Spraying Ozonated Water on Bobal Grapevines: Effect on Wine Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Grapevines
2.2. Ozonated Water
2.3. Grapevine Treatments
- Spraying 1 (S1): treatment carried out in 2015 in which ozonated water was applied by spraying leaves only once during the ripening period, which subsequently coincided with 6 weeks before harvest.
- Spraying 2 (S2): treatment performed in 2016 in which ozonated water was applied by spraying leaves after the fruit set, at the beginning of veraison, and during the ripening period, which subsequently coincided with 14, 8, and 3 weeks, respectively, before harvest.
2.4. Winemaking
2.5. Analytical Methods
2.5.1. Wine Enological Parameters
2.5.2. Determination of Low-Molecular-Weight Phenolic Compounds by HPLC-DAD
2.5.3. Determination of Volatile Compounds by SBSE-GC-MS
2.6. Statistical Analysis
3. Results and Discussion
3.1. Effect on Enological Parameters
3.2. Effect on Phenolic Compounds
3.3. Effect on Volatile Compounds
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- International Organisation of Vine and Wine. Statistical Report on World Vitiviniculture; OIV: Paris, France, 2019. [Google Scholar]
- Pertot, I.; Caffi, T.; Rossi, V.; Mugnai, L.; Hoffmann, C.; Grando, M.S.; Gary, C.; Lafond, D.; Duso, C.; Thiery, D.; et al. A critical review of plant protection tools for reducing pesticide use on grapevine and new perspectives for the implementation of IPM in viticulture. Crop. Prot. 2017, 97, 70–84. [Google Scholar] [CrossRef]
- Campayo, A.; Serrano de la Hoz, K.; García-Martínez, M.M.; Sánchez-Martínez, J.F.; Salinas, M.R.; Alonso, G.L. Spraying ozonated water on Bobal grapevines: Effect on grape quality. Food Res. Int. 2019, 125, 108540. [Google Scholar] [CrossRef] [PubMed]
- Raio, A.; Feliciani, A.; Ferri, V.; Carboni, C. Integrated vineyard management trials using ozonated and electrolized water. J. Enol. Vitic. 2016, 2/6, 1–6. [Google Scholar]
- Pierron, R.J.G.; Pages, M.; Couderc, C.; Compant, S.; Jacques, A.; Violleau, F. In vitro and in planta fungicide properties of ozonated water against the esca-associated fungus Phaeoacremonium aleophilum. Sci. Hortic. 2015, 189, 184–191. [Google Scholar] [CrossRef] [Green Version]
- Khadre, M.A.; Yousef, A.E.; Kim, J.-G. Microbiological aspects of ozone applications in food: A review. J. Food Sci. 2001, 66, 1242–1252. [Google Scholar] [CrossRef]
- Gardoni, D.; Vailati, A.; Canziani, R. Decay of ozone in water: A review. Ozone Sci. Eng. 2012, 34, 233–242. [Google Scholar] [CrossRef]
- Miller, F.A.; Silva, C.L.M.; Brandão, T.R.S. A review on ozone-based treatments for fruit and vegetables preservation. Food Eng. Rev. 2013, 5, 77–106. [Google Scholar] [CrossRef]
- Bellincontro, A.; Catelli, C.; Cotarella, R.; Mencarelli, F. Postharvest ozone fumigation of Petit Verdot grapes to prevent the use of sulfites and to increase anthocyanin in wine. Aust. J. Grape Wine Res. 2017, 23, 200–206. [Google Scholar] [CrossRef]
- Botondi, R.; De Sanctis, F.; Moscatelli, N.; Vettraino, A.M.; Catelli, C.; Mencarelli, F. Ozone fumigation for safety and quality of wine grapes in postharvest dehydration. Food Chem. 2015, 188, 641–647. [Google Scholar] [CrossRef]
- Ferrandino, A.; Lovisolo, C. Abiotic stress effects on grapevine (Vitis vinifera L.): Focus on abscisic acid-mediated consequences on secondary metabolism and berry quality. Environ. Exp. Bot. 2014, 103, 138–147. [Google Scholar] [CrossRef]
- Río Segade, S.; Vincenzi, S.; Giacosa, S.; Rolle, L. Changes in stilbene composition during postharvest ozone treatment of ‘Moscato bianco’ winegrapes. Food Res. Int. 2019, 123, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Río Segade, S.; Vilanova, M.; Giacosa, S.; Perrone, I.; Chitarra, W.; Pollon, M.; Torchio, F.; Boccacci, P.; Gambino, G.; Gerbi, V.; et al. Ozone improves the aromatic fingerprint of white grapes. Sci. Rep. 2017, 7, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Artés-Hernández, F.; Aguayo, E.; Artés, F.; Tomás-Barberán, F.A. Enriched ozone atmosphere enhances bioactive phenolics in seedless table grapes after prolonged shelf life. J. Sci. Food Agric. 2007, 87, 824–831. [Google Scholar] [CrossRef]
