Thermal Processing for the Release of Phenolic Compounds from Wheat and Oat Bran
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Ultrasound-Assisted Extraction (UAE)
2.3. Total Phenolic Content Analysis
2.4. HPLC–DAD–ESI–MS Identification of the Phenolic Composition
2.5. DPPH Free Radical Scavenging Capacity
2.6. Antibacterial Activity
2.7. Mutagenic and Antimutagenic Assay
2.8. Statistical Interpretation
3. Results and Discussions
3.1. Evaluation of Total Phenolic Content
3.2. Evaluation of Antioxidant Capacity
3.3. Evaluation of Phenolic Composition by HPLC-DAD-ESI-MS
Changes in Phenolic Composition After the Thermal Process
3.4. Identification of Antibacterial Inhibition
3.5. Identification of Mutagenic and Antimutagenic Capacity
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Deroover, L.; Tie, Y.; Verspreet, J.; Courtin, C.M.; Verbeke, K. Modifying wheat bran to improve its health benefits. Crit. Rev. Food Sci. Nutr. 2019. [Google Scholar] [CrossRef] [PubMed]
- Călinoiu, L.F.; Vodnar, D.C. Whole Grains and Phenolic Acids: A Review on Bioactivity, Functionality, Health Benefits and Bioavailability. Nutrients 2018, 10, 1615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Flour Millers. Available online: http://www.flourmillers.eu/ (accessed on 22 November 2019).
- Nutraceuticals and Natural Product Pharmaceuticals-Google Cărți. Available online: https://books.google.ro/books?hl=ro&lr=&id=_jOnDwAAQBAJ&oi=fnd&pg=PP1&dq=calinoiu+nutraceuticals&ots=twfYzrgtrC&sig=jhOtSShF8QkKfqNdA38ecLZRJ0&redir_esc=y#v=onepage&q=calinoiu%20nutraceuticals&f=false (accessed on 22 November 2019).
- Björck, I.; Östman, E.; Kristensen, M.; Mateo Anson, N.; Price, R.K.; Haenen, G.R.M.M.; Havenaar, R.; Bach Knudsen, K.E.; Frid, A.; Mykkänen, H.; et al. Cereal grains for nutrition and health benefits: Overview of results from in vitro, animal and human studies in the HEALTHGRAIN project. Trends Food Sci. Technol. 2012, 25, 87–100. [Google Scholar] [CrossRef]
- Călinoiu, L.F.; Cătoi, A.-F.; Vodnar, D.C. Solid-State Yeast Fermented Wheat and Oat Bran as A Route for Delivery of Antioxidants. Antioxidants 2019, 8, 372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gangopadhyay, N.; Hossain, M.B.; Rai, D.K.; Brunton, N.P. A Review of Extraction and Analysis of Bioactives in Oat and Barley and Scope for Use of Novel Food Processing Technologies. Molecules 2015, 20, 10884–10909. [Google Scholar] [CrossRef] [PubMed]
- Andersson, A.A.M.; Dimberg, L.; Åman, P.; Landberg, R. Recent findings on certain bioactive components in whole grain wheat and rye. J. Cereal Sci. 2014, 59, 294–311. [Google Scholar] [CrossRef]
- Coman, V.; Teleky, B.-E.; Mitrea, L.; Martău, G.A.; Szabo, K.; Călinoiu, L.-F.; Vodnar, D.C. Bioactive potential of fruit and vegetable wastes. In Advances in Food and Nutrition Research; Toldrá, F., Ed.; Academic Press: Cambridge, MA, USA, 2019; Volume 89, p. 345. [Google Scholar]
- Călinoiu, L.F.; Mitrea, L.; Precup, G.; Bindea, M.; Rusu, B.; Szabo, K.; Dulf, F.V.; Ştefănescu, B.E.; Vodnar, D.C. Sustainable use of agro-industrial wastes for feeding 10 billion people by 2050. In Professionals in Food Chains; Springer, S., Grimm, H., Eds.; Wageningen Academic Publishers: Vienna, Austria, 2018; pp. 482–486. [Google Scholar]
