Fatty Acid Content and Composition of the Yakutian Horses and Their Main Food Source: Living in Extreme Winter Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Conditions of Keeping and Feeding the Horses
2.2. Analyses of Lipids and FAs of Plants
2.3. Analyses of FAs in Animal Tissues
2.4. Desaturase and Elongase Activity Indices
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Petrov, K.A.; Sofronova, V.E.; Chepalov, V.A.; Perk, A.A.; Maksimov, T.K. Sezonnye izmeniniia soderzhaniia fotosinteticheskikh pigmentov u mnogoletnikh travianistykh rastenii kriolitozony [Seasonal changes in the content of photosynthetic pigments in perennial grasses of the permafrost zone]. Fiz.rast. [Russ. J. Plant Physiol.] 2010, 57, 192–199. [Google Scholar]
- Petrov, K.A. Kriorezistentnost’ Rastenii: Ekologo-fiziologicheskie I Biokhemicheskie Aspekty [Cryoresistance of Plants: Ecological, Physiological and Biochemical Aspects]; SB RAS Publishing House: Novosibirsk, Russia, 2016; 276p. [Google Scholar]
- Chirkova, T.V. Fiziologicheskie Osnovy Ustoichivosti Rastenii [Physiological Basis of Plant Resistance]; Publishing House of Saint-Petersburg State University: Saint-Petersburg, Russia, 2002; 244p. [Google Scholar]
- Zakharova, V.I.; Kuznetsova, L.V.; Ivanova, E.I.; Vasilyeva-Kralina, I.I.; Gabyshev, V.A.; Egorova, A.A.; Zolotov, V.I.; Ivanova, A.P.; Ignatov, M.S.; Ignatova, E.A.; et al. Raznoobrazie Rastitel’nogo Mira Iakutii [The Diversity of Plant Life in Yakutia]; SB RAS Publishing House: Novosibirsk, Russia, 2005; 328p. [Google Scholar]
- Aleksandrova, V.D.; Andreev, V.N.; Vakhtina, T.V.; Dydina, R.A.; Karev, G.I.; Petrovskii, V.V.; Shamurin, V.F. Kormovaya Kharakteristika Rastenii Krainego Severa [Fodder Characteristics of the Plants of the Far North]; Nauka Publishing House: Moscow, Russia, 1964; 484p. [Google Scholar]
- Andreev, V.N.; Belyaeva, N.V.; Galaktionova, T.F.; Govorov, P.M.; Egorov, A.D.; Kurilyuk, T.T.; Myarikyanov, M.I.; Permyakova, A.A.; Perfilieva, V.I.; Petrov, A.M.; et al. Tebenevochnye Pastbishcha Vostoka Iakutii [Winter-Grazing Pastures of the North-East of Yakutia]; Yakutsk Book Publishing House: Yakutsk, Russia, 1974; 246p. [Google Scholar]
- Egorov, A.D.; Potapov, V.Y.; Romanov, P.A. Zonal’no-biokhimicheskie Osobennosti Kormovykh Rastenii iakutii i Nekotorye Problemy Razvitiia Zhivotnovodstva [Zonal-biochemical Characteristics of Fodder Plants in Yakutia and Some Problems in the Development of Animal Husbandry]; Yakutsk Book Publishing House: Yakutsk, Russia, 1962; 51p. [Google Scholar]
- Potapov, V.Y. Uglevody i Lignin v Kormovykh Travakh Iakutii [Carbohydrates and Lignin in the Fodder Grasses of Yakutia]; Nauka Publishing House: Moscow, Russia, 1967; 173p. [Google Scholar]
- Pakendorf, B.; Novgorodov, I.N.; Osakovskij, V.L.; Danilova, A.P.; Protod’jakonov, A.P.; Stoneking, M. Investigating the effects of prehistoric migrations in Siberia: Genetic variation and the origins of Yakuts. Hum. Genet. 2006, 120, 334–353. [Google Scholar] [CrossRef] [PubMed]