- Artés-Hernández, F.; Artés, F.; Tomás-Barberán, F.A. Quality and enhancement of bioactive phenolics in cv. Napoleon table grapes exposed to different postharvest gaseous treatments. J. Agric. Food Chem. 2003, 51, 5290–5295. [Google Scholar] [CrossRef] [PubMed]
- Río Segade, S.; Vilanova, M.; Pollon, M.; Giacosa, S.; Torchio, F.; Rolle, L. Grape VOCs response to postharvest short-term ozone treatments. Front. Plant. Sci. 2018, 9, 1826. [Google Scholar] [CrossRef] [PubMed]
- González-Barrio, R.; Beltrán, D.; Cantos, E.; Gil, M.I.; Espín, J.C.; Tomás-Barberán, F.A. Comparison of ozone and UV-C treatments on the postharvest stilbenoid monomer, dimer, and trimer induction in var. ‘Superior’ white table grapes. J. Agric. Food Chem. 2006, 54, 4222–4228. [Google Scholar] [CrossRef]
- Cayuela, J.A.; Vázquez, A.; Pérez, A.G.; García, J.M. Control of table grapes postharvest decay by ozone treatment and resveratrol induction. Food Sci. Technol. Int. 2009, 15, 495–502. [Google Scholar] [CrossRef]
- De Sanctis, F.; Ceccantoni, B.; Bellincontro, A.; Botondi, R.; Mencarelli, F.; D’Onofrio, C.; Ducci, E.; Catelli, C. Ozone fumigation postharvest treatment for the quality of wine grape. Acta Hortic. 2015, 1071, 795–800. [Google Scholar] [CrossRef]
- Waterhouse, A.L. Wine Phenolics. Ann. New York Acad. Sci. 2002, 957, 21–36. [Google Scholar] [CrossRef]
- Ruiz-García, Y.; Gómez-Plaza, E. Elicitors: A tool for improving fruit phenolic content. Agriculture 2013, 3, 33–52. [Google Scholar] [CrossRef] [Green Version]
- Sarig, P.; Zahavi, T.; Zutkhi, Y.; Yannai, S.; Lisker, N.; Ben-Arie, R. Ozone for control of post-harvest decay of table grapes caused by Rhizopus stolonifer. Physiol. Mol. Plant. Pathol. 1996, 48, 403–415. [Google Scholar] [CrossRef]
- Carbone, K.; Mencarelli, F. Influence of short-term postharvest ozone treatments in nitrogen or air atmosphere on the metabolic response of white wine grapes. Food Bioprocess. Technol. 2015, 8, 1739–1749. [Google Scholar] [CrossRef]
- Río Segade, S.; Paissoni, M.A.; Giacosa, S.; Bautista-Ortín, A.B.; Gómez-Plaza, E.; Gerbi, V.; Rolle, L. Winegrapes dehydration under ozone-enriched atmosphere: Influence on berry skin phenols release, cell wall composition and mechanical properties. Food Chem. 2019, 271, 673–684. [Google Scholar] [CrossRef] [PubMed]
- Laureano, J.; Giacosa, S.; Río Segade, S.; Torchio, F.; Cravero, F.; Gerbi, V.; Englezos, V.; Carboni, C.; Cocolin, L.; Rantsiou, K.; et al. Effects of continuous exposure to ozone gas and electrolyzed water on the skin hardness of table and wine grape varieties. J. Texture Stud. 2016, 47, 40–48. [Google Scholar] [CrossRef]
- Paissoni, M.A.; Río Segade, S.; Giacosa, S.; Torchio, F.; Cravero, F.; Englezos, V.; Rantsiou, K.; Carboni, C.; Gerbi, V.; Teissedre, P.L.; et al. Impact of post-harvest ozone treatments on the skin phenolic extractability of red winegrapes cv Barbera and Nebbiolo (Vitis vinifera L.). Food Res. Int. 2017, 98, 68–78. [Google Scholar] [CrossRef]
- Loreto, F.; Schnitzler, J.P. Abiotic stresses and induced BVOCs. Trends Plant. Sci. 2010, 15, 154–166. [Google Scholar] [CrossRef]
- Mencarelli, F.; Bellincontro, A. Recent advances in postharvest technology of the wine grape to improve the wine aroma. J. Sci. Food Agric. 2018. [Google Scholar] [CrossRef]
- Martínez-Gil, A.M.; Pardo-García, A.I.; Zalacain, A.; Alonso, G.L.; Salinas, M.R. Lavandin hydrolat applications to Petit Verdot vineyards and their impact on their wine aroma compounds. Food Res. Int. 2013, 53, 391–402. [Google Scholar] [CrossRef]
- EU Official Methods for Wine Analyses, Regulation 440/2003; European Commission: Brussels, Belgium, 2003.
