Assessment of Fatty Acid Desaturase (Fads2) Structure-Function Properties in Fish in the Context of Environmental Adaptations and as a Target for Genetic Engineering
Abstract
:1. Introduction
2. Significance and Essentiality of LC-PUFA Biomolecules
3. Fads2 in LC-PUFA Biosynthesis
4. Fads Gene Repertoire in Fish
5. Fads2 Structure and Structural Implications of Substrate Specificity
6. Fads2 Copy Number Variation
7. Fads2 Transgenes
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tocher, D.R.; Betancor, M.B.; Sprague, M.; Olsen, R.E.; A Napier, J. Omega-3 Long-Chain Polyunsaturated Fatty Acids, EPA and DHA: Bridging the Gap between Supply and Demand. Nutrients 2019, 11, 89. [Google Scholar] [CrossRef] [Green Version]
- Bell, M.V.; Tocher, D.R. Biosynthesis of polyunsaturated fatty acids in aquatic ecosystems: General pathways and new directions. In Lipids in Aquatic Ecosystems; Springer: New York, NY, USA, 2009; pp. 211–236. [Google Scholar]
- Tinoco, J. Dietary requirements and functions of α-linolenic acid in animals. Prog. Lipid Res. 1982, 21, 1–45. [Google Scholar] [CrossRef]
- Monroig, Ó.; Kabeya, N. Desaturases and elongases involved in polyunsaturated fatty acid biosynthesis in aquatic invertebrates: A comprehensive review. Fish. Sci. 2018, 84, 911–928. [Google Scholar] [CrossRef] [Green Version]
- Kabeya, N.; Fonseca, M.M.; Ferrier, D.E.K.; Navarro, J.C.; Bay, L.K.; Francis, D.S.; Tocher, D.R.; Castro, L.F.C.; Monroig, O. Genes for de novo biosynthesis of omega-3 polyunsaturated fatty acids are widespread in animals. Sci. Adv. 2018, 4, eaar6849. [Google Scholar] [CrossRef] [Green Version]
- Jakobsson, A.; Westerberg, R.; Jacobsson, A. Fatty acid elongases in mammals: Their regulation and roles in metabolism. Prog. Lipid Res. 2006, 45, 237–249. [Google Scholar] [CrossRef] [PubMed]
- Zárate, R.; El Jaber-Vazdekis, N.; Tejera, N.; Pérez, J.A.; Rodríguez, C. Significance of long chain polyunsaturated fatty acids in human health. Clin. Transl. Med. 2017, 6, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spector, A.A.; Kim, H.Y. Discovery of essential fatty acids. J. Lipid Res. 2015, 56, 11–21. [Google Scholar] [CrossRef] [Green Version]
- Burr, G.O.; Burr, M.M. A new deficiency disease produced by the rigid exclusion of fat from the diet. J. Biol. Chem. 1929, 82, 345–367. [Google Scholar] [CrossRef]
- Burr, G.O.; Burr, M.M. On the nature and role of the fatty acids essential in nutrition. J. Biol. Chem. 1930, 86, 587–621. [Google Scholar]
- Burr, G.O.; Burr, M.M.; Miller, E.S. On the fatty acids essentiality in nutrition III. J. Biol. Chem. 1932, 97, 1–9. [Google Scholar]
- Holman, R.T.; George, O. Burr and the Discovery of Essential Fatty Acids. J. Nutr. 1988, 118, 535–540. [Google Scholar] [CrossRef] [PubMed]
- Mead, J. The essential fatty acids: Past, present and future. Prog. Lipid Res. 1981, 20, 1–6. [Google Scholar] [CrossRef]
- Bergström, S.; Danielsson, H.; Klenberg, D.; Samuelsson, B. The enzymatic conversion of essential fatty acids into prostaglandins. J. Biol. Chem. 1964, 239, PC4006–PC4008. [Google Scholar]
- Bergström, S.; Danielsson, H.; Samuelsson, B. The enzymatic formation of prostaglandin E2 from arachidonic acid prostaglandins and related factors 32. Biochim. Biophys. Acta (BBA)—Gen. Subj. 1964, 90, 207–210. [Google Scholar] [CrossRef]