- Szabo, K.; Dulf, F.V.; Diaconeasa, Z.; Vodnar, D.C. Antimicrobial and antioxidant properties of tomato processing byproducts and their correlation with the biochemical composition. LWT 2019, 116, 108558. [Google Scholar] [CrossRef]
- Trif, M.; Vodnar, D.C.; Mitrea, L.; Rusu, A.V.; Socol, C.T. Design and Development of Oleoresins Rich in Carotenoids Coated Microbeads. Coatings 2019, 9, 235. [Google Scholar] [CrossRef] [Green Version]
- Mitrea, L.; Calinoiu, L.-F.; Precup, G.; Bindea, M.; Rusu, B.; Trif, M.; Stefanescu, B.-E.; Pop, I.-D.; Vodnar, D.-C. Isolated Microorganisms for Bioconversion of Biodiesel-Derived Glycerol Into 1,3-Propanediol. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca-Food Sci. Technol. 2017, 74, 43–49. [Google Scholar] [CrossRef] [Green Version]
- Vodnar, D.C.; Venus, J.; Schneider, R.; Socaciu, C. Lactic Acid Production by Lactobacillus paracasei 168 in Discontinuous Fermentation Using Lucerne Green juice as Nutrient Substitute. Chem. Eng. Technol. 2010, 33, 468–474. [Google Scholar] [CrossRef]
- Szabo, K.; Cătoi, A.-F.; Vodnar, D.C. Bioactive Compounds Extracted from Tomato Processing by-Products as a Source of Valuable Nutrients. Plant Foods Hum. Nutr. 2018, 73, 268–277. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Tsao, R.; Yang, R.; Cui, S. Phenolic acid profiles and antioxidant activities of wheat bran extracts and the effect of hydrolysis conditions. Food Chem. 2006, 95, 466–473. [Google Scholar] [CrossRef]
- Coman, V.; Vodnar, D.C. Hydroxycinnamic acids and human health: Recent advances. J. Sci. Food Agric. 2020, 100, 483–499. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-Y.O.; Milbury, P.E.; Collins, F.W.; Blumberg, J.B. Avenanthramides Are Bioavailable and Have Antioxidant Activity in Humans after Acute Consumption of an Enriched Mixture from Oats. J. Nutr. 2007, 137, 1375–1382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laddomada, B.; Caretto, S.; Mita, G. Wheat Bran Phenolic Acids: Bioavailability and Stability in Whole Wheat-Based Foods. Molecules 2015, 20, 15666–15685. [Google Scholar] [CrossRef] [PubMed]
- Vitaglione, P.; Napolitano, A.; Fogliano, V. Cereal dietary fibre: A natural functional ingredient to deliver phenolic compounds into the gut. Trends Food Sci. Technol. 2008, 19, 451–463. [Google Scholar] [CrossRef]
- Zhang, J.; Ding, Y.; Dong, H.; Hou, H.; Zhang, X. Distribution of Phenolic Acids and Antioxidant Activities of Different Bran Fractions from Three Pigmented Wheat Varieties. J. Chem. 2018. [Google Scholar] [CrossRef] [Green Version]
- Verma, B.; Hucl, P.; Chibbar, R.N. Phenolic Content and Antioxidant Properties of Bran in 51 Wheat Cultivars. Cereal Chem. 2008, 85, 544–549. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, R.; Liu, C.; Zheng, X.; Liu, B. Enhancing antioxidant activity and antiproliferation of wheat bran through steam flash explosion. J. Food Sci. Technol. 2016, 53, 3028–3034. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Chen, H.; Li, J.; Pei, Y.; Liang, Y. Antioxidant properties of tartary buckwheat extracts as affected by different thermal processing methods. LWT-Food Sci. Technol. 2010, 43, 181–185. [Google Scholar] [CrossRef]