- Ribéreau-Gayon, J.; Peynaud, E.; Sudraud, P.; Ribéreau-Gayon, P. Traité d’Oenologie-Sciences et techniques du vin, tome I: Analyse et contrôle des vins; Dunod: Paris, France, 1982. [Google Scholar]
- Glories, Y. La couleur des vins rouges. Les equilibres des anthocyanes et des tanins. Connaiss. la Vigne du Vin 1984, 18, 195–217. [Google Scholar] [CrossRef] [Green Version]
- CIE, C.I. de l’Eclairage. Colorimetry, 2nd ed.; Commission Internationale de L’Eclairage: Vienna, Austria, 1986. [Google Scholar]
- Ayala, F.; Echávarri, J.F.; Negueruela, A.I. A new simplified method for measuring the color of wines. I. Red and rosé wines. Am. J. Enol. Vitic. 1997, 48, 357–363. [Google Scholar]
- Salinas, M.R.; Serrano De La Hoz, K.; Zalacain, A.; Lara, J.F.; Garde-Cerdán, T. Analysis of red grape glycosidic aroma precursors by glycosyl glucose quantification. Talanta 2012, 89, 396–400. [Google Scholar] [CrossRef] [PubMed]
- Pardo-García, A.I.; Martínez-Gil, A.M.; Cadahía, E.; Pardo, F.; Alonso, G.L.; Salinas, M.R. Oak extract application to grapevines as a plant biostimulant to increase wine polyphenols. Food Res. Int. 2014, 55, 150–160. [Google Scholar] [CrossRef]
- Sánchez-Gómez, R.; Zalacain, A.; Pardo, F.; Alonso, G.L.; Salinas, M.R. An innovative use of vine-shoots residues and their “feedback” effect on wine quality. Innov. Food Sci. Emerg. Technol. 2016, 37, 18–26. [Google Scholar] [CrossRef]
- Guth, H. Quantitation and sensory studies of character impact odorants of different white wine varieties. J. Agric. Food Chem. 1997, 45, 3027–3032. [Google Scholar] [CrossRef]
- Soja, G.; Eid, M.; Gangl, H.; Redl, H. Ozone sensitivity of grapevine (Vitis vinifera L.): Evidence for a memory effect in a perennial crop plant? Phyton. 1997, 37, 265–270. [Google Scholar]
- Booker, F.L.; Miller, J.E. Phenylpropanoid metabolism and phenolic composition of soybean [Glycine max (L.) Merr.] leaves following exposure to ozone. J. Exp. Bot. 1998, 49, 1191–1202. [Google Scholar] [CrossRef]
- Sims, C.; Bates, R. Effects of skin fermentation time on the phenols, anthocyanins, ellagic acid sediment, and sensory characteristics of a red Vitis rotundifolia wine. Am. J. Enol. Vitic. 1994, 45, 56. [Google Scholar]
- Heath, R.L. Modification of the biochemical pathways of plants induced by ozone: What are the varied routes to change? Environ. Pollut. 2008, 155, 453–463. [Google Scholar] [CrossRef]
- Esparza, I.; Santamaría, C.; Calvo, I.; Fernández, J.M. Significance of CIELAB parameters in the routine analysis of red wines. CyTA-J. Food 2009, 7, 189–199. [Google Scholar] [CrossRef] [Green Version]
- Martínez, J.A.; Melgosa, M.; Pérez, M.M.; Hita, E.; Negueruela, A.I. Note. Visual and instrumental color evaluation in red wines. Food Sci. Technol. Int. 2001, 7, 439–444. [Google Scholar] [CrossRef]
- Sarry, J.E.; Günata, Z. Plant and microbial glycoside hydrolases: Volatile release from glycosidic aroma precursors. Food Chem. 2004, 87, 509–521. [Google Scholar] [CrossRef]
- Guzzon, R.; Franciosi, E.; Moser, S.; Carafa, I.; Larcher, R. Application of ozone during grape drying for the production of straw wine. Effects on the microbiota and compositive profile of grapes. J. Appl. Microbiol. 2018, 125, 513–527. [Google Scholar] [CrossRef]