- Crubézy, E.; Amory, S.; Keyser, C.; Bouakaze, C.; Bodner, V.; Gibert, V.; Röck, F.; Parson, W.; Alexeev, A.; Ludes, B. Human evolution in Siberia: From frozen bodies to ancient DNA. BMC Evol. Biol. 2010, 10, 1–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keyser, C.; Hollard, C.; Gonzalez, A.; Fausser, J.; Rivals, E.; Alexeev, A.; Riberon, A.; Crubézy, E.; Ludes, B. The ancient Yakuts: A population genetic enigma. Philos. Trans. R. SocLond. B Biol. Sci. 2015, 370, 20130385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guryev, I.P. K voprosu o Proiskhozhdenii Iakutskoi Loshadi. Teriologicheskie Issledovaniia v Iakutii [On the Issue of the Yakutian Horse Origin. Theriological Research in Yakutia]; Publishing House of Yakutsk Branch of SB AS USSR: Yakutsk, Russia, 1983; pp. 50–57. [Google Scholar]
- Knyazev, S.P. Analiz geneticheskikh markerov aborigennykh iakutskikh loshadei v sviazi s filogeniei i domestikatsiei loshadei [Analysis of genetic markers of indigenous Yakutian horses in connection with the phylogeny and domestication of horses]. In Proceedings of the International Conference “Animal Molecular and Genetic Markers”; Agrarnaya Nauka: Kiev, Ukraine, 1996; pp. 31–32. [Google Scholar]
- Tikhonov, V.N. Populiatsionno-geneticheskie parametry aborigennykh iakutskikh loshadei v sviazi s fiologeniei sovremennykh porod domashnie loshadi Equus caballus L. [Population and genetic parameters of indigenous Yakutian horses in connection with the physiology of modern domestic horse Equus caballus L.]. Genetika [Genetics] 1998, 34, 796–809. [Google Scholar] [PubMed]
- Librado, P.; Sarkissian, C.; Ermini, L.; Schubert, M.; Jоnsson, H.; Albrechtsen, A.; Fumagalli, M.; Yang, M.; Gamba, C.; Seguin-Orlando, A.; et al. Tracking the origins of Yakutian horses and the genetic basis for their fast adaptation to subarctic environments. Proc. Natl. Acad. Sci. USA 2015, 112, E6889–E6897. [Google Scholar] [CrossRef] [Green Version]
- Petrov, K.A.; Chepalov, V.A.; Sofronova, V.E.; Ilyin, A.N.; Ivanov, R.V. Ekologo-fiziologicheskie i biokhimicheskie osnovy formirovaniia zelenogo kriokorma v Iakutii [Environmental, physiological and biochemical basis of green cryo-fodder formation in Yakutia]. Sel’skokhoziaistvennaia Bioloiia [Agric. Biol.] 2017, 52, 1129–1138. [Google Scholar]
- Petrov, K.A.; Dudareva, L.V.; Nokhsorov, V.V.; Perk, A.A.; Chepalov, V.A.; Sophronova, V.E.; Voinikov, V.K.; Zulfugarov, I.S.; Lee, C.-H. The role of plant fatty acids in regulation of the adaptation of organisms to the cold climate in cryolithic zone of Yakutia. J. Life Sci. 2016, 26, 519–530. [Google Scholar] [CrossRef] [Green Version]
- Alekseev, N.D.; Neustroev, M.P.; Ivanov, R.V. Biologicheskie Osnovy Povysheniya Produktivnosti Loshadej [The Biological Basis for Increasing Horse Productivity]; Gnu Yaniiskh so Raskhn: Yakutsk, Russia, 2006; 280p. [Google Scholar]