- Klenk, E.; Mohrhauer, H. Metabolism of polyenoic acids in the rat. Hoppe Seylers Z. Physiol. Chem. 1960, 320, 218–232. [Google Scholar] [CrossRef]
- Dyerberg, J.; Bang, H. Dietary fat and thrombosis. Lancet 1978, 311, 152. [Google Scholar] [CrossRef]
- Dyerberg, J.; Bang, H.O.; Stoffersen, E.; Moncada, J.; Vane, J.R. Eicosapentaenoic acid and the prevention of thrombosis and atherosclerosis? Lancet 1978, 2, 117–119. [Google Scholar] [CrossRef]
- Simopoulos, A.P. The omega-6/omega-3 fatty acid ratio: Health implications. Oléagineux, Corps gras. Lipides 2010, 17, 267–275. [Google Scholar]
- Simopoulos, A.P. Importance of the omega-6/omega-3 balance in health and disease: Evolutionary aspects of diet. World Rev. Nutr. Diet. 2011, 102, 10–21. [Google Scholar] [CrossRef]
- Scaioli, E.; Liverani, E.; Belluzzi, A. The Imbalance between n-6/n-3 Polyunsaturated Fatty Acids and Inflammatory Bowel Disease: A Comprehensive Review and Future Therapeutic Perspectives. Int. J. Mol. Sci. 2017, 18, 2619. [Google Scholar] [CrossRef] [Green Version]
- Gladyshev, M.I.; Sushchik, N.N. Long-chain Omega-3 Polyunsaturated Fatty Acids in Natural Ecosystems and the Human Diet: Assumptions and Challenges. Biomolecules 2019, 9, 485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voss, A.; Reinhart, M.; Sankarappa, S.; Sprecher, H. The metabolism of 7,10,13,16,19-docosapentaenoic acid to 4,7,10,13,16,19-docosahexaenoic acid in rat liver is independent of a 4-desaturase. J. Boil. Chem. 1991, 266, 19995–20000. [Google Scholar]
- Sprecher, H. Metabolism of highly unsaturated n-3 and n-6 fatty acids. Biochim. Biophys. Acta (BBA)—Mol. Cell Boil. Lipids 2000, 1486, 219–231. [Google Scholar] [CrossRef]
- Monroig, O.; Li, Y.; Tocher, D.R. Delta-8 desaturation activity varies among fatty acyl desaturases of teleost fish: High activity in delta-6 desaturases of marine species. Comp. Biochem. Physiol. Part. B Biochem. Mol. Boil. 2011, 159, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Carmona-Antoñanzas, G.; Monroig, O.; Dick, J.R.; Davie, A.; Tocher, D.R. Biosynthesis of very long-chain fatty acids (C > 24) in Atlantic salmon: Cloning, functional characterisation, and tissue distribution of an Elovl4 elongase. Comp. Biochem. Physiol. Part. B Biochem. Mol. Boil. 2011, 159, 122–129. [Google Scholar] [CrossRef]
- Trattner, S. Quality of lipids in fish fed vegetable oils. Ph.D. Thesis, Acta Universitatis Agriculturae Sueciae, Uppsala, Sweden, May 2009. [Google Scholar]
- Vestergeren, A.L.S. Transcriptional regulation in salmonids with emphasis on lipid metabolism. Ph.D. Thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden, December 2014. [Google Scholar]
- Yin, Y. Expression of genes involved in regulation of polyunsaturated fatty acid metabolism in liver of Atlantic salmon (Salmo salar) undergoing parr-smolt transformation. Master´s Thesis, Norwegian University of Live Sciences, Ås, Norway, September 2016. [Google Scholar]
- Ferdinandusse, S.; Denis, S.; Mooijer, P.A.; Zhang, Z.; Reddy, J.K.; Spector, A.A.; Wanders, R.J. Identification of the peroxisomal beta-oxidation enzymes involved in the biosynthesis of docosahexaenoic acid. J. Lipid Res. 2001, 42, 1987–1995. [Google Scholar]
