Reactivation of VX-Inhibited Human Acetylcholinesterase by Deprotonated Pralidoxime. A Complementary Quantum Mechanical Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gaines, T.B. Acute Toxicity of Pesticides. Toxicol. Appl. Pharm. 1969, 14, 515–534. [Google Scholar] [CrossRef]
- Jeyaratnam, J.; Maroni, M. Chapter 3 organophosphorus compounds. Toxicology 1994, 91, 15–27. [Google Scholar] [CrossRef]
- Smart, F.R. History of Chemical and Biological warfare: An American perspective. In Medical Aspects of Chemical and Biological Warfare-Textbook of Military Medicine. Office of the Surgeon General; Sidell, F.R., Takafuji, E.T., Franz, D.R., Eds.; US Army: Washington, DC, USA, 1997; Chapter 2; pp. 9–86. [Google Scholar]
- Sidell, F.R. Nerve Agents. In Medical Aspects of Chemical and Biological Warfare-Textbook of Military Medicine. Office of the Surgeon General; Sidell, F.R., Takafuji, E.T., Franz, D.R., Eds.; US Army: Washington, DC, USA, 1997; Chapter 5; pp. 129–180. [Google Scholar]
- Szinicz, L. History of chemical and biological warfare agents. Toxicology 2005, 214, 167–615. [Google Scholar] [CrossRef] [PubMed]
- Delfino, R.T.; Ribeiro, T.S.; Figueroa-Villar, J.D. Organophosphorus Compounds as Chemical Warfare Agents: A Review. J. Braz. Chem. Soc. 2009, 20, 407–429. [Google Scholar] [CrossRef]
- Mangas, I.; Vilanova, E.; Estevez, J.; Franca, T.C.C. Neurotoxic Effects Associated with Current Users of Organophosphorus Compounds. J. Braz. Chem. Soc. 2016, 27, 809–825. [Google Scholar]
- Mangas, I.; Vilanova, E.; Estevez, J.; Franca, T.C.C. New Insights on molecular interactions of organophosphorus pesticides with esterases. Toxicology 2017, 376, 30–43. [Google Scholar] [CrossRef]
- Quinn, D.M. Acetylcholinesterase: Enzyme structure, reaction dynamics, and virtual transition states. Chem. Rev. 1987, 87, 955–979. [Google Scholar] [CrossRef]
- Antonijevic, B.; Stojilkovic, M.P. Unequal Efficacy of Pyridinium Oximes in Acute Organophosphate Poisoning. Clin. Med. Res. 2007, 5, 71–82. [Google Scholar] [CrossRef] [Green Version]
- Schwenk, M. Chemical warfare agents. Classes and targets. Toxicol. Lett. 2018, 293, 253–263. [Google Scholar] [CrossRef]
- Marrs, T.C. Organophosphate poisoning. Pharmacol. Ther. 1993, 58, 51–66. [Google Scholar] [CrossRef]
- Korabecny, J.; Soukup, O.; Dolezal, R.; Spilovska, K.; Nepovimova, E.; Andrs, M.; Nguyen, T.D.; Jun, D.; Musilek, K.; Kucerova-Chlupacova, M.; et al. From Pyridinium-based to Centrally Active Acetylcholinesterase Reactivators. Mini Rev. Med. Chem. 2014, 14, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Gupta, B.; Singh, N.; Acharya, J.R.; Musilek, K.; Kuca, K.; Ghosh, K.K. Development and Structural Modifications of Cholinesterase Reactivators against Chemical Warfare Agents in Last Decade: A Review. Mini Rev. Med. Chem. 2015, 15, 58–72. [Google Scholar] [CrossRef] [PubMed]
- Worek, F.; Thiermann, H. The value of novel oximes for treatment of poisoning by organophosphorus compounds. Pharmacol. Ther. 2013, 139, 249–259. [Google Scholar] [CrossRef] [PubMed]
- Winter, M.; Wille, T.; Musilek, K.; Kuca, K.; Thiermann, H.; Worek, F. Investigation of the reactivation kinetics of a large series of bispyridinium oximes with organophosphate-inhibited human acetylcholinesterase. Toxicol. Lett. 2016, 244, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Namba, T.; Hiraki, K. PAM (pyridine-2-aldoxime methiodide) therapy for alkyl-phosphate poisoning. J. Am. Chem. Soc. 1958, 166, 1834–1839. [Google Scholar]
