Acylpolyamine Mygalin as a TLR4 Antagonist Based on Molecular Docking and In Vitro Analyses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Similarity-Based Virtual Screening (VS) of Mygalin
2.3. Ligand Prediction Against Immune Receptors
2.4. Ligand and TLR4/MD-2 Structures
2.5. Docking Calculations
2.6. Interaction Analysis of the TLR4/MD-2-Ligand Complex
2.7. In Vitro Analysis
2.8. Cell Culture and Cytotoxicity Assay
2.9. Effect of Mygalin on LPS-Stimulated Cells
2.10. RNA Isolation and RT-PCR
2.11. Measurement of NO
2.12. Neutralization Assay of LPS by Mygalin
2.13. Conjugation of FITC-LPS
2.14. Interaction of Mygalin with FITC-LPS
2.15. Measurement of TNF-α
2.16. Western Blot Analysis
2.17. Statistical Analysis
3. Results
3.1. Virtual Screening
3.2. Prediction Against Immune Receptors
3.3. Molecular Structure of the Ligands
3.4. Structural Comparison between TLR4/MD-2 Complexes
3.5. Docking Calculations in the TLR4/MD-2 Complex
3.6. In Vitro Cytotoxic Activity
3.7. Mygalin Attenuates LPS-Induced iNOS, TNF-α, IL-6 and Cox-2 mRNA Expression in RAW Cells
3.8. Effects of Mygalin on the Production of TNF-α
3.9. Effects of Mygalin on NO Production in Macrophages
3.10. Neutralizing LPS with Mygalin
3.11. Binding of Mygalin to LPS-FITC
3.12. Mygalin Suppresses the Inflammatory Response of LPS by Interfering with the Expression of iNOS and NF-Κb p65 in RAW 264.7 Macrophages
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Netea, M.G.; van der Graaf, C.; Van der Meer, J.W.; Kullberg, B.J. Toll-like receptors and the host defense against microbial pathogens: Bringing specificity to the innate-immune system. J. Leukoc. Biol. 2004, 75, 749–755. [Google Scholar] [CrossRef] [PubMed]
- El-Zayat, S.R.; Sibaii, H.; Mannaa, F.A. Toll-like receptors activation, signaling, and targeting: An overview. Bull. Natl. Res. Cent. 2019, 43, 187. [Google Scholar] [CrossRef] [Green Version]
- Gao, W.; Xiong, Y.; Li, Q.; Yang, H. Inhibition of toll-like receptor signaling as a promising therapy for inflammatory diseases: A journey from molecular to nano therapeutics. Front. Physiol. 2017, 8, 508. [Google Scholar] [CrossRef] [PubMed]
- Jezierska, A.; Kolosova, I.A.; Verin, A.D. Toll like receptors signaling pathways as a target for therapeutic interventions. Curr. Signal Transduct. Ther. 2011, 6, 428–440. [Google Scholar] [CrossRef]
- Park, B.S.; Song, D.H.; Kim, H.M.; Choi, B.S.; Lee, H.; Lee, J.O. The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature 2009, 458, 1191–1195. [Google Scholar] [CrossRef]
- Kim, S.J.; Kim, H.M. Dynamic lipopolysaccharide transfer cascade to TLR4/MD2 complex via LBP and CD14. BMB Rep. 2017, 50, 55–57. [Google Scholar] [CrossRef] [Green Version]
- Tsujimoto, H.; Ono, S.; Efron, P.A.; Scumpia, P.O.; Moldawer, L.L.; Mochizuki, H. Role of toll-like receptors in the development of sepsis. Shock 2008, 29, 315–321. [Google Scholar] [CrossRef] [Green Version]