- Sprecher, H. A reevaluation of the pathway for the biosynthesis of 4,7,10,13,16,19-docosahexaenoic acid. Omega-3 News 1992, 7, 1–3. [Google Scholar]
- Li, Y.; Monroig, O.; Zhang, L.; Wang, S.; Zheng, X.; Dick, J.R.; You, C.; Tocher, U.R. Vertebrate fatty acyl desaturase with Δ4 activity. Proc. Natl. Acad. Sci. USA 2010, 107, 16840–16845. [Google Scholar] [CrossRef] [Green Version]
- Oboh, A.; Kabeya, N.; Carmona-Antoñanzas, G.; Castro, L.F.C.; Dick, J.R.; Tocher, U.R.; Monroig, O. Two alternative pathways for docosahexaenoic acid (DHA, 22:6n-3) biosynthesis are widespread among teleost fish. Sci. Rep. 2017, 7, 3889. [Google Scholar] [CrossRef]
- Guillou, H.; Zadravec, D.; Martin, P.G.; Jacobsson, A. The key roles of elongases and desaturases in mammalian fatty acid metabolism: Insights from transgenic mice. Prog. Lipid Res. 2010, 49, 186–199. [Google Scholar] [CrossRef]
- Tocher, D.R. Fatty acid requirements in ontogeny of marine and freshwater fish. Aquac. Res. 2010, 41, 717–732. [Google Scholar] [CrossRef]
- Tocher, D.R.; Zheng, X.; Schlechtriem, C.; Hastings, N.; Dick, J.R.; Teale, A.J. Highly unsaturated fatty acid synthesis in marine fish: Cloning, functional characterization, and nutritional regulation of fatty acyl Δ6 desaturase of Atlantic cod (Gadus morhua L.). Lipids 2006, 41, 1003–1016. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Seiliez, I.; Hastings, N.; Tocher, D.; Panserat, S.; Dickson, C.; Bergot, P.; Teale, A. Characterization and comparison of fatty acyl Δ6 desaturase cDNAs from freshwater and marine teleost fish species. Comp. Biochem. Physiol. Part. B Biochem. Mol. Boil. 2004, 139, 269–279. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; King, Z.; Xu, Y.; Monroig, Ó.; Morais, S.; Tocher, D.R. Physiological roles of fatty acyl desaturases and elongases in marine fish: Characterization of cDNAs of fatty acyl Δ6-desaturase and Elovl5 elongase of cobia (Rachycentron canadum). Aquaculture 2009, 290, 122–131. [Google Scholar] [CrossRef]
- Leaver, M.J.; Bautista, J.M.; Björnsson, B.T.; Jönsson, E.; Krey, G.; Tocher, D.R.; Torstensen, B.E. Towards Fish Lipid Nutrigenomics: Current State and Prospects for Fin-Fish Aquaculture. Rev. Fish. Sci. 2008, 16, 73–94. [Google Scholar] [CrossRef] [Green Version]
- Gillard, G.; Harvey, T.N.; Gjuvsland, A.; Jin, Y.; Thomassen, M.; Lien, S.; Leaver, M.; Torgersen, J.S.; Hvidsten, T.R.; Vik, J.O.; et al. Life-stage-associated remodelling of lipid metabolism regulation in Atlantic salmon. Mol. Ecol. 2018, 27, 1200–1213. [Google Scholar] [CrossRef] [Green Version]
- Ren, H.-T.; Zhang, G.-Q.; Li, J.-L.; Tang, Y.-K.; Li, H.-X.; Yu, J.-H.; Xu, P. Two Δ6-desaturase-like genes in common carp (Cyprinus carpio var. Jian): Structure characterization, mRNA expression, temperature and nutritional regulation. Gene 2013, 525, 11–17. [Google Scholar] [CrossRef]
- Lopes-Marques, M.; Kabeya, N.; Qian, Y.; Ruivo, R.; Santos, M.M.; Venkatesh, B.; Tocher, D.R.; Castro, L.F.C.; Monroig, Ó. Retention of fatty acyl desaturase 1 (fads1) in Elopomorpha and Cyclostomata provides novel insights into the evolution of long-chain polyunsaturated fatty acid biosynthesis in vertebrates. BMC Evol. Boil. 2018, 18, 157. [Google Scholar]