- Cejudo-Bastante, M.J.; Vicario, A.; Guillén, D.A.; Hermosín-Gutiérrez, I.; Pérez-Coello, M.S. Phenolic characterization of minor red grape varieties grown in Castilla-La Mancha region in different vinification stages. Eur. Food Res. Technol. 2015, 240, 595–607. [Google Scholar] [CrossRef]
- Casassa, L.F.; Harbertson, J.F. Extraction, evolution, and sensory impact of phenolic compounds during red wine maceration. Annu. Rev. Food Sci. Technol. 2014, 5, 83–109. [Google Scholar] [CrossRef]
- Versari, A.; Boulton, R.B.; Parpinello, G.P. A comparison of analytical methods for measuring the color components of red wines. Food Chem. 2008, 106, 397–402. [Google Scholar] [CrossRef]
- Peng, Z.; Iland, P.G.; Oberholster, A.; Sefton, M.A.; Waters, E.J. Analysis of pigmented polymers in red wine by reverse phase HPLC. Aust. J. Grape Wine Res. 2002, 8, 70–75. [Google Scholar] [CrossRef]
- Grimmig, B.; Schubert, R.; Fischer, R.; Hain, R.; Schreier, P.H.; Betz, C.; Langebartels, C.; Ernst, D.; Sandermann, H. Ozone- and ethylene-induced regulation of a grapevine resveratrol synthase promoter in transgenic tobacco. Acta Physiol. Plant. 1997, 19, 467–474. [Google Scholar] [CrossRef]
- Rosemann, D.; Heller, W.; Sandermann, H., Jr. Biochemical plant responses to ozone II. Induction of stilbene biosynthesis in Scots pine (Pinus sylvestris L.) seedlings. Plant. Physiol. 1991, 97, 1280–1286. [Google Scholar] [CrossRef] [Green Version]
- Hermosín-Gutiérrez, I.; Castillo-Muñoz, N.; Gómez-Alonso, S.; García-Romero, E. Flavonol profiles for grape and wine authentication. In Progress in Authentication of Food and Wine; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2011; Volume 1081, pp. 113–129. ISBN 0-8412-2670-9. [Google Scholar]
- Boulton, R. The copigmentation of anthocynins and its role in the color of red wine: A critical review. Am. J. Enol. Vitic. 2001, 52, 67–78. [Google Scholar]
- Heras-Roger, J.; Alonso-Alonso, O.; Gallo-Montesdeoca, A.; Díaz-Romero, C.; Darias-Martín, J. Influence of copigmentation and phenolic composition on wine color. J. Food Sci. Technol. 2016, 53, 2540–2547. [Google Scholar] [CrossRef] [Green Version]
- Rentzsch, M.; Schwarz, M.; Winterhalter, P. Pyranoanthocyanins—an overview on structures, occurrence, and pathways of formation. Trends Food Sci. Technol. 2007, 18, 526–534. [Google Scholar] [CrossRef]
- Fares, S.; Oksanen, E.; Lännenpää, M.; Julkunen-Tiitto, R.; Loreto, F. Volatile emissions and phenolic compound concentrations along a vertical profile of Populus nigra leaves exposed to realistic ozone concentrations. Photosynth. Res. 2010, 104, 61–74. [Google Scholar] [CrossRef]
- Gómez García-Carpintero, E.; Sánchez-Palomo, E.; González-Viñas, M.A. Aroma characterization of red wines from cv. Bobal grape variety grown in La Mancha region. Food Res. Int. 2011, 44, 61–70. [Google Scholar] [CrossRef]
- Aleixandre, J.L.; Lizama, V.; Alvarez, I.; García, M.J. Note. Differentiation of varietal red wines from Communidad Valenciana (Spain) based on their composition in terms of alcohols and polyols. Food Sci. Technol. Int. 2000, 6, 39–45. [Google Scholar] [CrossRef]
