] [CrossRef]
- Cross-Sections Assembled over the Course of 30 Years by WL Morgan—Suitable for Use with 2-Term Boltzmann Solvers. Available online: www.lxcat.net/Morgan (accessed on 1 August 2021).
- Olney, T.N.; Cann, N.M.; Cooper, G.; Brion, C.E. Absolute scale determination for photoabsorption spectra and the calculation of molecular properties using dipole sum-rules. Chem. Phys. 1997, 223, 59. [Google Scholar] [CrossRef]
- Brunger, M.J.; Buckman, S.J.; Allen, L.J.; McCarthy, I.E.; Ratnavelu, K. Elastic electron scattering from helium: Absolute experimental cross sections, theory and derived interaction potentials. J. Phys. B 1992, 25, 1823. [Google Scholar] [CrossRef]
- Andrick, D.; Bitsch, A. Experimental investigation and phase shift analysis of low-energy electron-helium scattering. J. Phys. B 1975, 8, 393. [Google Scholar] [CrossRef]
- Register, D.F.; Trajmar, S.; Srivastava, S.K. Absolute elastic differential electron scattering cross sections for He: A proposed calibration standard from 5 to 200 eV. Phys. Rev. A 1980, 21, 1134. [Google Scholar] [CrossRef]
- Shyn, T.W. Angular distribution of electrons elastically scattered from gases: 2–400 eV on He. Phys. Rev. A 1980, 22, 916. [Google Scholar] [CrossRef]
- Puech, V.; Mizzi, S. Collision cross sections and transport parameters in neon and xenon. J. Phys. D: Appl. Phys. 1991, 24, 1974. [Google Scholar] [CrossRef]
- Meunier, J.; Belenguer, P.; Boeuf, J.P. Numerical model of an ac plasma display panel cell in neon-xenon mixtures. J. Appl. Phys. 1995, 78, 1995. [Google Scholar] [CrossRef]
- Robertson, A.G. The momentum transfer cross section for low energy electrons in neon. J. Phys. B Atom. Mol. Phys. 1972, 5, 648. [Google Scholar] [CrossRef]
- Shi, X.; Burrow, P.D. Differential scattering cross sections of neon at low electron energies. J. Phys. B At. Mol. Phys. 1992, 25, 4273. [Google Scholar] [CrossRef]
- Linert, I.; Mielewska, B.; King, G.C.; Zubek, M. Elastic electron scattering in neon in the 110∘–180∘ scattering angle range. Phys. Rev. A 2006, 74, 042701. [Google Scholar] [CrossRef]
- Cho, H.; McEachran, R.P.; Buckman, S.J.; Tanaka, H. Elastic electron scattering from neon at backward angles. Phys. Rev. A 2008, 78, 034702. [Google Scholar] [CrossRef] [Green Version]
- Gulley, R.J.; Alle, D.T.; Brennan, M.J.; Brunger, M.J.; Buckman, S.J. Differential and total electron scattering from neon at low incident energies. J. Phys. B At. Mol. Phys. 1994, 27, 2593. [Google Scholar] [CrossRef]
- Kurokawa, M.; Kitajima, M.; Toyoshima, K.; Kishino, T.; Odagiri, T.; Kato, H.; Hoshino, M.; Tanaka, H.; Ito, K. High-resolution total-cross-section measurements for electron scattering from Ar, Kr, and Xe employing a threshold-photoelectron source. Phys. Rev. A 2011, 84, 062717. [Google Scholar] [CrossRef]
- Hayashi, M. Bibliography of Electron and Photon Cross Sections with Atoms and Molecules Published in the 20th Century— Argon, Report. NIFS-DAT-72 of the National Institute for Fusion Science of Japan, Report NIFS-DATA-79; Japan National Institute for Fusion Science, Oroshicho, Toki, Gifu, Japan, 2003. 2003. Available online: http://www.nifs.ac.jp/report/nifs-data072.html (accessed on 1 August 2021).