- Wang, S.; Monroig, Ó.; Tang, G.; Zhang, L.; You, C.; Tocher, D.R.; Li, Y. Investigating long-chain polyunsaturated fatty acid biosynthesis in teleost fish: Functional characterization of fatty acyl desaturase (Fads2) and Elovl5 elongase in the catadromous species, Japanese eel Anguilla japonica. Aquaculture 2014, 434, 57–65. [Google Scholar]
- Hastings, N.; Agaba, M.; Tocher, U.R.; Leaver, M.J.; Dick, J.R.; Sargent, J.R.; Teale, A.J. A vertebrate fatty acid desaturase with Δ5 and Δ6 activities. Proc. Natl. Acad. Sci. USA 2001, 98, 14304–14309. [Google Scholar] [CrossRef] [Green Version]
- Castro, L.F.C.; Monroig, Ó.; Leaver, M.J.; Wilson, J.; Cunha, I.; Tocher, U.R. Functional Desaturase Fads1 (Δ5) and Fads2 (Δ6) Orthologues Evolved before the Origin of Jawed Vertebrates. PLoS ONE 2012, 7, e31950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kabeya, N.; Yoshizaki, G.; Tocher, D.R.; Monroig, Ó. Diversification of Fads2 in Finfish Species: Implications for Aquaculture. In Investigación y Desarollo en Nutrición Acuícola; Universidad Autónoma de Nuevo León: San Nicolás de los Garza, Nuevo León, México, 2017; pp. 338–362. [Google Scholar]
- Zheng, X.; Tocher, D.R.; Dickson, C.A.; Bell, J.G.; Teale, A.J. Highly unsaturated fatty acid synthesis in vertebrates: New insights with the cloning and characterization of a Δ6 desaturase of Atlantic salmon. Lipids 2005, 40, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Seiliez, I.; Panserat, S.; Kaushik, S.; Bergot, P. Cloning, tissue distribution and nutritional regulation of a Delta6-desaturaselike enzyme in rainbow trout. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2001, 130, 83–93. [Google Scholar] [CrossRef]
- Cho, H.P.; Nakamura, M.T.; Clarke, S.D. Cloning, expression, and nutritional regulation of the mammalian Delta-6 desaturase. J. Biol. Chem. 1999, 274, 471–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guillou, H.; D’Andrea, S.; Rioux, V.; Barnouin, R.; Dalaine, S.; Pedrono, F.; Jan, S.; Legrand, P. Distinct roles of endoplasmic reticulum cytochrome b5 and fused cytochrome b5-like domain for rat Delta6-desaturase activity. J. Lipid Res. 2004, 45, 32–40. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, A.G.; Martin, C.E. A novel cytochrome b5-like domain is linked to the carboxyl terminus of the Saccharomyces cerevisiae delta-9 fatty acid desaturase. J. Biol. Chem. 1995, 270, 29766–29772. [Google Scholar]
- Dahmen, J.L.; Olsen, R.; Fahy, D.; Wallis, G.J.; Browse, J. Cytochrome b5 coexpression increases Tetrahymena thermophila Δ6 fatty acid desaturase activity in Saccharomyces Cerevisiae. Eukaryot. Cell. 2013, 12, 923–931. [Google Scholar] [CrossRef] [Green Version]
- Gostinčar, C.; Turk, M.; Gunde-Cimerman, N. The evolution of fatty acid desaturases and cytochrome b5 in eukaryotes. J. Membr. Biol. 2010, 233, 63–72. [Google Scholar] [CrossRef]
- Wang, H.; Klein, M.G.; Zhou, H.; Lane, W.; Snell, G.; Levin, I.; Li, K.; Sang, B.C. Crystal structure of human stearoyl-coenzyme A desaturase in complex with substrate. Nat. Struct. Mol. Biol. 2015, 22, 581–585. [Google Scholar] [CrossRef]
- Bai, Y.; McCoy, J.G.; Levin, E.J.; Sobrado, P.; Rajashankar, K.R.; Fox, B.G.; Zhou, M. X-ray structure of a mammalian stearoyl-CoA desaturase. Nature 2015, 524, 252–256. [Google Scholar] [CrossRef] [Green Version]