- Kuzmich, N.N.; Sivak, K.V.; Chubarev, V.N.; Porozov, Y.B.; Savateeva-Lyubimova, T.N.; Peri, F. TLR4 signaling pathway modulators as potential therapeutics in inflammation and sepsis. Vaccines 2017, 5, 34. [Google Scholar] [CrossRef] [Green Version]
- Molteni, M.; Bosi, A.; Rossetti, C. Natural products with toll-like receptor 4 antagonist activity. Int. J. Inflamm. 2018, 2018, 2859135. [Google Scholar] [CrossRef] [Green Version]
- Matsunaga, N.; Tsuchimori, N.; Matsumoto, T.; Li, M. TAK-242 (resatorvid), a small-molecule inhibitor of Toll-like receptor (TLR) 4 signaling, binds selectively to TLR4 and interferes with interactions between TLR4 and its adaptor molecules. Mol. Pharmacol. 2011, 79, 34–41. [Google Scholar] [CrossRef] [Green Version]
- Shimamoto, A.; Chong, A.J.; Yada, M.; Shomura, S.; Takayama, H.; Fleisig, A.J.; Agnew, M.L.; Hampton, C.R.; Rothnie, C.L.; Spring, D.J.; et al. Inhibition of toll-like receptor 4 with eritoran attenuates myocardial ischemia-reperfusion injury. Circulation 2006, 114, I-270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wozniacka, A.; Lesiak, A.; Narbutt, J.; McCauliffe, D.; Sysa-Jedrzejowska, A. Chloroquine treatment influences proinflammatory cytokine levels in systemic lupus erythematosus patients. Lupus 2006, 15, 268–275. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Guzmán, M.; Jiménez, R.; Romero, M.; Sánchez, M.; Zarzuelo, M.J.; Gómez-Morales, M.; O’Valle, F.; López-Farré, A.J.; Algieri, F.; Gálvez, J.; et al. Chronic hydroxychloroquine improves endothelial dysfunction and protects kidney in a mouse model of systemic lupus erythematosus. Hypertension 2014, 64, 330–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahashi, T.; Kakehi, J.I. Polyamines: Ubiquitous polycations with unique roles in growth and stress responses. Ann. Bot. 2010, 105, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Caragine, T.; Wang, H.; Cohen, P.S.; Botchkina, G.; Soda, K.; Bianchi, M.; Ulrich, P.; Cerami, A.; Sherry, B.; et al. Spermine inhibits proinflammatory cytokine synthesis in human mononuclear cells: A counterregulatory mechanism that restrains the immune response. J. Exp. Med. 1997, 185, 1759–1768. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Rao, J.N.; Zou, T.; Liu, L.; Marasa, B.S.; Xiao, L.; Zeng, X.; Turner, D.J.; Wang, J.Y. Polyamines are required for expression of Toll-like receptor 2 modulating intestinal epithelial barrier integrity. Am. J. Physiol. Gastrointest. Liver Physiol. 2007, 293, G568–G576. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Wang, Y.; Ge, C.; Chang, L.; Wang, C.; Tian, Z.; Wang, S.; Dai, F.; Zhao, L.; Xie, S.; et al. Synthesis and biological evaluation of novel alkylated polyamine analogues as potential anticancer agents. Eur. J. Med. Chem. 2018, 143, 1732–1743. [Google Scholar] [CrossRef]
- Casero, R.A., Jr.; Woster, P.M. Recent advances in the development of polyamine analogues as antitumor agents. J. Med. Chem. 2009, 52, 4551–4573. [Google Scholar] [CrossRef] [Green Version]