- Bligh, E.C.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [Green Version]
- Christie, W.W. Preparation of ester derivatives of fatty acids for chromatographic analysis. Adv. Lipid Methodol. 1993, 2, 69–111. [Google Scholar]
- Vaskovsky, V.E.; Kostetsky, E.Y.; Vasendin, J.M. Universal reagent for determination of phosphorea in lipids. J. Chromatogr. 1975, 114, 129–141. [Google Scholar] [CrossRef]
- Wagner, H.; Horhammer, L.; Walff, P. Dunnschtchromatographic von Phosphatiden und Glykolipiden. Biochem. Z. 1961, 334, 129–141. [Google Scholar]
- Kates, M. Techniques of Lipidology: Isolation, Analysis and Identification of Lipids; American Elsevier: Amsterdam, The Netherlands, 1972; pp. 269–610. [Google Scholar]
- Makhutova, O.N.; Borisova, E.V.; Shulepina, S.P.; Kolmakova, A.A.; Sushchik, N.N. Fatty acid composition and content in chironomid species at various life stages dominating in a saline Siberian lake. Contemp. Probl. Ecol. 2017, 10, 230–239. [Google Scholar] [CrossRef]
- Adolph, S.; Schedlbauer, C.; Blaue, D.; Schöniger, A.; Gittel, C.; Brehm, W.; Fuhrmann, H.; Vervuert, I. Lipid classes in adipose tissues and liver differ between Shetland ponies and Warmblood horses. PLoS ONE 2019, 14, e0207568. [Google Scholar] [CrossRef]
- Murata, N.; Los, D.A. Membrane fluidity and temperature perception. Plant Physiol. 1997, 115, 875–879. [Google Scholar] [CrossRef] [Green Version]
- Tocher, D.R.; Leaver, M.J.; Hodson, P.A. Recent advances in the biochemistry and molecular biology of fatty acyl desaturase. Prog. Lipid Res. 1998, 37, 73–117. [Google Scholar] [CrossRef]
- Murata, N.; Los, D.A. Genome-wide analysis of gene expression characterizes histidine kinase Hik33 as an important component of the cold-signal transduction in cyanobacteria. Physiol. Plant 2006, 57, 235–247. [Google Scholar]
- Guschina, I.A.; Harwood, J.L. Algal lipids and effect of the environment on their biochemistry. In Lipids in Aquatic Ecosystems; Arts, M.T., Kainz, M., Brett, M.T., Eds.; Springer: New York, NY, USA, 2009; pp. 1–24. [Google Scholar]
- Trunova, T.I. Rastenie i Nizkotemperaturnyi Stress [The Plant and the Stress Caused by Low Temperatures]; Nauka: Moscow, Russia, 2007; pp. 1–54. [Google Scholar]
- Sofronova, V.E.; Chepalov, V.A.; Petrov, K.A.; Dymova, O.V.; Golovko, T.K. Fond zelenykh i zheltykh pigmentov iarovogo ovsa, kul’tiviruemogo dlia polucheniia kriokorma v usloviiakh Tsentral’noi Iakutii [Green and yellow pigments of spring oats cultivated as cryo-fodder in the conditions of Central Yakutia]. Agrarny Vestnik Urala [Ural Agric. Bull.] 2019, 4, 72–77. [Google Scholar]
- Petrov, K.A.; Perk, A.A.; Chepalov, V.A.; Chapter, I.V. Linoleic and Other Fatty Acids, Cryoresistance, and Fodder Value of Yakutian Plants. In Linoleic Acids. Sources, Biochemical Properties and Health Effects; Onakpoya, I., Ed.; Nova Science Publishers: New York, NY, USA, 2012; pp. 83–96. [Google Scholar]