- Sayanova, O.; Beaudoin, F.; Libisch, B.; Castel, A.; Shewry, P.R.; Napier, J.A. Mutagenesis and heterologous expression in yeast of a plant Delta6-fatty acid desaturase. J. Exp Bot. 2001, 52, 1581–1585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hashimoto, K.; Yoshizawa, A.C.; Okuda, S.; Kuma, K.; Goto, S.; Kanehisa, M. The repertoire of desaturases and elongases reveals fatty acid variations in 56 eukaryotic genomes. J. Lipid Res. 2007, 49, 183–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watanabe, K.; Ohno, M.; Taguchi, M.; Kawamoto, S.; Ono, K.; Aki, T. Identification of amino acid residues that determine the substrate specificity of mammalian membrane-bound front-end fatty acid desaturases. J. Lipid Res. 2016, 57, 89–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buček, A.; Matoušková, P.; Vogel, H.; Šebesta, P.; Jahn, U.; Weissflog, J.; Svatoš, A.; Pichová, I. Evolution of moth sex pheromone composition by a single amino acid substitution in a fatty acid desaturase. Proc. Natl. Acad. Sci. USA 2015, 112, 12586–12591. [Google Scholar] [CrossRef] [Green Version]
- Shi, H.; Wu, R.; Zheng, Y.; Yue, X. Molecular mechanism underlying catalytic activity of delta 6 desaturase from Glossomastix chrysoplasta and Thalassiosira pseudonana. J. Lipid Res. 2018, 56, 2309–2321. [Google Scholar] [CrossRef] [Green Version]
- Jin, Y.; Olsen, R.E.; Harvey, T.N.; Ostensen, M.A.; Li, K.; Santi, N.; Vadstein, O.; Vik, J.O.; Sandve, S.R.; Olsen, Y. Comparative transcriptomics reveals domestication-associated features of Atlantic salmon lipid metabolism. bioRxiv 2019. Available online: https://www.biorxiv.org/content/10.1101/847848v1.full.pdf (accessed on 20 January 2020). [CrossRef]
- Xie, D.; Fu, Z.; Wang, S.; You, C.; Monroig, O.; Tocher, D.R.; Li, Y. Characteristics of the fads2 gene promoter in marine teleost Epinephelus coioides and role of Sp1-binding site in determining promoter activity. Sci. Rep. 2018, 8, 5305. [Google Scholar] [CrossRef] [Green Version]
- Geay, F.; Santigosa, I.C.E.; Corporeau, C.; Boudry, P.; Dreano, Y.; Corcos, L.; Bodin, N.; Vandeputte, M.; Zambonino-Infante, J.L.; Mazurais, D.; et al. Regulation of FADS2 expression and activity in European sea bass (Dicentrarchus labrax L.) fed a vegetable diet. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2010, 156, 237–243. [Google Scholar] [CrossRef] [Green Version]
- Geay, F.; Zambonino-Infante, J.; Reinhardt, R.; Kuhl, H.; Santigosa, E.; Cahu, C.; Mazurais, D. Characteristics of fads2 gene expression and putative promoter in European sea bass (Dicentrarchus labrax): Comparison with salmonid species and analysis of CpG methylation. Mar. Genomics. 2012, 5, 7–13. [Google Scholar] [CrossRef] [Green Version]
- Ishikawa, A.; Kabeya, N.; Ikeya, K.; Kakioka, R.; Cech, J.N.; Osada, N.; Leal, M.C.; Inoue, J.; Kume, M.; Toyoda, A.; et al. A key metabolic gene for recurrent freshwater colonization and radiation in fishes. Science 2019, 364, 886–889. [Google Scholar] [CrossRef] [Green Version]
- Tocher, D.R. Issues surrounding fish as a source of omega-3 long-chain polyunsaturated fatty acids. Lipid Technol. 2009, 21, 13–16. [Google Scholar] [CrossRef]