- Espinoza-Culupú, A.; Mendes, E.; Vitorino, H.A.; Da Silva, P.I.; Borges, M.M. Mygalin: An acylpolyamine with bactericidal activity. Front. Microbiol. 2020, 10, 2928. [Google Scholar] [CrossRef]
- Pereira, L.S.; Silva, P.I., Jr.; Miranda, M.T.; Almeida, I.C.; Naoki, H.; Konno, K.; Daffre, S. Structural and biological characterization of one antibacterial acylpolyamine isolated from the hemocytes of the spider Acanthocurria gomesiana. Biochem. Biophys. Res. Commun. 2007, 352, 953–959. [Google Scholar] [CrossRef]
- Zoete, V.; Daina, A.; Bovigny, C.; Michielin, O. SwissSimilarity: A Web tool for low to ultra high throughput ligand-based virtual screening. J. Chem. Inf. Mdlng. 2016, 56, 1399–1404. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; et al. PubChem 2019 update: Improved access to chemical data. Nucleic Acids Res. 2018, 47, D1102–D1109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaulton, A.; Hersey, A.; Nowotka, M.; Bento, A.P.; Chambers, J.; Mendez, D.; Mutowo, P.; Atkinson, F.; Bellis, L.J.; Cibrián-Uhalte, E.; et al. The ChEMBL database in 2017. Nucleic Acids Res. 2017, 45, D945–D954. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, D.; Kaur, G.; Muradia, S.; Singh, B.; Agrewala, J.N. ImmtorLig_DB: Repertoire of virtually screened small molecules against immune receptors to bolster host immunity. Sci. Rep. 2019, 9, 3092. [Google Scholar] [CrossRef] [PubMed]
- Irwin, J.J.; Sterling, T.; Mysinger, M.M.; Bolstad, E.S.; Coleman, R.G. ZINC: A free tool to discover chemistry for biology. J. Chem. Inf. Mdlng. 2012, 52, 1757–1768. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, F.C.; Koetzle, T.F.; Williams, G.J.B.; Meyer, E.F.; Brice, M.D.; Rodgers, J.R.; Kennard, O.; Shimanouchi, T.; Tasumi, M. The protein data bank: A computer-based archival file for macromolecular structures. J. Mol. Biol. 1977, 112, 535–542. [Google Scholar] [CrossRef]
- Ohto, U.; Fukase, K.; Miyake, K.; Shimizu, T. Structural basis of species-specific endotoxin sensing by innate immune receptor TLR4/MD-2. Proc. Natl. Acad. Sci. USA 2012, 109, 7421. [Google Scholar] [CrossRef] [Green Version]
- Biovia, D.S. Discovery Studio Visualizer 2020. Release v20 1.0.19295; Dassault Systèmes: San Diego, CA, USA, 2016. [Google Scholar]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [Green Version]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [Green Version]
- Kubli-Garfias, C.; Vázquez-Ramírez, R.; Trejo-Muñoz, C.; Berber, A. Insights on the mechanism of action of immunostimulants in relation to their pharmacological potency. The effects of imidazoquinolines on TLR8. PLoS ONE 2017, 12, 0178846. [Google Scholar] [CrossRef]
- Guex, N.; Peitsch, M.C. Swiss-Model and the Swiss-Pdb Viewer: An environment for comparative protein modeling. Electrophoresis 1997, 18, 2714–2723. [Google Scholar] [CrossRef] [PubMed]