- Dudareva, L.V.; Rudikovskaya, E.G.; Nokhsorov, V.V.; Petrov, K.A. Fatty- acid profiles of aerial parts of three horsetail species growing in Central and Northern Yakutia. Chem. Nat. Compd. 2015, 51, 220–223. [Google Scholar] [CrossRef]
- Nokhsorov, V.V. Adaptivnye izmeneniia sostava i soderzhaniia lipidov rastenii kriolitozony Iakutii pri gipotermii [Adaptive changes in the composition and content of lipids in the plants of the cryolithic zone in Yakutia in the hypothermal conditions]. Ph.D. Thesis, Siberian Institute of Physiology and Biochemistry of Plants Sb RAS, Irkutsk, Russia, 2017. [Google Scholar]
- Welti, R.; Li, W.; Li, M.; Sang, Y.; Biesiada, H.; Zhou, H.-E.; Rajashekar, C.B.; Williams, T.D.; Wang, X. Profiling membrane lipids in plant stress responses—Role of phospholipase Dα in freezing-induced lipid changes in Arabidopsis. J. Biol. Chem. 2002, 277, 31994–32002. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.Y.; Lin, H.-S. Effect of plant growth temperature on membrane lipids in strawberry (Fragaria × ananassa Duch.). Sci. Hortic. 2006, 108, 35–42. [Google Scholar] [CrossRef]
- Vereshchagin, A.G. Lipidy v Zhizni Rastenii [Lipids in Plant Life]; Nauka: Moscow, Russia, 2007; pp. 1–78. [Google Scholar]
- Gabyshev, M.F. The Yakut Horse; Yakutsk Book Publishers: Yakutsk, Russia, 1957; p. 238. [Google Scholar]
- Aleekseev, N.D. Novoe o proiskhozhdenii loshadei iakutskoi porody (biologicheskie aspekty [New in the origin of the Yakutian horses (biological aspects)]. Nauka i Obrazovanie [Sci. Educ.] 2005, 2, 114–118. [Google Scholar]
- Gladyshev, M.I.; Sushchik, N.N.; Makhutova, O.N. Production of EPA and DHA in aquatic ecosystems and their transfer to the land. Prostaglandins Other Lipid Mediat. 2013, 107, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Twining, C.W.; Brenna, J.T.; Hairston, N.G., Jr.; Flecker, A.S. Highly unsaturated fatty acids in nature: What we know and what we need to learn. Oikos 2016, 125, 749–760. [Google Scholar] [CrossRef]
- Malcicka, M.; Visser, B.; Ellers, J. An evolutionary perspective on linoleic acid synthesis in animals. Evol. Biol. 2018, 45, 15–26. [Google Scholar] [CrossRef] [Green Version]
- Tocher, D.R.; Dick, J.R.; MacGlaughlin, P.; Bell, J.G. Effect of diets enriched in Δ6 desaturated fatty acids (18:3n-6 and18:4n-3), on growth, fatty acid composition and highly unsaturated fatty acid synthesis in two populations of Arctic charr (Salvelinus alpines L.). Comp. Biochem. Physiol. Part B 2006, 144, 245–253. [Google Scholar] [CrossRef] [Green Version]
- Suagee, J.K.; Corl, B.A.; Crisman, M.V.; Wearn, J.G.; McCutcheon, L.J.; Geor, R.J. De novo fatty acid synthesis and NADPH generation in equine adipose and liver tissue. Comp. Biochem. Physiol. 2010, 155, 322–326. [Google Scholar] [CrossRef]