- Malinak, D.; Korabecny, J.; Soukup, O.; Gorecki, L.; Nepovimova, E.; Psotka, M.; Dolezal, R.; Nguyen, T.D.; Mezeiova, E.; Musilek, K.; et al. A Review of the Synthesis of Quaternary Acetylcholinesterase Reactivators. Curr. Org. Chem. 2018, 22, 1619–1648. [Google Scholar] [CrossRef]
- Gorecki, L.; Korabecny, J.; Musilek, K.; Malinak, D.; Nepovimova, E.; Dolezal, R.; Jun, D.; Soukup, O.; Kuca, K. SAR study to find optimal cholinesterase reactivator against organophosphorous nerve agents and pesticides. Arch. Toxicol. 2016, 90, 2831–2859. [Google Scholar] [CrossRef]
- Silva, J.A.V.; Nepovimova, E.; Ramalho, T.C.; Kuca, K.; Franca, T.C.C. Molecular modeling studies on the interactions of 7-methoxytacrine-4-pyridinealdoxime, 4-PA, 2-PAM and obidoxime with VX-inhibited human acetylcholinesterase. A near attack conformation approach. J. Enzym. Inhib. Med. Chem. 2019, 34, 1018–1029. [Google Scholar] [CrossRef] [Green Version]
- Hur, S.; Bruice, T.C. The near attack conformation approach to the study of the chorismate to prephenate reaction. Proc. Natl. Acad. Sci. USA 2003, 100, 12015–12020. [Google Scholar] [CrossRef] [Green Version]
- Sadiq, S.K.; Coveney, P.V. Computing the Role of Near Attack Conformations in an Enzyme-Catalyzed Nucleophilic Bimolecular Reaction. J. Chem. Theory Comput. 2015, 11, 316–324. [Google Scholar] [CrossRef]
- Sahu, A.K.; Gupta, B.; Sharma, R.; Singh, Y.; Musilek, K.; Kuca, K.; Ghosh, K.K. Kinetic and physicochemical analysis of structurally different bis-pyridinium oximes against pesticide inhibited AChE. Indian J. Chem. 2015, 4A, 40–45. [Google Scholar]
- Kalisiak, J.; Ralph, E.C.; Zhang, J.; Cashman, J.R. Amidine-Oximes: Reactivators for Organophosphate Exposure. J. Med. Chem. 2011, 54, 3319–3330. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.A.V.; Nepovimova, E.; Ramalho, T.C.; Kuca, K.; Franca, T.C.C. Molecular modelling studies on the interactions of 7-methoxytacrine-4-pyridinealdoxime with VX-inhibited human acetylcholinesterase. A near attack approach to assess different spacer-lengths. Chem-Biol. Interac. 2019, 307, 195–205. [Google Scholar] [CrossRef] [PubMed]
- Ekström, F.; Hörnberg, A.; Artursson, E.; Hammarström, L.G.; Schneider, G.; Pang, Y.P. Structure of HI-6•Sarin-Acetylcholinesterase Determined by X-Ray Crystallography and Molecular Dynamics Simulation: Reactivator Mechanism and Design. PLoS ONE 2009, 4, e5957. [Google Scholar] [CrossRef] [Green Version]
- Allgardsson, A.; David Andersson, C.; Akfur, C.; Worek, F.; Linusson, A.; Ekström, F. An unusual dimeric inhibitor of acetylcholinesterase: Cooperative binding of crystal violet. Molecules. 2017, 22, 1433. [Google Scholar] [CrossRef] [Green Version]
- Bester, S.M.; Adipietro, K.A.; Funk, V.L.; Myslinski, J.M.; Keul, N.D.; Cheung, J.; Wilder, P.T.; Wood, D.J.; Weber, D.J.; Height, J.J.; et al. The structural and biochemical impacts of monomerizing human acetylcholinesterase. Protein Sci. 2019, 28, 1106–1114. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Gu, J.; Leszczynski, J.; Feliks, M.; Sokalski, W.A. Oxime-Induced Reactivation of Sarin-Inhibited AChE: A Theoretical Mechanisms Study. J. Phys. Chem. B. 2007, 111, 2404–2408. [Google Scholar] [CrossRef]
- Delfino, R.T.; Figueroa-Villar, J.D. Nucleophilic Reactivation of Sarin-Inhibited Acetylcholinesterase: A Molecular Modeling Study. J. Phys. Chem. B 2009, 113, 8402–8411. [Google Scholar] [CrossRef]