- Gibson, J.C.; Gulley, R.J.; Sullivan, J.P.; Buckman, S.J.; Chan, V.; Burrow, P.D. Elastic electron scattering from argon at low incident energies. J. Phys. B 1996, 29, 3177. [Google Scholar] [CrossRef]
- Weyhreter, M.; Barzick, B.; Mann, A.; Linder, F. Measurements of differential cross sections for e-Ar, Kr, Xe scattering at E=0.05-2 eV. Z. Phys. D 1988, 7, 333. [Google Scholar] [CrossRef]
- Cho, H.; Park, Y.S. Low-energy Electron Scattering from Argon. J. Korean Phys. Soc. 2009, 55, 459. [Google Scholar] [CrossRef]
- Srivastava, S.K.; Tanaka, H.; Chutjian, A.; Trajmar, S. Elastic scattering ofintermediate-energy electrons by Ar and Kr. Phys. Rev. A 1981, 23, 2156. [Google Scholar] [CrossRef]
- Mielewska, B.; Linert, I.; King, G.C.; Zubek, M. Differential cross sections for elastic electron scattering in argon over the angular range 130∘–180∘. Phys. Rev. A 2004, 69, 062716. [Google Scholar] [CrossRef]
- Buckman, S.J.; Lohmann, B. The total cross section for low-energy electron scattering from krypton. J. Phys. B 1987, 20, 5807. [Google Scholar] [CrossRef]
- Ferch, J.; Simon, F.; Strakeljahn, G. Abstracts of Contributed Papers. In Proceedings of the 15th International Conference on the Physics of Electronic and Atomic Collisions, Brighton, UK, 22–28 July 1987; Geddes, J., Gilbody, H.B., Kingston, A.E., Latimer, C.J., Walters, H.J.R., Eds.; North-Holland: Amsterdam, The Netherlands, 1987; p. 132. [Google Scholar]
- Jost, K.; Bisling, P.G.F.; Eschen, F.; Felsmann, M.; Walther, L. Abstracts of Contributed Papers. In Proceedings of the 13th International Conference on the Physics of Electronic and Atomic Collisions, Berlin, Germany, 27 July–2 August 1983; Geddes, J., Gilbody, H.B., Kingston, A.E., Latimer, C.J., Walters, H.J.R., Eds.; North-Holland: Amsterdam, The Netherlands, 1983; p. 91. [Google Scholar]
- Koizumi, T.; Shirakawa, E.; Ogawa, I. Momentum transfer cross sections for low-energy electrons in krypton and xenon from characteristic energies. J. Phys. B 1986, 19, 2331. [Google Scholar] [CrossRef]
- England, J.P.; Elford, M.T. Momentum Transfer Cross Section for Electrons in Krypton Derived from Measurements of the Drift Velocity in H2-Kr Mixtures. Aust. J. Phys. 1988, 41, 701. [Google Scholar] [CrossRef] [Green Version]
- Hunter, S.R.; Carter, J.G.; Christophorou, L.G. Low-energy electron drift and scattering in krypton and xenon. Phys. Rev. A 1988, 38, 5539. [Google Scholar] [CrossRef]
- Mitroy, J. The Momentum Transfer Cross Section for Krypton. Aust. J. Phys. 1990, 43, 19. [Google Scholar] [CrossRef]
- Pack, J.L.; Voshall, R.E.; Phelps, A.V.; Kline, L.E. Longitudinal electron diffusion coefficients in gases: Noble gases. J. Appl. Phys. 1992, 71, 5363. [Google Scholar] [CrossRef]
- Brennan, M.J.; Ness, K.F. Momentum Transfer Cross Section for e-Kr Scattering. Austr. J. Phys. 1993, 46, 249. [Google Scholar] [CrossRef] [Green Version]
- Zatsarinny, O.; Bartschat, K.; Allan, M. High-resolution experiments and B-spline R-matrix calculations for elastic electron scattering from krypton. Phys. Rev. A 2011, 83, 032713. [Google Scholar] [CrossRef] [Green Version]
- Danjo, A. Electron scattering from Kr. I. Differential cross section for elastic scattering. J. Phys. B 1988, 21, 3759. [Google Scholar] [CrossRef]
- Linert, I.; Mielewska, B.; King, G.C.; Zubek, M. Elastic electron scattering in krypton in the energy range from 5 to 10 eV. Phys. Rev. A 2010, 81, 012706. [Google Scholar] [CrossRef]
- Cho, H.; Gulley, R.J.; Buckman, S.J. Elastic Electron Scattering from Krypton at Backward Angles. J. Korean Phys. Soc. 2003, 42, 71. [Google Scholar]
- Alle, D.T.; Brennan, M.J.; Buckman, S.J. Abstract. In Proceedings of the 18th International Conference on Physics of Electronic and Atomic Collisions, Aarhus, Denmark, 21–27 July 1993; Andersen, T., Fastrup, B., Folkmann, F., Knudsen, H., Andersen, N., Eds.; American Institute of Physics: New York, NY, USA, 1993; p. 127. [Google Scholar]