- Mordovskaya, V.I.; Krivoshapkin, V.G.; Pogozheva, A.V.; Baiko, V.G. Fatty acid composition of adipose tissue lipids in horses of Yakut breed. Vopr. Pitan. 2005, 74, 17–23. [Google Scholar]
- Slobodchikova, M.N.; Ivanov, R.V.; Stepanov, K.M.; Pustovoy, V.F.; Osipov, V.G.; Mironov, S.M. Lipid fatty acid composition of the fat tissue of the Yakut horse. HorseBreed. Eques. Sport. 2011, 6, 28–30. [Google Scholar]
- Ghandour, R.A.; Colson, C.; Giroud, M.; Maurer, S.; Rekima, S.; Ailhaud, G.; Klingenspor, M.; Amri, E.-Z.; Pisani, D.F. Impact of dietary ω3 polyunsaturated fatty acid supplementation on brown and brite adipocyte function. J. Lipid Res. 2018, 59, 452–461. [Google Scholar] [CrossRef] [Green Version]
- Colson, C.; Ghandour, R.A.; Dufies, O.; Rekima, S.; Loubat, A.; Munro, P.; Boyer, L.; Pisani, D.F. Diet supplementation in ω3 polyunsaturated fatty acid favors an anti-inflammatory basal environment in mouse adipose tissue. Nutrients 2019, 11, 438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pisani, D.F.; Ailhaud, G. Involvement of polyunsaturated fatty acids in the control of energy storage and expenditure. Oilseeds Fats Crop. Lipids 2019, 26, 37. [Google Scholar] [CrossRef] [Green Version]
- Belaunzaran, X.; Lavín, P.; Mantecón, A.R.; Kramer, J.K.G.; Aldai, N. Effect of slaughter age and feeding system on the neutral and polar lipid composition of horse meat. Animal 2018, 12, 417–425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tonial, I.B.; Aguiar, A.C.; Oliveira, C.C.; Bonnafé, E.G.; Visentainer, J.V.; de Souza, N.E. Fatty acid and cholesterol content, chemical composition and sensory evaluation of horsemeat. S. Afr. J. Anim. Sci. 2009, 39, 328–332. [Google Scholar] [CrossRef] [Green Version]
- Lorenzo, J.M.; Sarriés, M.V.; Tateo, A.; Polidori, P.; Franco, D.; Lanza, M. Carcass characteristics, meat quality and nutritional value of horsemeat: A review. Meat Sci. 2014, 96, 1478–1488. [Google Scholar] [CrossRef]
- Belaunzaran, X.; Bessa, R.J.B.; Lavín, P.; Mantecón, A.R.; Kramer, J.K.G.; Aldai, N. Horse-meat for human consumption—Current research and future opportunities. Meat Sci. 2015, 108, 74–81. [Google Scholar] [CrossRef]
- Ferjak, E.N.; Cavinder, C.A.; Sukumaran, A.T.; Burnett, D.D.; Lemley, C.O.; Dinh, T.T.N. Fatty acid composition of mesenteric, cardiac, abdominal, intermuscular, and subcutaneous adipose tissues from horses of three body condition scores. Livest. Sci. 2019, 223, 116–123. [Google Scholar] [CrossRef]
- De Caro, J.; Eydoux, C.; Chérif, S.; Lebrun, R.; Gargouri, Y.; Carrière, F.; De Caro, A. Occurrence of pancreatic lipase-related protein-2 in various species and its relationship with herbivore diet. Comp. Biochem. Physiol. Part B 2008, 150, 1–9. [Google Scholar] [CrossRef]