- Gonçalves, A.S.; França, T.C.C.; Figueroa-Villar, J.D.; Pascutti, P.G. Molecular Dynamics Simulations and QM/MM Studies of the Reactivation by 2-PAM of Tabun Inhibited Human Acetylcholinesterase. J. Braz. Chem. Soc. 2011, 22, 155–165. [Google Scholar] [CrossRef]
- Nepovimova, E.; Korabecny, J.; Dolezal, R.; Nguyen, T.D.; Jun, D.; Soukup, O.; Pasdiorova, M.; Jost, P.; Muckova, L.; Malinak, D.; et al. A 7-methoxytacrine–4-pyridinealdoxime hybrid as a novel prophylactic agent with reactivation properties in organophosphate intoxication. Toxicol. Res. 2016, 5, 1012–1016. [Google Scholar] [CrossRef] [Green Version]
- Senn, H.M.; Thiel, W. QM/MM Methods for Biomolecular Systems. Angew. Chem. Int. Edit. 2009, 48, 1198–1229. [Google Scholar] [CrossRef] [PubMed]
- Heyden, A.; Lin, H.; Truhlar, D.G. Adaptive partitioning in combined quantum mechanical and molecular mechanical calculations of potential energy functions for multiscale simulations. J. Phys. Chem. B. 2007, 111, 2231–2241. [Google Scholar] [CrossRef] [PubMed]
- Ramalho, T.C.; de Castro, A.A.; Silva, D.R.; Silva, M.C.; Franca, T.C.C.; Bennion, B.J.; Kuca, K. Computational enzymology and organophosphorus degrading enzymes: Promising approaches toward remediation technologies of warfare agents and pesticides. Curr. Med. Chem. 2016, 23, 1041–1061. [Google Scholar] [CrossRef] [PubMed]
- Driant, T.; Nachon, F.; Ollivier, C.; Renard, P.; Derat, E. On the Influence of the protonation states of active site residues on AChE reactivation: A QM/MM approach. Chem. Bio. Chem. 2017, 18, 666–675. [Google Scholar] [CrossRef]
- Chai, J.D.; Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620. [Google Scholar] [CrossRef] [Green Version]
- Becke, A.D. Perspective: Fifty years of density-functional theory in chemical physics. J. Chem. Phys. 2014, 140, 18A301. [Google Scholar] [CrossRef] [Green Version]
- Dunning Jr, T.H. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90, 1007–1023. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Zakrzewski, V.G.; Montgomery, J.A.; Stratmann, R.E.; Burant, J.C.; et al. Gaussian 09; Gaussian, Inc.: Wallingford, CT, USA, 2004. [Google Scholar]
- Ramalho, T.C.; Martins, T.L.C.; Figueroa-Villar, J.D. A Theoretical and Experimental 13C and 15N NMR Investigation of Guanylhydrazones in Solution. Magn. Reson. Chem. 2003, 41, 983–988. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Silva, J.A.V.; Pereira, A.F.; LaPlante, S.R.; Kuca, K.; Ramalho, T.C.; França, T.C.C. Reactivation of VX-Inhibited Human Acetylcholinesterase by Deprotonated Pralidoxime. A Complementary Quantum Mechanical Study. Biomolecules 2020, 10, 192. https://doi.org/10.3390/biom10020192
da Silva JAV, Pereira AF, LaPlante SR, Kuca K, Ramalho TC, França TCC. Reactivation of VX-Inhibited Human Acetylcholinesterase by Deprotonated Pralidoxime. A Complementary Quantum Mechanical Study. Biomolecules. 2020; 10(2):192. https://doi.org/10.3390/biom10020192
Chicago/Turabian Styleda Silva, Jorge Alberto Valle, Ander Francisco Pereira, Steven R. LaPlante, Kamil Kuca, Teodorico Castro Ramalho, and Tanos Celmar Costa França. 2020. "Reactivation of VX-Inhibited Human Acetylcholinesterase by Deprotonated Pralidoxime. A Complementary Quantum Mechanical Study" Biomolecules 10, no. 2: 192. https://doi.org/10.3390/biom10020192
APA Styleda Silva, J. A. V., Pereira, A. F., LaPlante, S. R., Kuca, K., Ramalho, T. C., & França, T. C. C. (2020). Reactivation of VX-Inhibited Human Acetylcholinesterase by Deprotonated Pralidoxime. A Complementary Quantum Mechanical Study. Biomolecules, 10(2), 192. https://doi.org/10.3390/biom10020192