- Ferreira, V.; López, R.; Cacho, J.F. Quantitative determination of the odoorants of young red wines from different grape varieties. An assessment of their sensory role. J. Sci. Food Agric. 2000, 80, 1659–1667. [Google Scholar] [CrossRef]
- Etiévant, P.X. Volatile compounds in foods and beverages. In Wine; Maarse, H., Ed.; CRC Press: New York, NY, USA, 1991; pp. 483–546. [Google Scholar]
- López, R.; Aznar, M.; Cacho, J.; Ferreira, V. Determination of minor and trace volatile compounds in wine by solid-phase extraction and gas chromatography with mass spectrometric detection. J. Chromatogr. A 2002, 966, 167–177. [Google Scholar] [CrossRef]
- Franco, M.; Peinado, R.A.; Medina, M.; Moreno, J. Off-vine grape drying effect on volatile compounds and aromatic series in must from Pedro Ximénez grape variety. J. Agric. Food Chem. 2004, 52, 3905–3910. [Google Scholar] [CrossRef]
- Culleré, L.; Escudero, A.; Cacho, J.; Ferreira, V. Gas Chromatography−Olfactometry and chemical quantitative study of the aroma of six premium quality Spanish aged red wines. J. Agric. Food Chem. 2004, 52, 1653–1660. [Google Scholar] [CrossRef]
- Waterhouse, A.L.; Sacks, G.L.; Jeffery, D.W. Understanding Wine Chemistry; John Wiley & Sons, Ltd.: Chichester, UK, 2016; Volume 21, ISBN 9781118730720. [Google Scholar]
- Lambrechts, M.G.; Pretorius, I.S. Yeast and its importance to wine aroma—A review. South Afr. J. Enol. Vitic. 2000, 21, 97–129. [Google Scholar] [CrossRef] [Green Version]
- Herraiz, T.; Herraiz, M.; Reglero, G.; Martin-Alvarez, P.J.; Cabezudo, M.D. Changes in the composition of alcohols and aldehydes of C6 chain length during the alcoholic fermentation of grape must. J. Agric. Food Chem. 1990, 38, 969–972. [Google Scholar] [CrossRef]
- Maicas, S.; Mateo, J. Hydrolysis of terpenyl glycosides in grape juice and other fruit juices: A review. Appl. Microbiol. Biotechnol. 2005, 67, 322–335. [Google Scholar] [CrossRef]
- Chatonnet, P.; Dubourdieu, D.; Boidron, J.; Lavigne, V. Synthesis of volatile phenols by Saccharomyces cerevisiae in wines. J. Sci. Food Agric. 1993, 62, 191–202. [Google Scholar] [CrossRef]
Treatments | Season 1 | Season 2 | ||
---|---|---|---|---|
C1 | S1 | C2 | S2 | |
Classical parameters | ||||
°A (%v) | 12.51 ± 0.08 a | 13.40 ± 0.09 b | 11.58 ± 0.02 a | 11.53 ± 0.10 a |
pH | 3.38 ± 0.02 a | 3.44 ± 0.03 a | 3.18 ± 0.01 a | 3.18 ± 0.01 a |
TA (g/L tartaric acid) | 6.58 ± 0.34 a | 6.96 ± 0.13 a | 5.50 ± 0.08 a | 5.24 ± 0.15 a |
VA (g/L acetic acid) | 0.23 ± 0.05 a | 0.26 ± 0.05 a | 0.10 ± 0.01 a | 0.13 ± 0.01 a |
TPI | 15.65 ± 0.46 a | 36.21 ± 3.89 b | 29.31 ± 2.98 a | 29.31 ± 0.82 a |
Chromatic parameters | ||||
A420 | 0.0260 ± 0.0011 a | 0.0812 ± 0.0009 b | 0.1884 ± 0.0074 b | 0.1734 ± 0.0076 a |
A520 | 0.0366 ± 0.0015 a | 0.1336 ± 0.0013 b | 0.3779 ± 0.0065 b | 0.3340 ± 0.0150 a |
A620 | 0.0078 ± 0.0016 a | 0.0177 ± 0.0015 b | 0.0885 ± 0.0058 a | 0.0832 ± 0.0041 a |
CI | 0.70 ± 0.01 a | 2.32 ± 0.04 b | 6.55 ± 0.13 b | 5.91 ± 0.26 a |
T | 0.71 ± 0.00 b | 0.61 ± 0.00 a | 0.50 ± 0.01 a | 0.52 ± 0.00 a |
L* | 69.85 ± 1.34 b | 37.41 ± 0.25 a | 20.61 ± 0.81 a | 21.03 ± 1.00 a |