- Juárez, M.; Polvillo, O.; Gómez, M.D.; Alcalde, M.J.; Romero, F.; Valera, M. Breed effect on carcass and meat quality of foals slaughtered at 24 months of age. Meat Sci. 2009, 83, 224–228. [Google Scholar] [CrossRef]
- Guil-Guerrero, J.L.; Rincón-Cervera, M.A.; Venegas-Venegas, C.E.; Ramos-Bueno, R.P.; Suárez, M.D. Highly bioavailable α-linolenic acid from the subcutaneous fat of the Palaeolithic Relict “Galician horse”. Int. Food Res. J. 2013, 20, 3249–3258. [Google Scholar]
- Belaunzaran, X.; Lavín, P.; Barron, L.J.R.; Mantecon, A.R.; Kramer, J.K.G.; Aldai, N. An assessment of the fatty acid composition of horse-meat available at the retail level in northern Spain. Meat Sci. 2017, 124, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Gladyshev, M.I.; Makhutova, O.N.; Gubanenko, G.A.; Rechkina, E.A.; Kalachova, G.S.; Sushchik, N.N. Livers of terrestrial production animals as a source of longchain polyunsaturated fatty acids for humans: An alternative to fish? Eur. J. Lipid Sci. Technol. 2015, 117, 1417–1421. [Google Scholar] [CrossRef]
- Del Bò, C.; Simonetti, P.; Gardana, C.; Riso, P.; Lucchini, G.; Ciappellano, S. Horse meat consumption affects iron status, lipid profile and fatty acid composition of red blood cells in healthy volunteers. Int. J. Food Sci. Nutr. 2013, 64, 147–154. [Google Scholar] [PubMed]
- Lee, C.-E.; Seong, P.-N.; Oh, W.-Y.; Ko, M.-S.; Kim, K.-I.; Jeong, J.-H. Nutritional characteristics of horsemeat in comparison with those of beef and pork. Nutr. Res. Pract. 2007, 1, 70–73. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Munekata, P.E.S.; Campagnol, P.C.B.; Zhu, Z.; Alpas, H.; Barba, F.J.; Tomasevic, I. Technological aspects of horse meat products—A review. Food Res. Int. 2017, 102, 176–183. [Google Scholar] [CrossRef]
Date | t, °С * | Stages of Development | TL, mg/g DW | |
---|---|---|---|---|
min | Average | |||
Control (sown on May 31, 2014) | ||||
07.07 | 14 | 18 | Stem elongation | 99 ± 4 |
11.07 | 13 | 21 | Stem elongation | 114 ± 4 |
14.07 | 17 | 23 | Ear emergence | 127 ± 5 |
25.07 | 16 | 21 | Dough development | 129 ± 5 |
Treatment (sown on July 15, 2014) | ||||
25.07 | 16 | 21 | Germination | 73 ± 3 |
11.09 | 1 | 9 | Stem elongation, ear emergence | 128 ± 5 |
25.09 | −4 | 1 | Dough development (cold hardening phase I) | 154 ± 6 |
30.09 | −7 | −3 | Dough development (cold hardening phase II) | 155 ± 6 |
Date | t, °С * | Stages of Development | TLs, mg/g DW | |
---|---|---|---|---|
min | Average | |||
Control—grass without mowing | ||||
06.06 | 3 | 12 | Tillering | 26 ± 2 |
16.06 | 12 | 16 | Stem elongation | 30 ± 2 |
11.07 | 13 | 21 | Ear emergence | 44 ± 2 |
25.07 | 16 | 21 | Dough development | 57 ± 3 |
Treatment—grass after mowing (July 15, 2014) | ||||
25.07 | 16 | 21 | Aftergrass | 93 ± 3 |
18.08 | 7 | 16 | Stem elongation | 89 ± 3 |
11.09 | 1 | 9 | Ear emergence | 124 ± 5 |
25.09 | −4 | 1 | Dough development (cold hardening phase I) | 134 ± 4 |
30.09 | −7 | −3 | Dough development (cold hardening phase II) | 137 ± 4 |