- Li, W.; Pickard, M.D.; Beta, T. Effect of thermal processing on antioxidant properties of purple wheat bran. Food Chem. 2007, 104, 1080–1086. [Google Scholar] [CrossRef]
- Ragaee, S.; Seethraman, K.; Abdel-Aal, E.-S.M. Effects of Processing on Nutritional and Functional Properties of Cereal Products. In Engineering Aspects of Cereal and Cereal-Based Products; de Pinho Ferreira Guiné, R., dos Reis Correia, P.M., Eds.; CRC Press Taylor & Francis Goup: Boca Raton, FL, USA, 2016; p. 311. [Google Scholar]
- Vodnar, D.C.; Călinoiu, L.F.; Dulf, F.V.; Ştefănescu, B.E.; Crişan, G.; Socaciu, C. Identification of the bioactive compounds and antioxidant, antimutagenic and antimicrobial activities of thermally processed agro-industrial waste. Food Chem. 2017, 231, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Calinoiu, L.-F.; Mitrea, L.; Precup, G.; Bindea, M.; Rusu, B.; Dulf, F.-V.; Stefanescu, B.-E.; Vodnar, D.-C. Characterization of Grape and Apple Peel Wastes’ Bioactive Compounds and Their Increased Bioavailability After Exposure to Thermal Process. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca-Food Sci. Technol. 2017, 74, 80–89. [Google Scholar] [CrossRef] [Green Version]
- Dewanto, V.; Wu, X.; Liu, R.H. Processed Sweet Corn Has Higher Antioxidant Activity. J. Agric. Food Chem. 2002, 50, 4959–4964. [Google Scholar] [CrossRef]
- Ștefănescu, B.E.; Szabo, K.; Mocan, A.; Crişan, G. Phenolic Compounds from Five Ericaceae Species Leaves and Their Related Bioavailability and Health Benefits. Molecules 2019, 24, 2046. [Google Scholar] [CrossRef] [Green Version]
- Pasqualone, A.; Delvecchio, L.N.; Gambacorta, G.; Laddomada, B.; Urso, V.; Mazzaglia, A.; Ruisi, P.; Di, G.M. Effect of Supplementation with Wheat Bran Aqueous Extracts Obtained by Ultrasound-Assisted Technologies on the Sensory Properties and the Antioxidant Activity of Dry Pasta. Nat. Prod. Commun. 2015, 10, 1739–1742. [Google Scholar] [CrossRef] [Green Version]
- Pasqualone, A.; Gambacorta, G.; Summo, C.; Caponio, F.; Di Miceli, G.; Flagella, Z.; Marrese, P.P.; Piro, G.; Perrotta, C.; De Bellis, L.; et al. Functional, textural and sensory properties of dry pasta supplemented with lyophilized tomato matrix or with durum wheat bran extracts produced by supercritical carbon dioxide or ultrasound. Food Chem. 2016, 213, 545–553. [Google Scholar] [CrossRef]
- Calinoiu, L.-F.; Vodnar, D.-C.; Precup, G. The Probiotic Bacteria Viability under Different Conditions. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca-Food Sci. Technol. 2016, 73, 55–60. [Google Scholar] [CrossRef] [Green Version]
- Călinoiu, L.-F.; Ştefănescu, B.E.; Pop, I.D.; Muntean, L.; Vodnar, D.C. Chitosan Coating Applications in Probiotic Microencapsulation. Coatings 2019, 9, 194. [Google Scholar] [CrossRef] [Green Version]
- Martău, G.A.; Mihai, M.; Vodnar, D.C. The Use of Chitosan, Alginate, and Pectin in the Biomedical and Food Sector—Biocompatibility, Bioadhesiveness, and Biodegradability. Polymers 2019, 11, 1837. [Google Scholar] [CrossRef] [Green Version]
- Vasile, C.; Rapa, M.; Stefan, M.; Stan, M.; Macavei, S.; Darie-Nita, R.N.; Barbu-Tudoran, L.; Vodnar, D.C.; Popa, E.E.; Stefan, R.; et al. New PLA/ZnO:Cu/Ag bionanocomposites for food packaging. Express Polym. Lett. 2017, 11, 531–544. [Google Scholar] [CrossRef]