- Guskov, Y.; Savvov, R.V.; Slobodyanyuk, V.A. Time-of-flight measurements of the total cross-section for elastic scattering of low-energy electrons (E = 0.025–1.0 eV) by He, Ne, Ar, Kr and Xe. Sov. Phys. Tech. Phys. 1978, 23, 167. [Google Scholar]
- Schmidt, B.; Berkhan, K.; Götz, B.; Müller, M. New experimental techniques in the study of electron swarms in gases and their impact on the determination of low energy electron scattering cross sections. Phys. Scr. 1994, 53, 30. [Google Scholar] [CrossRef]
- Hayashi, M. Bibliography of Electron and Photon Cross Sections with Atoms and Molecules Published in the 20th Century—Xenon. In Research Report NIFS-DATA Series; Report NIFS-DATA-79; Japan National Institute for Fusion Science: Tokio, Japan, 2003. [Google Scholar]
- Register, D.F.; Vuskovic, L.; Trajmar, S. Elastic electron scattering cross sections for Xe in the 1–100 eV impact energy region. J. Phys. B At. Mol. Phys. 1986, 19, 1685. [Google Scholar] [CrossRef]
- Gibson, J.C.; Lun, D.R.; Allen, L.J.; McEachran, R.P.; Parcell, L.A.; Buckman, S.J. Low-energy electron scattering from xenon. J. Phys. B At. Mol. Phys. 1998, 31, 3949. [Google Scholar] [CrossRef]
- Linert, I.; Mielewska, B.; King, G.C.; Zubek, M. Differential cross sections for elastic electron scattering in xenon in the energy range from 5 eV to 10 eV. Phys. Rev. A 2007, 76, 032715. [Google Scholar] [CrossRef]
- Reisfeld, G.; Asaf, U. Relation between the electron scattering length and the van der Waals approximation to the equation of state. Phys. Rev. A 1994, 49, 348. [Google Scholar] [CrossRef]
- Szmytkowski, R. Calculation of the electron-scattering lengths for rare-gas atoms. Phys. Rev. A 1995, 51, 853. [Google Scholar] [CrossRef]
- Borghesani, A.F.; Santini, M.; Lamp, P. Excess electron mobility in high-density gas. Phys. Rev. A 1992, 46, 7902. [Google Scholar] [CrossRef]
- Borghesani, A.F.; Santini, M. Electron localization-delocalization transition in high-density neon gas. Phys. Rev. A 1992, 45, 8803. [Google Scholar] [CrossRef]
- Borghesani, A.F. Accurate Electron Drift Mobility Measurements in Moderately Dense Helium Gas at Several Temperatures. Atoms 2021, 9, 52. [Google Scholar] [CrossRef]
- McEachran, R.P.; Stauffer, A.D. Polarisation and exchange effects on elastic scattering of electrons from helium. J. Phys. B At. Mol. Phys. 1983, 16, 255. [Google Scholar] [CrossRef]
- Hudson, E.T.; Bartschat, K.; Scott, M.P.; Burke, P.G.; Burke, V.M. Electron scattering from helium atoms. Phase shifts, resonance parameters and total cross sections. J. Phys. B At. Mol. Phys. 1996, 29, 5513. [Google Scholar] [CrossRef]
- Williams, J.F. A phaseshift analysis of experimental angular distributions of electrons elastically scattered from He, Ne and Ar over the range 0.5 to 20 eV. J. Phys. B At. Mol. Phys. 1979, 12, 265. [Google Scholar] [CrossRef]
- Ferch, J.; Raith, W.; Schröoder, K. Total cross section measurements for electron scattering from molecular hydrogen at very low energies. J. Phys. B At. Mol. Phys. 1980, 13, 1481. [Google Scholar] [CrossRef]
- Garbaty, E.A.; LaBahn, R.W. Scattering of Slow Electrons by Neon and Argon. Phys. Rev. A 1971, 4, 1425. [Google Scholar] [CrossRef]
- O’Malley, T.F.; Crompton, R.W. Electron-neon scattering length and S-wave phaseshifts from drift velocities. J. Phys. B Atom. Mol. Phys. 1980, 13, 3451. [Google Scholar] [CrossRef]
- McEachran, R.P.; Stauffer, A.D. Elastic scattering of electrons from neon and argon. J. Phys. B At. Mol. Phys. 1983, 16, 4023. [Google Scholar] [CrossRef]
- Dasgupta, A.; Bhatia, A.K. Scattering of electrons from neon atoms. Phys. Rev. A 1984, 30, 1241. [Google Scholar] [CrossRef]
- Saha, H.P. Low-energy elastic scattering of electrons from neon atoms. Phys. Rev. A 1989, 39, 5048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferch, J.; Raith, W. University of Bielefeld, Germany, Unpublished work. 1985.