- Weischenfeldt, J.; Porse, B. Bone marrow-derived macrophages (BMM): Isolation and applications. Cold Spring Harb. Protoc. 2008, 2008, pdb.prot5080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.M.D.; Fu, L.; Cheng, C.C.; Gao, R.; Lin, M.Y.; Su, H.L.; Belinda, N.E.; Nguyen, T.H.; Lin, W.H.; Lee, P.C.; et al. Inhibition of LPS-induced oxidative damages and potential anti-inflammatory effects of Phyllanthus emblica extract via down-regulating NF-κB, COX-2, and iNOS in RAW 264.7 Cells. Antioxidants 2019, 8, 270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vieira, P.C.G.; Espinoza-Culupú, A.O.; Nepomuceno, R.; Alves, M.R.; Lebrun, I.; Elias, W.P.; Ruiz, R.C. Secreted autotransporter toxin (Sat) induces cell damage during enteroaggregative Escherichia coli infection. PLoS ONE 2020, 15, 0228959. [Google Scholar] [CrossRef] [PubMed]
- Ding, A.H.; Nathan, C.F.; Stuehr, D. Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production. J. Immunol. 1988, 141, 2407–2412. [Google Scholar]
- Lu, X.X.; Jiang, Y.F.; Li, H.; Ou, Y.Y.; Zhang, Z.D.; Di, H.Y.; Chen, D.F.; Zhang, Y.Y. Polymyxin B as an inhibitor of lipopolysaccharides contamination of herb crude polysaccharides in mononuclear cells. Chin. J. Nat. Med. 2017, 15, 487–494. [Google Scholar] [CrossRef]
- Skelly, R.R.; Munkenbeck, P.; Morrison, D.C. Stimulation of T-independent antibody responses by hapten-lipopolysaccharides without repeating polymeric structure. Infect. Immun. 1979, 23, 287–293. [Google Scholar] [CrossRef] [Green Version]
- Sinha, S.; Zheng, L.; Mu, Y.; Ng, W.J.; Bhattacharjya, S. Structure and Interactions of a host defense antimicrobial peptide thanatin in lipopolysaccharide micelles reveal mechanism of bacterial cell agglutination. Sci. Rep. 2017, 7, 17795. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.H.; Kim, G.Y.; Lee, H.H. Anti-inflammatory effects of cordycepin in lipopolysaccharide-stimulated RAW 264.7 macrophages through Toll-like receptor 4-mediated suppression of mitogen-activated protein kinases and NF-κB signaling pathways. Drug Des. Dev. Ther. 2014, 8, 1941–1953. [Google Scholar] [CrossRef] [Green Version]
- Cheng, K.; Zheng, Q.Z.; Qian, Y.; Shi, L.; Zhao, J.; Zhu, H.L. Synthesis, antibacterial activities and molecular docking studies of peptide and Schiff bases as targeted antibiotics. Bioorg. Med. Chem. 2009, 17, 7861–7871. [Google Scholar] [CrossRef]
- Coburn, R.A.; Batista, A.J.; Evans, R.T.; Genco, R.J. Potential salicylamide antiplaque agents: In vitro antibacterial activity against Actinomyces viscosus. J. Med. Chem. 1981, 24, 1245–1249. [Google Scholar] [CrossRef] [PubMed]
- Raines, D.J.; Moroz, O.V.; Wilson, K.S.; Duhme-Klair, A.K. Interactions of a periplasmic binding protein with a tetradentate siderophore mimic. Angewandte Chemie Int. Ed. 2013, 52, 4595–4598. [Google Scholar] [CrossRef] [PubMed]
- Liew, L.P.P.; Pearce, A.N.; Kaiser, M.; Copp, B.R. Synthesis and in vitro and in vivo evaluation of antimalarial polyamines. Eur. J. Med. Chem. 2013, 69, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.H.; Park, H.Y. Anti-inflammatory effects of spermidine in lipopolysaccharide-stimulated BV2 microglial cells. J. Biomed. Sci. 2012, 19, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawasaki, T.; Kawai, T. Toll-like receptor signaling pathways. Front. Immunol. 2014, 5, 461. [Google Scholar] [CrossRef] [Green Version]