- Vodnar, D.C.; Socaciu, C. Green tea increases the survival yield of Bifidobacteria in simulated gastrointestinal environment and during refrigerated conditions. Chem. Cent. J. 2012, 6, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bryngelsson, S.; Dimberg, L.H.; Kamal-Eldin, A. Effects of Commercial Processing on Levels of Antioxidants in Oats. J. Agric. Food Chem. 2002, 50, 1890–1896. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; He, F.; Chen, G. Improving bioaccessibility and bioavailability of phenolic compounds in cereal grains through processing technologies: A concise review. J. Funct. Foods 2014, 7, 101–111. [Google Scholar] [CrossRef]
- Ma, Y.; Kosińska-Cagnazzo, A.; Kerr, W.L.; Amarowicz, R.; Swanson, R.B.; Pegg, R.B. Separation and characterization of phenolic compounds from dry-blanched peanut skins by liquid chromatography–electrospray ionization mass spectrometry. J. Chromatogr. A 2014, 1356, 64–81. [Google Scholar] [CrossRef]
- Dulf, F.V.; Vodnar, D.C.; Dulf, E.-H.; Toşa, M.I. Total Phenolic Contents, Antioxidant Activities, and Lipid Fractions from Berry Pomaces Obtained by Solid-State Fermentation of Two Sambucus Species with Aspergillus niger. J. Agric. Food Chem. 2015, 63, 3489–3500. [Google Scholar] [CrossRef]
- Dulf, F.V.; Vodnar, D.C.; Socaciu, C. Effects of solid-state fermentation with two filamentous fungi on the total phenolic contents, flavonoids, antioxidant activities and lipid fractions of plum fruit (Prunus domestica L.) byproducts. Food Chem. 2016, 209, 27–36. [Google Scholar] [CrossRef]
- Dezsi, Ș.; Bădărău, A.S.; Bischin, C.; Vodnar, D.C.; Silaghi-Dumitrescu, R.; Gheldiu, A.-M.; Mocan, A.; Vlase, L. Antimicrobial and antioxidant activities and phenolic profile of Eucalyptus globulus Labill. and Corymbia ficifolia (F. Muell.) K.D. Hill & L.A.S. Johnson leaves. Mol. Basel Switz. 2015, 20, 4720–4734. [Google Scholar]
- Toma, C.-C.; Olah, N.-K.; Vlase, L.; Mogoșan, C.; Mocan, A. Comparative Studies on Polyphenolic Composition, Antioxidant and Diuretic Effects of Nigella sativa L. (Black Cumin) and Nigella damascena L. (Lady-in-a-Mist) Seeds. Mol. Basel Switz. 2015, 20, 9560–9574. [Google Scholar] [CrossRef] [Green Version]
- Maron, D.M.; Ames, B.N. Revised methods for the Salmonella mutagenicity test. Mutat. Res. 1983, 113, 173–215. [Google Scholar] [CrossRef]
- Saraç, N.; Şen, B. Antioxidant, mutagenic, antimutagenic activities, and phenolic compounds of Liquidambar orientalis Mill. var. orientalis. Ind. Crop. Prod. 2014, 53, 60–64. [Google Scholar] [CrossRef]
- Ong, T.M.; Whong, W.Z.; Stewart, J.; Brockman, H.E. Chlorophyllin: A potent antimutagen against environmental and dietary complex mixtures. Mutat. Res. 1986, 173, 111–115. [Google Scholar] [CrossRef]
- Evandri, M.G.; Battinelli, L.; Daniele, C.; Mastrangelo, S.; Bolle, P.; Mazzanti, G. The antimutagenic activity of Lavandula angustifolia (lavender) essential oil in the bacterial reverse mutation assay. Food Chem. Toxicol. 2005, 43, 1381–1387. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Sun, B.; Cao, Y.; Tian, Y.; Li, X. Optimisation of ultrasound-assisted extraction of phenolic compounds from wheat bran. Food Chem. 2008, 106, 804–810. [Google Scholar] [CrossRef]