a* | 16.10 ± 0.59 a | 43.18 ± 0.35 b | 53.47 ± 0.82 a | 53.12 ± 1.14 a |
b* | 10.65 ± 0.41 a | 25.95 ± 0.06 b | 26.49 ± 0.33 b | 23.64 ± 1.06 a |
C* | 19.30 ± 0.72 a | 50.38 ± 0.33 b | 59.67 ± 0.86 b | 58.15 ± 1.25 a |
h* | 33.49 ± 0.06 b | 31.01 ± 0.15 a | 26.36 ± 0.19 b | 23.99 ± 0.93 a |
ΔE*ab | 44.94 | 2.90 | ||
Aromatic potential | ||||
IPAv | 10.33 ± 0.33 b | 9.42 ± 0.27 a | 11.26 ± 0.61 b | 10.11 ± 0.29 a |
Treatments | Season 1 | Season 2 | ||
---|---|---|---|---|
C1 | S1 | C2 | S2 | |
Phenolic acids (mg/L) | ||||
Gallic acid | 2.15 ± 0.05 a | 4.47 ± 0.24 b | 23.13 ± 0.28 a | 22.45 ± 1.00 a |
trans-caffeic acid | nd | nd | 0.28 ± 0.01 a | 0.27 ± 0.03 a |
Vanillic acid | 1.45 ± 0.06 a | 2.75 ± 0.26 b | 2.79 ± 0.07 a | 3.49 ± 0.18 b |
Syringic acid | 1.12 ± 0.03 a | 1.47 ± 0.05 b | 2.39 ± 0.11 b | 2.12 ± 0.10 a |
trans-Caftaric acid | 0.09 ± 0.00 a | 0.55 ± 0.02 b | 11.78 ± 0.28 a | 13.84 ± 0.34 b |
trans-p-Coutaric acid | 0.70 ± 0.01 a | 0.74 ± 0.01 b | 2.88 ± 0.04 a | 2.96 ± 0.05 b |
Σ Phenolic acids | 5.51 ± 0.13 a | 9.98 ± 0.54 b | 43.25 ± 0.70 a | 45.13 ± 1.56 a |
Stilbenes (mg/L) | ||||
trans-Resveratrol | nq | nq | 0.35 ± 0.01 a | 0.44 ± 0.04 b |
Piceid-trans-resveratrol | nq | nq | 1.41 ± 0.02 a | 1.89 ± 0.02 b |
Σ Stilbenes | - | - | 1.77 ± 0.02 a | 2.34 ± 0.04 b |
Flavanols (mg/L) | ||||
(+)-Catechin | 0.92 ± 0.06 a | 2.29 ± 0.14 b | 2.81 ± 0.06 a | 3.82 ± 0.23 b |
(−)-Epicatechin | 0.82 ± 0.02 a | 1.35 ± 0.10 b | nd | nd |
Σ Flavanols | 1.74 ± 0.08 a | 3.63 ± 0.22 b | 2.81 ± 0.06 a | 3.82 ± 0.23 b |
Flavonols (mg/L) | ||||
Myricetin 3-O-galactoside | nd | nd | 0.36 ± 0.01 a | 0.39 ± 0.04 a |
Myricetin 3-O-glucuronide+glucoside | 1.36 ± 0.15 a | 4.28 ± 0.29 b | 2.57 ± 0.08 a | 2.49 ± 0.11 a |
Quercetin 3-O-galactoside | nd | nd | 0.47 ± 0.01 a | 0.55 ± 0.04 b |
Quercetin 3-O-glucuronide+glucoside | 0.69 ± 0.07 a | 1.95 ± 0.02 b | 5.27 ± 0.09 a | 5.85 ± 0.59 a |
Laricitrin 3-O-glucoside/galactoside | 0.15 ± 0.02 a | 0.52 ± 0.02 b | 0.59 ± 0.01 a | 0.54 ± 0.08 a |
Kaempferol 3-O-glucoside | nd | nd | 0.46 ± 0.01 a | 0.45 ± 0.03 a |
Syringetin 3-O-glucoside | 0.38 ± 0.01 a | 1.04 ± 0.03 b | 0.83 ± 0.01 a | 0.78 ± 0.05 a |
Myricetin | nd | nd | 0.14 ± 0.00 a | 0.14 ± 0.02 a |
Quercetin | 0.08 ± 0.00 a | 0.40 ± 0.02 b | 0.44 ± 0.01 a | 0.73 ± 0.04 b |
Kaempferol | nd | nd | nq | 0.07 ± 0.01 |
Σ Flavonols | 2.66 ± 0.22 a | 8.19 ± 0.33 b | 11.13 ± 0.19 a | 11.99 ± 0.72 a |
Anthocyanins (mg/L) | ||||
Delphinidin 3-O-glucoside | 0.76 ± 0.07 a | 2.46 ± 0.05 b | 0.38 ± 0.04 | nq |
Cyanidin 3-O-glucoside | nd | nd | nd | nd |
Petunidin 3-O-glucoside | 1.64 ± 0.16 a | 5.76 ± 0.48 b | nd | nd |
Peonidin 3-O-glucoside | 1.76 ± 0.34 a | 4.70 ± 0.15 b | 0.57 ± 0.04 b | 0.38 ± 0.06 a |
Malvidin 3-O-glucoside | 24.14 ± 0.54 a | 60.26 ± 9.56 b | 3.22 ± 0.30 b | 1.75 ± 0.23 a |
Peonidin 3-O-(6′-acetyl)-glucoside | 1.14 ± 0.04 a | 2.16 ± 0.35 b | nd | nd |
Malvidin 3-O-(6′-acetyl)-glucoside | 2.62 ± 0.10 a | 5.21 ± 0.88 b | nd | nd |
Malvidin 3-(6′-t-caffeoyl)-glucoside | 0.65 ± 0.01 a | 0.88 ± 0.10 b | nd | nd |
Petunidin 3-(6′-p-coumaroyl)-glucoside | nd | 0.71 ± 0.06 | nd | nd |
Malvidin 3-(6′-p-coumaroyl)-glucoside | 1.52 ± 0.04 a | 3.91 ± 0.67 b | nd | nd |