- Lionta, E.; Spyrou, G.; Vassilatis, D.K.; Cournia, Z. Structure-based virtual screening for drug discovery: Principles, applications and recent advances. Curr. Top. Med. Chem. 2014, 14, 1923–1938. [Google Scholar] [CrossRef]
- Byrne, R.; Schneider, G. In silico target prediction for small molecules. Methods Mol. Biol. 2019, 1888, 273–309. [Google Scholar] [CrossRef]
- Alam, S.; Khan, F. Virtual screening, docking, ADMET and system pharmacology studies on garcinia caged xanthone derivatives for anticancer activity. Sci. Rep. 2018, 8, 5524. [Google Scholar] [CrossRef]
- Rivero-Buceta, E.; Carrero, P.; Doyagüez, E.G.; Madrona, A.; Quesada, E.; Camarasa, M.J.; Peréz-Pérez, M.J.; Leyssen, P.; Paeshuyse, J.; Balzarini, J.; et al. Linear and branched alkyl-esters and amides of gallic acid and other (mono-, di-and tri-) hydroxy benzoyl derivatives as promising anti-HCV inhibitors. Eur. J. Med. Chem. 2015, 92, 656–671. [Google Scholar] [CrossRef]
- Zhao, X.Z.; Semenova, E.A.; Vu, B.C.; Maddali, K.; Marchand, C.; Hughes, S.H.; Pommier, Y.; Burke, T.R. 2,3-dihydro-6,7-dihydroxy-1H-isoindol-1-one-based HIV-1 integrase inhibitors. J. Med. Chem. 2008, 51, 251–259. [Google Scholar] [CrossRef]
- Brevitt, S.E.; Tan, E.W. Synthesis and in vitro evaluation of two progressive series of bifunctional polyhydroxybenzamide catechol-O-methyltransferase inhibitors. J. Med. Chem. 1997, 40, 2035–2039. [Google Scholar] [CrossRef] [PubMed]
- Miyanaga, S.; Sakurai, H.; Saiki, I.; Onaka, H.; Igarashi, Y. Synthesis and evaluation of myxochelin analogues as antimetastatic agents. Bioorg. Med. Chem. 2009, 17, 2724–2732. [Google Scholar] [CrossRef] [PubMed]
- Schieferdecker, S.; König, S.; Koeberle, A.; Dahse, H.-M.; Werz, O.; Nett, M. Myxochelins target human 5-lipoxygenase. J. Nat. Prod. 2015, 78, 335–338. [Google Scholar] [CrossRef] [PubMed]
- Courrol, L.C.; Espinoza-Culupú, A.; Da Silva, P.I.; De Oliveira Gonçalves, K.; De Oliveira Silva, F.R.; Borges, M.M. Antibacterial and antitumoral activities of the spider acylpolyamine Mygalin silver nanoparticles. BioNanoScience 2020, 10, 463–472. [Google Scholar] [CrossRef]
- Durai, P.; Shin, H.J.; Achek, A.; Kwon, H.K.; Govindaraj, R.G.; Panneerselvam, S.; Yesudhas, D.; Choi, J.; No, K.T.; Choi, S.; et al. Toll-like receptor 2 antagonists identified through virtual screening and experimental validation. FEBS J. 2017, 284, 2264–2283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Švajger, U.; Brus, B.; Turk, S.; Sova, M.; Hodnik, V.; Anderluh, G.; Gobec, S. Novel toll-like receptor 4 (TLR4) antagonists identified by structure- and ligand-based virtual screening. Eur. J. Med. Chem. 2013, 70, 393–399. [Google Scholar] [CrossRef]