- Sharanappa, T.; Chetana, R.; Suresh Kumar, G. Evaluation of genotypic wheat bran varieties for nutraceutical compounds. J. Food Sci. Technol. 2016, 53, 4316–4324. [Google Scholar] [CrossRef] [Green Version]
- Brindzová, L.; Zalibera, M.; Jakubík, T.; Mikulášová, M.; Takácsová, M.; Mošovská, S.; Rapta, P. Antimutagenic and Radical Scavenging Activity of Wheat Bran. Cereal Res. Commun. 2009, 37, 45–55. [Google Scholar] [CrossRef]
- Chandrasekara, A.; Naczk, M.; Shahidi, F. Effect of processing on the antioxidant activity of millet grains. Food Chem. 2012, 133, 1–9. [Google Scholar] [CrossRef]
- Dai, J.; Mumper, R.J. Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Mol. Basel Switz. 2010, 15, 7313–7352. [Google Scholar] [CrossRef]
- Norton, T.; Sun, D.-W. Recent Advances in the Use of High Pressure as an Effective Processing Technique in the Food Industry. Food Bioprocess. Technol. 2008, 1, 2–34. [Google Scholar] [CrossRef]
- Hostetler, G.L.; Ralston, R.A.; Schwartz, S.J. Flavones: Food Sources, Bioavailability, Metabolism, and Bioactivity12. Adv. Nutr. 2017, 8, 423–435. [Google Scholar] [CrossRef] [Green Version]
- Adom, K.K.; Sorrells, M.E.; Liu, R.H. Phytochemicals and Antioxidant Activity of Milled Fractions of Different Wheat Varieties. J. Agric. Food Chem. 2005, 53, 2297–2306. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.L. Wheat Antioxidants; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Cheng, Z.; Su, L.; Moore, J.; Zhou, K.; Luther, M.; Yin, J.-J.; Yu, L. (Lucy) Effects of Postharvest Treatment and Heat Stress on Availability of Wheat Antioxidants. J. Agric. Food Chem. 2006, 54, 5623–5629. [Google Scholar] [CrossRef] [PubMed]
- Ragaee, S.; Seetharaman, K.; Abdel-Aal, E.-S.M. The impact of milling and thermal processing on phenolic compounds in cereal grains. Crit. Rev. Food Sci. Nutr. 2014, 54, 837–849. [Google Scholar] [CrossRef] [PubMed]
- Daniels, D.G.H.; Martin, H.F. Antioxidants in oats: Glyceryl esters of caffeic and ferulic acids. J. Sci. Food Agric. 1968, 19, 710–712. [Google Scholar] [CrossRef]
- Cai, S.; Wang, O.; Wu, W.; Zhu, S.; Zhou, F.; Ji, B.; Gao, F.; Zhang, D.; Liu, J.; Cheng, Q. Comparative Study of the Effects of Solid-State Fermentation with Three Filamentous Fungi on the Total Phenolics Content (TPC), Flavonoids, and Antioxidant Activities of Subfractions from Oats (Avena sativa L.). J. Agric. Food Chem. 2012, 60, 507–513. [Google Scholar] [CrossRef]
- Durkee, A.B.; Thivierge, P.A. Ferulic Acid And Other Phenolics In Oat Seeds (Avena sativa L. Var Hinoat). J. Food Sci. 1977, 42, 551–552. [Google Scholar] [CrossRef]
- Shewry, P.R.; Piironen, V.; Lampi, A.-M.; Nyström, L.; Li, L.; Rakszegi, M.; Fraś, A.; Boros, D.; Gebruers, K.; Courtin, C.M.; et al. Phytochemical and Fiber Components in Oat Varieties in the HEALTHGRAIN Diversity Screen. J. Agric. Food Chem. 2008, 56, 9777–9784. [Google Scholar] [CrossRef]
- Dimberg, L.H.; Sunnerheim, K.; Sundberg, B.; Walsh, K. Stability of Oat Avenanthramides. Cereal Chem. 2001, 78, 278–281. [Google Scholar] [CrossRef]
- Thermal Decomposition of Ferulic Acid. Available online: https://pubs.acs.org/doi/pdf/10.1021/jf60153a003 (accessed on 22 November 2019).