Fatty Acids | July * | September | t | July | September | t |
---|---|---|---|---|---|---|
mg/g | mg/g | % | % | |||
14:0 | 0.10 ± 0.06 | 0.14 ± 0.01 | 0.62 | 0.6 ± 0.3 | 0.45 ± 0.02 | −0.57 |
16:0 | 3.5 ± 0.4 | 4.9 ± 0.3 | 2.83 | 20 ± 1 | 15.8 ± 0.3 | −2.80 |
18:0 | 0.5 ± 0.1 | 0.6 ± 0.1 | 1.12 | 2.7 ± 0.3 | 1.8 ± 0.1 | −2.56 |
20:0 | 0.19 ± 0.01 | 0.25 ± 0.03 | 1.76 | 1.10 ± 0.04 | 0.8 ± 0.1 | −3.66 |
22:0 | 0.23 ± 0.03 | 0.28 ± 0.02 | 1.57 | 1.3 ± 0.1 | 0.91 ± 0.04 | −3.33 |
16:1n-9+n-7 | 0.1 ± 0.1 | 0.27 ± 0.03 | 2.91 | 0.3 ± 0.3 | 0.9 ± 0.2 | 1.60 |
16:1n-5 | 0.36 ± 0.03 | 0.6 ± 0.1 | 4.90 | 2.1 ± 0.1 | 2.02 ± 0.01 | −0.43 |
18:1n-9 | 0.6 ± 0.3 | 0.6 ± 0.1 | −0.28 | 3.6 ± 1.6 | 1.81 ± 0.04 | −1.11 |
18:2n-6 | 2.0 ± 0.2 | 4.1 ± 0.4 | 4.87 | 11.5 ± 0.4 | 13.0 ± 0.3 | 3.12 |
18:3n-3 | 9.7 ± 1.2 | 19 ± 1 | 5.37 | 55 ± 4 | 61 ± 1 | 1.52 |
SFAs | 4.7 ± 0.5 | 6.4 ± 0.5 | 2.54 | 27 ± 2 | 21 ± 1 | −2.79 |
MUFAs | 1.2 ± 0.3 | 1.6 ± 0.2 | 1.15 | 6.8 ± 1.7 | 5.2 ± 0.2 | −0.90 |
PUFAs | 12 ± 1 | 23 ± 2 | 5.45 | 67 ± 4 | 74.2 ± 0.4 | 2.07 |
ΣFAs | 18 ± 2 | 31 ± 2 | 4.93 | - | - | - |
Muscle | Liver | SCfat | |
---|---|---|---|
EPA+DHA, mg/100 g ww | 11 ± 1 A | 11 ±1 A | - |
Total FA, mg/g ww | 31 A | 28 A | 854 B |
n-6/n-3 | 1.1 ± 0.2 A | 5.5 ± 1.2 B | 0.44 ± 0.03 A |
Product/Precursor Ratio | Liver | SCfat | t |
---|---|---|---|
18:0/16:0 | 2.5 ± 0.3 | 0.19 ± 0.02 | 7.48 |
16:1n-7/16:0 | 0.20 ± 0.02 | 0.3 ± 0.1 | −3.85 |
18:1n-9/18:0 | 0.42 ± 0.04 | 5.3 ± 0.4 | −12.81 |
20:4n-6/20:3n-6 | 7.9 ± 0.7 | - | - |
20:5n-3/20:4n-3 | 8.8 ± 0.8 | 0.5 ± 0.1 | 10.19 |
20:5n-3/18:3n-3 | 0.06 ± 0.03 | 0.0006 ± 0.0002 | 2.34 |
20:4n-6/18:2n-6 | 0.14 ± 0.01 | 0.003 ± 0.001 | 11.80 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrov, K.A.; Dudareva, L.V.; Nokhsorov, V.V.; Stoyanov, K.N.; Makhutova, O.N. Fatty Acid Content and Composition of the Yakutian Horses and Their Main Food Source: Living in Extreme Winter Conditions. Biomolecules 2020, 10, 315. https://doi.org/10.3390/biom10020315
Petrov KA, Dudareva LV, Nokhsorov VV, Stoyanov KN, Makhutova ON. Fatty Acid Content and Composition of the Yakutian Horses and Their Main Food Source: Living in Extreme Winter Conditions. Biomolecules. 2020; 10(2):315. https://doi.org/10.3390/biom10020315
Chicago/Turabian StylePetrov, Klim A., Lyubov V. Dudareva, Vasiliy V. Nokhsorov, Kirill N. Stoyanov, and Olesia N. Makhutova. 2020. "Fatty Acid Content and Composition of the Yakutian Horses and Their Main Food Source: Living in Extreme Winter Conditions" Biomolecules 10, no. 2: 315. https://doi.org/10.3390/biom10020315
APA StylePetrov, K. A., Dudareva, L. V., Nokhsorov, V. V., Stoyanov, K. N., & Makhutova, O. N. (2020). Fatty Acid Content and Composition of the Yakutian Horses and Their Main Food Source: Living in Extreme Winter Conditions. Biomolecules, 10(2), 315. https://doi.org/10.3390/biom10020315