- Napier, J.A.; Usher, S.; Haslam, R.P.; Ruiz-Lopez, N.; Sayanova, O. Transgenic plants as a sustainable, terrestrial source of fish oils. Eur. J. Lipid Sci Technol. 2015, 117, 1317–1324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maclean, N.; Laight, R.J. Transgenic fish: An evaluation of benefits and risks. Fish Fish. 2001, 1, 146–172. [Google Scholar] [CrossRef]
- Yoshizaki, G.; Kiron, V.; Satoh, S.; Takeuchi, T. Expression of masou salmon delta5-desaturase-like gene elevated EPA and DHA biosynthesis in zebrafish. Mar. Biotechnol. 2007, 9, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Gladyshev, M.I.; Sushchik, N.N.; Tolomeev, A.P.; Dgebuadze, Y.Y. Meta-analysis of factors associated with omega-3 fatty acid contents of wild fish. Rev. Fish. Biol Fish. 2018, 28, 277–299. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Q.; Su, B.; Qin, Z.; Weng, C.C.; Yin, F.; Zhou, Y.; Fobes, M.; Perera, D.A.; Shang, M.; Soller, F.; et al. Interaction of diet and the masou salmon Δ5-desaturase transgene on Δ6-desaturase and stearoyl-CoA desaturase gene expression and N-3 fatty acid level in common carp (Cyprinus carpio). Transgenic Res. 2014, 23, 729–742. [Google Scholar] [CrossRef]
- Bugg, W. The effects of the masou salmon delta5-desaturase transgene on N-3 fatty acid production in F1 transgenic common carp (Cyprinus carpio) and channel catfish (Ictalurus punctatus). Master’s Thesis, Auburn University, Auburn, Alabama, 7 May 2017. [Google Scholar]
- Zhang, X.; Pang, S.; Liu, C.; Wang, H.; Ye, D.; Zhu, Z.; Sun, Y. A novel dietary source of EPA and DHA: Metabolic engineering of an important freshwater species—common carp by fat1-transgenesis. Mar. Biotechnol. 2019, 21, 171–185. [Google Scholar] [CrossRef]
- Hendersen, R.J.; Tocher, D.R. The lipid composition and biochemistry of freshwater fish. Prog Lipid Res. 1987, 26, 281–347. [Google Scholar] [CrossRef]
- Zhu, G.; Jiang, X.; Ou, Q.; Zhang, T.; Wang, M.; Sun, G.; Wang, Z.; Sun, J.; Ge, T. Enhanced Production of Docosahexaenoic Acid in Mammalian Cells. PLoS ONE 2014, 9, e96503. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bláhová, Z.; Harvey, T.N.; Pšenička, M.; Mráz, J. Assessment of Fatty Acid Desaturase (Fads2) Structure-Function Properties in Fish in the Context of Environmental Adaptations and as a Target for Genetic Engineering. Biomolecules 2020, 10, 206. https://doi.org/10.3390/biom10020206
Bláhová Z, Harvey TN, Pšenička M, Mráz J. Assessment of Fatty Acid Desaturase (Fads2) Structure-Function Properties in Fish in the Context of Environmental Adaptations and as a Target for Genetic Engineering. Biomolecules. 2020; 10(2):206. https://doi.org/10.3390/biom10020206
Chicago/Turabian StyleBláhová, Zuzana, Thomas Nelson Harvey, Martin Pšenička, and Jan Mráz. 2020. "Assessment of Fatty Acid Desaturase (Fads2) Structure-Function Properties in Fish in the Context of Environmental Adaptations and as a Target for Genetic Engineering" Biomolecules 10, no. 2: 206. https://doi.org/10.3390/biom10020206
APA StyleBláhová, Z., Harvey, T. N., Pšenička, M., & Mráz, J. (2020). Assessment of Fatty Acid Desaturase (Fads2) Structure-Function Properties in Fish in the Context of Environmental Adaptations and as a Target for Genetic Engineering. Biomolecules, 10(2), 206. https://doi.org/10.3390/biom10020206