- Brindzová, L.; Mikulášová, M.; Takácsová, M.; Mošovská, S.; Opattová, A. Evaluation of the mutagenicity and antimutagenicity of extracts from oat, buckwheat and wheat bran in the Salmonella/microsome assay. J. Food Compos. Anal. 2009, 22, 87–90. [Google Scholar] [CrossRef]
- Birošová, L.; Mikulášová, M.; Vaverková, S. Antimutagenic effect of phenolic acids-Google Academic Biomed. Pap Med Fac Univ Palacky Olomouc Czech Repub. 2005, 149, 489–491. [Google Scholar]
- Wu, S.-C.; Yen, G.-C.; Wang, B.-S.; Chiu, C.-K.; Yen, W.-J.; Chang, L.-W.; Duh, P.-D. Antimutagenic and antimicrobial activities of pu-erh tea. LWT-Food Sci. Technol. 2007, 40, 506–512. [Google Scholar] [CrossRef]
Sample | Peak No. | Retention Time (min) | [M + H]+ (m/z) | UV λmax (nm) | Compound | Class/Subclass |
---|---|---|---|---|---|---|
WB | 1 | 2.94 | 156 | 250 | Dihydroxybenzoic acids | Hydroxybenzoic acid |
2 | 13.51 | 181,163 | 320 | Caffeic acid | Hydroxycinnamic acid | |
3 | 13.89 | 169 | 255, 300 | Vanillic acid | Hydroxybenzoic acid | |
4 | 14.31 | 433 | 272, 340 | Apigenin-glucoside | Flavone | |
5 | 15.78 | 165 | 319 | p-Coumaric acid | Hydroxycinnamic acid | |
6 | 16.85 | 225 | 321 | Sinapic acid | ||
7 | 17.12 | 195 | 322 | Ferulic acid | ||
OB | 1 | 2.94 | 156 | 250 | Dihydroxybenzoic acids | Hydroxybenzoic acid |
2 | 13.51 | 181, 163 | 320 | Caffeic acid | Hydroxycinnamic acid | |
3 | 13.89 | 169 | 255, 300 | Vanillic acid | Hydroxybenzoic acid | |
4 | 15.78 | 165 | 319 | p-Coumaric acid | Hydroxycinnamic acid | |
5 | 16.85 | 225 | 321 | Sinapic acid | ||
6 | 17.12 | 195 | 322 | Ferulic acid | ||
7 | 17.97 | 316 | 330 | Avenanthramide 2c | ||
8 | 19.81 | 300 | 330 | Avenanthramide 2p | ||
9 | 20.37 | 330 | 330 | Avenanthramide 2f |
Sample | di-OH Benzoic Acid | Caffeic Acid | Vanillic Acid | Apigenin–Glucoside | p-Coumaric Acid | Sinapic Acid | Ferulic Acid |
---|---|---|---|---|---|---|---|
WBF | 62.15 ± 0.20 b | 12.37 ± 0.05 b | 15.73 ± 0.07 b | 20.40 ± 0.11 b | 8.65 ± 0.02 b | 14.18 ± 0.08 b | 22.56 ± 0.13b |
WBTP | 81.75 ± 1.07 a | 20.81 ± 0.12 b | 30.788 ± 0.19 a | 35.09 ± 0.21 a | 14.88 ± 0.09 a | 21.23 ± 0.13 a | 31.41 ± 0.33 a |