- Zhang, S.; Hu, Z.; Tanji, H.; Jiang, S.; Das, N.; Li, J.; Sakaniwa, K.; Jin, J.; Bian, Y.; Ohto, U.; et al. Small-molecule inhibition of TLR8 through stabilization of its resting state. Nat. Chem. Biol. 2018, 14, 58. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Su, L.; Morin, M.D.; Jones, B.T.; Whitby, L.R.; Surakattula, M.M.; Huang, H.; Shi, H.; Choi, J.H.; Wang, K.W.; et al. TLR4/MD-2 activation by a synthetic agonist with no similarity to LPS. Proc. Natl. Acad. Sci. USA 2016, 113, E884–E893. [Google Scholar] [CrossRef] [Green Version]
- Mafra, D.G.; Da Silva, P.I.; Galhardo, C.S.; Nassar, R.; Daffre, S.; Sato, M.N.; Borges, M.M. The spider acylpolyamine Mygalin is a potent modulator of innate immune responses. Cell. Immunol. 2012, 275, 5–11. [Google Scholar] [CrossRef]
- Igarashi, K.; Kashiwagi, K. Polyamines: Mysterious modulators of cellular functions. Biochem. Biophys. Res. Commun. 2000, 271, 559–564. [Google Scholar] [CrossRef]
- Wojdasiewicz, P.; Poniatowski, Ł.A.; Szukiewicz, D. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediat. Inflamm. 2014, 2014, 561459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, S.K.; Lee, S.J.; Na, H.J.; Ha, K.S.; Han, J.A.; Lee, H.; Kwon, Y.G.; Chung, C.K.; Kim, Y.M. β-Carotene inhibits inflammatory gene expression in lipopolysaccharide-stimulated macrophages by suppressing redox-based NF-κB activation. Exp. Mol. Med. 2005, 37, 323. [Google Scholar] [CrossRef] [PubMed]
- Zong, Y.; Sun, L.; Liu, B.; Deng, Y.S.; Zhan, D.; Chen, Y.L.; He, Y.; Liu, J.; Zhang, Z.J.; Sun, J.; et al. Resveratrol inhibits LPS-induced MAPKs activation via activation of the phosphatidylinositol 3-kinase pathway in murine RAW 264.7 macrophage cells. PLoS ONE 2012, 7, 44107. [Google Scholar] [CrossRef] [PubMed]
- Kumar, H.; Kawai, T.; Akira, S. Toll-like receptors and innate immunity. Biochem. Biophys. Res. Commun. 2009, 388, 621–625. [Google Scholar] [CrossRef]
- Jin, C.Y.; Lee, J.D.; Park, C.; Choi, Y.H.; Kim, G.Y. Curcumin attenuates the release of pro-inflammatory cytokines in lipopolysaccharide-stimulated BV2 microglia. Acta Pharmacologica Sinica 2007, 28, 1645–1651. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, H.R.; Hamasaki, K.; Miyata, T. Novel peptide motifs from lysozyme suppress pro-inflammatory cytokines in macrophages by antagonizing toll-like receptor and LPS-scavenging action. Eur. J. Pharm. Sci. 2017, 107, 240–248. [Google Scholar] [CrossRef]
- Smith, S.R.; Manfra, D.; Davies, L.; Terminelli, C.; Denhardt, G.; Donkin, J. Elevated levels of NO in both unchallenged and LPS-challenged C. parvum-primed mice are attributable to the activity of a cytokine-inducible isoform of iNOS. J. Leukoc. Biol. 1997, 61, 24–32. [Google Scholar] [CrossRef] [Green Version]
- Burns, M.R.; Wood, S.J.; Miller, K.A.; Nguyen, T.; Cromer, J.R.; David, S.A. Lysine–spermine conjugates: Hydrophobic polyamine amides as potent lipopolysaccharide sequestrants. Bioorg. Med. Chem. 2005, 13, 2523–2536. [Google Scholar] [CrossRef]