- Kumar, V.; Krishnakumar, E.; Subramanian, K.P. Electron-helium and electron-neon scattering cross sections at low electron energies using a photoelectron source. J. Phys. B At. Mol. Phys. 1987, 20, 2899. [Google Scholar] [CrossRef]
- Guillemaut, C.; Pitts, R.A.; Kukushkin, A.S.; Gunn, J.P.; Bucalossi, J.; Arnoux, G.; Belo, P.; Brezinsek, S.; Brix, M.; Corrigan, G.; et al. Influence of atomic physics on EDGE2D-EIRENE simulations of JET divertor detachment with carbon and beryllium/tungsten plasma-facing components. Nucl. Fusion 2014, 54, 093012. [Google Scholar] [CrossRef]
Data | ||||||||
---|---|---|---|---|---|---|---|---|
Mean | Std | Mean | Std | Mean | Std | Mean | Std | |
TCS (–20 eV) [34] | 1.177 | 0.002 | −0.058 | 0.015 | −139 | 520 | 6 | 501 |
TCS (–20 eV) [35] | 1.174 | 0.003 | 0.085 | 0.017 | −86 | 519 | −95 | 511 |
TCS ( –20 eV) [36] | 1.189 | 0.002 | 0.006 | 0.020 | −90 | 528 | −98 | 511 |
MTCS (–20 eV) [37] | 1.180 | 0.003 | 0.132 | 0.034 | −42 | 488 | −91 | 475 |
MTCS (–20 eV) [38] | 1.183 | 0.005 | 0.088 | 0.037 | 17 | 26 | −10 | 34 |
MTCS (–20 eV) [39] | 1.186 | 0.002 | 0.146 | 0.020 | 34 | 359 | −87 | 440 |
Data | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Std | Mean | Std | Mean | Std | Mean | Std | Mean | Std | Mean | Std | |
TCS (–16 eV) [36] | 0.228 | 0.004 | 3.710 | 1.970 | −0.192 | 0.014 | −0.080 | 0.054 | −1 | 50 | 1 | 50 |
TCS (–16 eV) [35] | 0.225 | 0.007 | 1.955 | 4.18 | −0.192 | 0.013 | −0.042 | 0.030 | 0.228 | 501 | 6 | 501 |
all TCS (–16 eV) [24] | 0.227 | - | 3.697 | - | −0.231 | - | −0.028 | - | 0.001 | - | 0.361 | - |
MTCS (–16 eV) [45] | 0.241 | 0.002 | 3.652 | 0.180 | −0.201 | 0.004 | 0.001 | 0.016 | −0.472 | 40 | 1 | 50 |
MTCS (–16 eV) [39] | 0.228 | 0.003 | 4.674 | 0.162 | −0.225 | 0.007 | −0.063 | 0.023 | −0.455 | 48 | 1 | 49 |
MTCS (–20 eV) [46] | 0.226 | 0.002 | 4.779 | 0.160 | −0.223 | 0.005 | −0.067 | 0.022 | −0.235 | 46 | 0.722 | 48 |
MTCS (–7 eV) [47] | 0.222 | 0.001 | 5.93 | 0.220 | −0.239 | 0.004 | 0.074 | 0.026 | −0.101 | 47 | 2 | 50 |
MTCS (–16 eV) [37] | 0.224 | 0.001 | 3.596 | 0.366 | −0.212 | 0.005 | −0.090 | 0.014 | 0.008 | 0.055 | 0.436 | 0.25 |
Data | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Std | Mean | Std | Mean | Std | Mean | Std | Mean | Std | Mean | Std | |
TCS (–10 eV) [34] | −1.500 | 0.010 | −0.427 | 0.153 | −0.448 | 0.011 | 0.072 | 0.037 | 0.206 | 0.001 | 0.315 | 0.014 |
TCS (–10 eV) [15] | −1.490 | 0.010 | −0.142 | 0.010 | −0.496 | 0.010 | 0.188 | 0.025 | 1.075 | 0.238 | −0.272 | 0.175 |
all TCS (–10 eV) [52] | −1.400 | 0.010 | −0.661 | 0.150 | −0.463 | 0.016 | 0.130 | 0.046 | 0.339 | 0.092 | 0.213 | 0.065 |
MTCS (–10 eV) [37] | −1.460 | 0.010 | 0.101 | 0.167 | −0.437 | 0.005 | −0.198 | 0.054 | 0.069 | 0.022 | 0.425 | 0.012 |