Vitisin A Malvidin 3-O-glucoside | nd | nd | 0.71 ± 0.02 a | 0.70 ± 0.02 a |
Vitisin B Malvidin 3-O-glucoside | 0.63 ± 0.02 a | 1.98 ± 0.05 b | 2.79 ± 0.07 b | 1.68 ± 0.13 a |
Σ Anthocyanins | 34.87 ± 1.24 a | 88.03 ± 11.99 b | 7.66 ± 0.41 b | 4.51 ± 0.43 a |
Σ Phenolic compounds (mg/L) | 44.78 ± 1.57 a | 109.84 ± 13.03 b | 66.62 ± 0.56 a | 67.79 ± 2.41 a |
Odour Threshold (μg/L) | Season 1 | Season 2 | |||
---|---|---|---|---|---|
C1 | S1 | C2 | S2 | ||
Acids (µg/L) | |||||
Decanoic acid | 1000 [60] | 917.37 ± 117.18 a (0.92) | 629.89 ± 104.28 a (0.63) | 228.43 ± 18.20 a (0.23) | 222.59 ± 31.57 a (0.22) |
Hexanoic acid | 420 [60] | 1838.54 ± 125.11 a (4.38) | 1774.81 ± 294.67 a (4.23) | 4361.65 ± 409.36 b (10.38) | 2853.99 ± 463.65 a (6.80) |
Octanoic acid | 500 [60] | 2333.49 ± 378.19 a (4.67) | 1772.37 ± 308.77 a (3.54) | 1485.23 ± 78.56 b (2.97) | 1219.95 ± 201.24 a (2.44) |
Σ Acids | 5089.40 ± 620.48 a | 4177.06 ± 707.72 a | 6075.31 ± 482.37 b | 4296.52 ± 688.78 a | |
Alcohols (µg/L) | |||||
Benzyl alcohol | 200,000 [61] | 213.37 ± 49.79 a (0.00) | 327.34 ± 48.39 b (0.00) | 206.03 ± 8.89 b (0.00) | 187.80 ± 8.51 a (0.00) |
1-Hexanol | 8000 [38] | 618.68 ± 105.73 a (0.08) | 551.16 ± 17.21 a (0.07) | 558.09 ± 44.06 b (0.07) | 438.82 ± 17.32 a (0.05) |
2 + 3-Methyl-1-butanol | 30,000 [38] | 14,048.87 ± 1,246.23 a (0.47) | 14,251.55 ± 1,621.15 a (0.48) | 228,945.84 ± 13,701.97 a (7.63) | 255,920.62 ± 9,419.51 b (8.53) |
2-Phenylethanol | 10,000 [38] | 7015.40 ± 1,014.62 a (0.70) | 7032.57 ± 877.96 a (0.70) | 41,080.13 ± 2,184.45 a (4.11) | 43,320.08 ± 3,807.34 a (4.33) |
Σ Alcohols | 21,896.31 ± 2,366.51 a | 22,162.62 ± 2,477.21 a | 270,790.09 ± 15,650.77 a | 299,867.32 ± 10,858.72 b | |
Acetates (µg/L) | |||||
Ethyl acetate | 7500 [38] | 25,372.05 ± 867.02 a (3.38) | 26,918.12 ± 860.79 a (3.59) | 32,093.83 ± 4,866.11 a (4.28) | 24,808.05 ± 5,430.47 a (3.31) |
Hexyl acetate | 1500 [61] | 6.63 ± 0.23 b (0.00) | 3.19 ± 0.06 a (0.00) | 1.53 ± 0.17 a (0.00) | 1.47 ± 0.25 a (0.00) |
Isoamyl acetate | 30 [38] | 2032.55 ± 62.52 b (67.75) | 1382.58 ± 94.35 a (46.09) | 564.59 ± 60.81 b (18.82) | 426.73 ± 28.87 a (14.22) |
Linalyl acetate | not found | nd | nd | 0.14 ± 0.00 a | 0.17 ± 0.01 b |
2-Phenylethyl acetate | 250 [38] | 143.19 ± 8.56 b (0.57) | 74.59 ± 19.68 a (0.30) | 19.82 ± 2.46 a (0.08) | 20.58 ± 3.37 a (0.08) |
Σ Acetates | 27,554.41 ± 938.34 a | 28,378.49 ± 764.52 a | 32,679.91 ± 4,929.37 a | 25,257.01 ± 5,454.39 a | |
Ethyl esters (µg/L) | |||||
Diethyl succinate | 200,000 [61] | 152.76 ± 15.64 a (0.00) | 156.85 ± 6.27 a (0.00) | 353.20 ± 37.32 b (0.00) | 244.69 ± 24.37 a (0.00) |
Ethyl butyrate | 20 [38] | 138.29 ± 1.97 a (6.91) | 144.60 ± 12.86 a (7.23) | 88.68 ± 9.84 b (4.43) | 59.13 ± 4.33 a (2.96) |
Ethyl decanoate | 200 [60] | 71.14 ± 3.48 a (0.36) | 78.43 ± 10.95 a (0.39) | 68.10 ± 10.29 a (0.34) | 71.74 ± 22.77 a (0.36) |
Ethyl dihydrocinnamate | 1.6 [60] | 0.31 ± 0.03 a (0.19) | 0.20 ± 0.05 a (0.12) | 0.31 ± 0.02 a (0.20) | 0.35 ± 0.04 a (0.22) |
Ethyl hexanoate | 14 [60] | 247.99 ± 5.41 a (17.71) | 244.54 ± 30.88 a (17.47) | 348.64 ± 35.75 b (24.90) | 226.16 ± 20.35 a (16.15) |