- Burns, M.R.; Jenkins, S.A.; Wood, S.J.; Miller, K.; David, S.A. Structure−activity relationships in lipopolysaccharide neutralizers: Design, synthesis, and biological evaluation of a 540-membered amphipathic Bisamide library. J. Comb. Chem. 2006, 8, 32–43. [Google Scholar] [CrossRef]
- Pulido, D.; Nogués, M.V.; Boix, E.; Torrent, M. Lipopolysaccharide neutralization by antimicrobial peptides: A gambit in the innate host defense strategy. J. Innate Immun. 2012, 4, 327–336. [Google Scholar] [CrossRef]
- Jeong, J.W.; Cha, H.J.; Han, M.H.; Hwang, S.J.; Lee, D.S.; Yoo, J.S.; Choi, I.W.; Kim, S.; Kim, H.S.; Kim, G.Y.; et al. Spermidine protects against oxidative stress in inflammation models using macrophages and zebrafish. Biomol. Ther. 2018, 26, 146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, D.; Zheng, X.; Wang, N.; Fan, S.; Yang, Y.; Lu, Y.; Chen, Q.; Liu, X.; Zheng, J. Kukoamine B promotes TLR4-independent lipopolysaccharide uptake in murine hepatocytes. Oncotarget 2016, 7, 57498–57513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, M.H.; Hong, J.T. Roles of NF-κB in cancer and inflammatory diseases and their therapeutic approaches. Cells 2016, 5, 15. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, L.; Joo, D.; Sun, S.C. NF-κB signaling in inflammation. Signal Transduct. Target. Ther. 2017, 2, 17023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonizzi, G.; Karin, M. The two NF-κB activation pathways and their role in innate and adaptive immunity. Trends Immunol. 2004, 25, 280–288. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, T.; Fong, C. The resolution of inflammation: Anti-inflammatory roles for NF-κB. Int. J. Biochem. Cell Biol. 2010, 42, 519–523. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, Y.; Gaynor, R.B. Therapeutic potential of inhibition of the NF-kappaB pathway in the treatment of inflammation and cancer. J. Clin. Investig. 2001, 107, 135–142. [Google Scholar] [CrossRef] [Green Version]
- Ramani, V.; Madhusoodhanan, R.; Kosanke, S.; Awasthi, S. A TLR4-interacting SPA4 peptide inhibits LPS-induced lung inflammation. Innate Immun. 2013, 19, 596–610. [Google Scholar] [CrossRef] [Green Version]
- Hou, Y.; Li, G.; Wang, J.; Pan, Y.; Jiao, K.; Du, J.; Chen, R.; Wang, B.; Li, N. Okanin, effective constituent of the flower tea Coreopsis tinctoria, attenuates LPS-induced microglial activation through inhibition of the TLR4/NF-κB signaling pathways. Sci. Rep. 2017, 7, 45705. [Google Scholar] [CrossRef] [Green Version]
Gene | Forward Primer (5′–3′) | Reverse Primer (5′–3′) | Annealing T (°) |
---|---|---|---|
iNOS | GCTCCCTATCTTGAAGCCCC | CCCAAACACCAAGCTCATGC | 58°C |
COX-2 | CTTCGGGAGCACAACAGAGT | AATGTTGAAGGTGTCGGGCA | 58°C |
TNF-α | GTAGCCCACGTCGTAGCAAA | CTGGAAGACTCCTCCCAGGTA | 56°C |
IL-6 | ACGATGATGCACTTGCAGAAAA | GGTCTTGGTCCTTAGCCACTC | 56°C |
β-actin | TATGCTCTCCCTCACGCCAT | AGGTCTTTACGGATGTCAACG | 58°C |
Immtorlig_db Compound SMILES | Zinc Database ID | Factors | Tanimoto Similarity Score |
---|---|---|---|
CS(=O)(=O)NCCCNC(=O)c1cc2c([nH]c1=O)CCCC2=O | 32355850 | IL4 | 0.161 |