Sample | di-OH Benzoic Acid | Caffeic Acid | Vanilic Acid | p-Coumaric Acid | Sinapic Acid | Ferulic Acid | Avenantr. 2c | Avenantr. 2p | Avenantr. 2f |
---|---|---|---|---|---|---|---|---|---|
OBF | 55.00 ± 1.02 b | 8.61 ± 0.03 b | 10.18 ± 0.06 b | 2.58 ± 0.03 b | 4.67 ± 0.0 b | 4.59 ± 0.03 b | 4.14 ±0.05 b | 7.04 ± 0.02 b | 7.85 ±0.09 b |
OBTP | 76.2 ± 1.14 a | 22.8 ± 0.19 a | 12.48 ± 0.05 a | 3 ± 0.03 a | 5.28 ± 0.04 a | 4.86 ± 0.02 a | 6.3 ±0.07a | 8.69 ± 0.09 a | 9.16 ± 0.07 a |
Test Items | Gram (+) | Gram (−) | ||||
---|---|---|---|---|---|---|
S. aureus | E. faecalis | P. aeruginosa | E. coli | S. thyphimurium | ||
mg/ML | ||||||
WBF | MIC | 15 | 3.75 | 7.5 | 15 | 15 |
WBTP | MIC | 3.75 | 1.875 | 3.75 | 3.75 | 7.5 |
OBF | MIC | 3.75 | 7.5 | 15 | 30 | 15 |
OBTP | MIC | 0.9375 | 3.75 | 7.5 | 15 | 7.5 |
Streptomycin µg/mL | MIC | 0.015 | 0.12 | 0.06 | 0.06 | 0.015 |
Sample | Number of Revertants | |||
---|---|---|---|---|
TA 98 | TA100 | |||
Mean ± SD | Inhibition % | Mean ± SD | Inhibition % | |
Negative Control | 9.45 ± 3.5 a | 9.45 ± 1.4 a | ||
WBF | 134 ± 4.7 | 31.28 | 174 ± 5.9 | 50.56 |
WBTP | 121 ± 3.1 | 37.95 | 145 ± 5.2 | 58.84 |
OBF | 87 ± 3.23 | 55.38 | 136 ± 3.9 | 61.36 |
OBTP | 83 ± 2.12 | 57.43 | 115 ± 3.1 | 67.32 |
4-NPD b | 195 ± 10.2 | - | - | - |
NaN3 b | - | - | 352 ± 13.36 | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Călinoiu, L.F.; Vodnar, D.C. Thermal Processing for the Release of Phenolic Compounds from Wheat and Oat Bran. Biomolecules 2020, 10, 21. https://doi.org/10.3390/biom10010021
Călinoiu LF, Vodnar DC. Thermal Processing for the Release of Phenolic Compounds from Wheat and Oat Bran. Biomolecules. 2020; 10(1):21. https://doi.org/10.3390/biom10010021
Chicago/Turabian StyleCălinoiu, Lavinia Florina, and Dan Cristian Vodnar. 2020. "Thermal Processing for the Release of Phenolic Compounds from Wheat and Oat Bran" Biomolecules 10, no. 1: 21. https://doi.org/10.3390/biom10010021
APA StyleCălinoiu, L. F., & Vodnar, D. C. (2020). Thermal Processing for the Release of Phenolic Compounds from Wheat and Oat Bran. Biomolecules, 10(1), 21. https://doi.org/10.3390/biom10010021