MTCS (–10 eV) [53] | −1.490 | 0.010 | 0.845 | 0.472 | −0.456 | 0.009 | −0.017 | 0.163 | 0.206 | 0.136 | 0.317 | 0.104 |
MTCS (–10 eV) [38] | −1.560 | 0.010 | 1.557 | 0.198 | −0.471 | 0.036 | 0.074 | 0.143 | 1.043 | 0.484 | −0.305 | 0.394 |
MTCS (–10 eV) [39] | −1.490 | 0.010 | 1.189 | 0.044 | −0.451 | 0.007 | 0.077 | 0.028 | 0.699 | 0.065 | −0.063 | 0.054 |
MTCS (–10 eV) [45] | −1.570 | 0.020 | 1.742 | 0.396 | −0.510 | 0.058 | 0.322 | 0.164 | 7.55 | 19.56 | −5.53 | 15.92 |
Data | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Std | Mean | Std | Mean | Std | Mean | Std | Mean | Std | Mean | Std | |
TCS (0.175–10 eV) [59] | −3.280 | 0.010 | −0.509 | 0.068 | −0.552 | 0.010 | 0.054 | 0.026 | 0.267 | 0.011 | 0.466 | 0.118 |
TCS (0.3–10 eV) [61] | −3.380 | 0.030 | 0.929 | 0.077 | −0.664 | 0.012 | 0.121 | 0.027 | 0.249 | 0.019 | 0.503 | 0.026 |
DCS (<10 eV) [23] | −3.480 | - | 0.533 | - | −0.599 | - | 0.125 | - | 0.039 | - | 0.720 | - |
MTCS (0.1–8 eV) [64] | −3.380 | 0.020 | 0.340 | 0.128 | −0.527 | 0.030 | −0.389 | 0.111 | 0.099 | 0.041 | 0.608 | 0.022 |
Data | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Std | Mean | Std | Mean | Std | Mean | Std | Mean | Std | Mean | Std | |
TCS (0.125–10 eV) [60] | −6.510 | 0.050 | −0.136 | 0.163 | −0.690 | 0.048 | 0.023 | 0.040 | 0.220 | 0.035 | 0.593 | 0.040 |
TCS (0.2–10 eV) [61] | −6.870 | 0.011 | −0.484 | 0.376 | −0.670 | 0.082 | 0.232 | 0.057 | 0.170 | 0.083 | 0.663 | 0.071 |
TCS (0.5–10 eV) [35] | −6.750 | 0.500 | 0.462 | 0.526 | −0.630 | 0.127 | 0.023 | 0.074 | 0.290 | 0.100 | 0.644 | 0.095 |
all TCS (0.5–10 eV) [25] | −6.490 | - | 0.097 | - | −0.680 | - | −0.019 | - | 0.200 | - | 0.668 | - |
MTCS (0.001–10 eV) [53] | −6.210 | 0.010 | −0.043 | 0.181 | −0.775 | 0.097 | 0.163 | 0.051 | 0.184 | 0.135 | 0.810 | 0.113 |
Atom | |||
---|---|---|---|
He | 1.407 | 1.181 | 1.50 |
Ne | 2.671 | 0.228 | 1.14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fedus, K. Elastic Scattering of Slow Electrons by Noble Gases—The Effective Range Theory and the Rigid Sphere Model. Atoms 2021, 9, 91. https://doi.org/10.3390/atoms9040091
Fedus K. Elastic Scattering of Slow Electrons by Noble Gases—The Effective Range Theory and the Rigid Sphere Model. Atoms. 2021; 9(4):91. https://doi.org/10.3390/atoms9040091
Chicago/Turabian StyleFedus, Kamil. 2021. "Elastic Scattering of Slow Electrons by Noble Gases—The Effective Range Theory and the Rigid Sphere Model" Atoms 9, no. 4: 91. https://doi.org/10.3390/atoms9040091
APA StyleFedus, K. (2021). Elastic Scattering of Slow Electrons by Noble Gases—The Effective Range Theory and the Rigid Sphere Model. Atoms, 9(4), 91. https://doi.org/10.3390/atoms9040091