CCNC(=O)NCC(=O)N1CCc2ccccc21 | 33127803 | TLR2/TLR6 | 0.153 |
CS(=O)(=O)NCCCNC(=O)c1cc2ccccc2oc1=O | 44706237 | IL4 | 0.143 |
CCNC(=O)CNC(=O)NC(C)(C)C(=O)O | 22170390 | IL17 | 0.143 |
CCS(=O)(=O)NCCCNC(=O)c1cc2ccccc2oc1=O | 51461652 | IL4 | 0.141 |
CCS(=O)(=O)NCCCNC(=O)c1nc(Cl)ccc1Cl | 51448237 | IL4 | 0.138 |
O=C(O)CCCNC(=O)N1CCC[C@H](O)C1 | 42471780 | TLR4/MD-2 | 0.136 |
Cc1csc(NC(=O)NCCC(=O)O)n1 | 40558977 | IL17 | 0.135 |
CCCNC(=O)NCc1ccc2ccccc2c1 | 49301164 | TLR2/TLR6 | 0.133 |
O=C1N=c2ccc(C(=O)NCCC3=CCCCC3)cc2=NC1=O | 38776626 | IL4 | 0.133 |
Drugs | Total Energy (AU) | Solvation Energy (kJ/mol) | Dipole (Debyes) | Polar Surface Area (Å2) | Volume (Å3) | Area (Å2) | TLR4/MD-2 |
---|---|---|---|---|---|---|---|
Binding Pocket Volume (Å3) | |||||||
Mygalin | −1431.66 | −94.27 | 3.41 | 128.27 | 417.14 | 457.35 | C = 1187 |
Curcumin | −1263.16 | −49.19 | 4.21 | 75.75 | 373.53 | 300.12 | D = 803 |
TAK-242 | −1895.3 | −26.87 | 4.27 | 59.93 | 321.17 | 344.7 |
Binding Pocket MD-2-C | Total Free Energy (kJ/mol) TLR4-B/MD-2-C | MD-2-C Residues | Total Residues |
---|---|---|---|
Mygalin | -236.07 | W23, I32, I46, S47, S48, I52, I80, L87, R90, Y131, C133, F151, I153 | 13 |
Curcumin | -134.77 | I32, I52, L54, I80, R90, I124, F126, Y131, C133, I153 | 10 |
TAK-242 | -86.99 | L54, L78, I80, V82, L87, R90, I124, L125, F126, Y131 | 10 |
Binding Pocket MD-2-D | Total Free Energy (kJ/mol) TLR4-A/MD-2-D | MD-2-D Residues | Total Residues |
Mygalin | -259.74 | W23, C25, I32, I46, S47, S48, I52, L54, I80, L87, R90, F126, Y131, C133, F151 | 15 |
Curcumin | -177.35 | I32, I52, L54, I80, L87, R90, I124, F126, Y131, C133, I153 | 11 |
TAK-242 | -62.94 | I80, V82, L87, R90, I124, F126, Y131 | 7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Espinoza-Culupú, A.; Vázquez-Ramírez, R.; Farfán-López, M.; Mendes, E.; Notomi Sato, M.; da Silva Junior, P.I.; Borges, M.M. Acylpolyamine Mygalin as a TLR4 Antagonist Based on Molecular Docking and In Vitro Analyses. Biomolecules 2020, 10, 1624. https://doi.org/10.3390/biom10121624
Espinoza-Culupú A, Vázquez-Ramírez R, Farfán-López M, Mendes E, Notomi Sato M, da Silva Junior PI, Borges MM. Acylpolyamine Mygalin as a TLR4 Antagonist Based on Molecular Docking and In Vitro Analyses. Biomolecules. 2020; 10(12):1624. https://doi.org/10.3390/biom10121624
Chicago/Turabian StyleEspinoza-Culupú, Abraham, Ricardo Vázquez-Ramírez, Mariella Farfán-López, Elizabeth Mendes, Maria Notomi Sato, Pedro Ismael da Silva Junior, and Monamaris Marques Borges. 2020. "Acylpolyamine Mygalin as a TLR4 Antagonist Based on Molecular Docking and In Vitro Analyses" Biomolecules 10, no. 12: 1624. https://doi.org/10.3390/biom10121624
APA StyleEspinoza-Culupú, A., Vázquez-Ramírez, R., Farfán-López, M., Mendes, E., Notomi Sato, M., da Silva Junior, P. I., & Borges, M. M. (2020). Acylpolyamine Mygalin as a TLR4 Antagonist Based on Molecular Docking and In Vitro Analyses. Biomolecules, 10(12), 1624. https://doi.org/10.3390/biom10121624