Ethyl lactate | 154,000 [61] | nd | nd | 8449.52 ± 442.07 a (0.05) | 10,202.75 ± 3,161.90 a (0.07) |
Ethyl octanoate | 5 [60] | 172.95 ± 2.67 a (34.59) | 199.90 ± 25.55 a (39.98) | 454.57 ± 46.11 b (90.91) | 316.76 ± 69.58 a (63.35) |
Ethyl vanillate | 990 [62] | 72.70 ± 13.56 a (0.07) | 108.54 ± 12.52 b (0.11) | 36.09 ± 3.24 a (0.04) | 42.31 ± 6.49 a (0.04) |
Σ Ethyl esters | 856.13 ± 22.13 a | 933.05 ± 79.61 a | 9799.10 ± 415.70 a | 11,163.88 ± 3,244.40 a | |
Terpenoids (µg/L) | |||||
Citronellol | 100 [61] | 17.78 ± 3.07 a (0.18) | 21.62 ± 2.71 a (0.22) | 6.41 ± 0.22 a (0.06) | 7.14 ± 0.53 b (0.07) |
β-Damascenone | 0.05 [38] | 0.35 ± 0.06 a (7.02) | 0.29 ± 0.04 a (5.77) | nd | nd |
Farnesol | 1000 [63] | 112.01 ± 14.77 a (0.11) | 227.13 ± 26.84 b (0.23) | 17.30 ± 3.10 a (0.02) | 21.60 ± 3.70 a (0.02) |
Geraniol | 30 [38] | 7.15 ± 0.23 b (0.24) | 5.50 ± 1.08 a (0.18) | 8.61 ± 0.45 b (0.29) | 6.76 ± 0.27 a (0.23) |
Geranyl acetone | 60 [38] | 0.24 ± 0.02 a (0.00) | 0.22 ± 0.01 a (0.00) | 0.15 ± 0.01 a (0.00) | 0.15 ± 0.02 a (0.00) |
β-Ionone | 0.09 [60] | 0.09 ± 0.02 a (0.99) | 0.11 ± 0.03 a (1.19) | 0.02 ± 0.00 a (0.22) | 0.02 ± 0.00 a (0.17) |
Linalool | 25 [60] | 1.18 ± 0.09 a (0.05) | 1.32 ± 0.13 a (0.05) | 2.75 ± 0.12 a (0.11) | 3.04 ± 0.26 a (0.12) |
Nerol | 15 [61] | 5.24 ± 1.20 a (0.35) | 6.08 ± 1.08 a (0.41) | nd | nd |
Nerolidol | 15 [61] | 1.36 ± 0.12 a (0.09) | 2.77 ± 0.25 b (0.18) | 3.64 ± 0.45 a (0.24) | 5.43 ± 0.74 b (0.36) |
Σ Terpenoids | 145.39 ± 17.62 a | 265.05 ± 24.39 b | 38.88 ± 4.16 a | 44.14 ± 5.33 a | |
Volatile phenols (µg/L) | |||||
Eugenol | 6 [60] | nd | nd | 1.19 ± 0.07 a (0.20) | 1.02 ± 0.13 a (0.17) |
Guaiacol | 9.5 [60] | 17.21 ± 6.61 a (1.81) | 26.87 ± 9.06 a (2.83) | 53.95 ± 8.82 a (5.68) | 68.48 ± 15.08 a (7.21) |
4-Vinylguaiacol | 40 [38] | 13.17 ± 3.05 b (0.33) | 6.51 ± 0.59 a (0.16) | nd | nd |
Σ Volatile phenols | 30.37 ± 9.28 a | 33.37 ± 7.88 a | 55.15 ± 8.81 a | 69.50 ± 15.20 a | |
Others (µg/L) | |||||
Acetovanillone | 1000 [62] | 74.66 ± 8.09 a (0.07) | 75.16 ± 5.65 a (0.08) | nd | nd |
Phenylacetaldehyde | 1 [64] | nd | nd | 0.55 ± 0.05 a (0.55) | 0.65 ± 0.06 a (0.65) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campayo, A.; Serrano de la Hoz, K.; García-Martínez, M.M.; Salinas, M.R.; Alonso, G.L. Spraying Ozonated Water on Bobal Grapevines: Effect on Wine Quality. Biomolecules 2020, 10, 213. https://doi.org/10.3390/biom10020213
Campayo A, Serrano de la Hoz K, García-Martínez MM, Salinas MR, Alonso GL. Spraying Ozonated Water on Bobal Grapevines: Effect on Wine Quality. Biomolecules. 2020; 10(2):213. https://doi.org/10.3390/biom10020213
Chicago/Turabian StyleCampayo, Ana, Kortes Serrano de la Hoz, M. Mercedes García-Martínez, M. Rosario Salinas, and Gonzalo L. Alonso. 2020. "Spraying Ozonated Water on Bobal Grapevines: Effect on Wine Quality" Biomolecules 10, no. 2: 213. https://doi.org/10.3390/biom10020213
APA StyleCampayo, A., Serrano de la Hoz, K., García-Martínez, M. M., Salinas, M. R., & Alonso, G. L. (2020). Spraying Ozonated Water on Bobal Grapevines: Effect on Wine Quality. Biomolecules, 10(2), 213. https://doi.org/10.3390/biom10020213