Low Lactic Acid-Producing Strain of Lachancea thermotolerans as a New Starter for Beer Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Yeast Strains
2.1.2. Hops
2.2. Methods
2.2.1. Wort Production
2.2.2. Yeasts Propagation and Fermentation
2.2.3. Analytical Determinations
2.2.4. Statistical Analyzis
3. Results
3.1. Fermentation Performance
3.2. Beer
3.3. Sugars and Organic Acids
3.4. Glycerol
3.5. FAN
3.6. Esters, Alcohols and Other Volatile Compounds
3.7. Terpenes
3.8. Metal Ions
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- The Brewers of Europe. Beer Statistics; The Brewers of Europe: Brussels, Belgium, 2018. [Google Scholar]
- Brewers Association National Beer Sales and Production Data. Available online: https://www.brewersassociation.org/statistics/national-beer-sales-production-data/ (accessed on 23 December 2019).
- Alltech. Craft Beer Survey Carried out with The Brewers Journal; Alltech: Brentwood, TN, USA, 2017. [Google Scholar]
- Trummer, J.; Poreda, A.; Berski, W. The effect of malting on green lentils and their suitability for wort production. Ferment. FRUITS Veg. Ind. 2019, 10, 14–18. [Google Scholar] [CrossRef]
- Duliński, R.; Zdaniewicz, M.; Pater, A.; Żyła, K. Impact of Two Commercial Enzymes on the Release of Inositols, Fermentable Sugars, and Peptides in the Technology of Buckwheat Beer. J. Am. Soc. Brew. Chem. 2019, 77, 119–125. [Google Scholar] [CrossRef]
- Cioch-Skoneczny, M.; Zdaniewicz, M.; Pater, A.; Skoneczny, S. Impact of triticale malt application on physiochemical composition and profile of volatile compounds in beer. Eur. Food Res. Technol. 2019, 245, 1431–1437. [Google Scholar] [CrossRef] [Green Version]
- Klose, C.; Mauch, A.; Wunderlich, S.; Thiele, F.; Zarnkow, M.; Jacob, F.; Arendt, E.K.; Brew, J.I. Brewing with 100% Oat Malt. J. Inst. Brew. 2011, 117, 411–421. [Google Scholar] [CrossRef]
- Moirangthem, K.; Jenkins, D.; Ramakrishna, P.; Rajkumari, R.; Cook, D. Indian black rice: A brewing raw material with novel functionality. J. Inst. Brew. 2020, 126, 35–45. [Google Scholar] [CrossRef]
- Martínez, A.; Vegara, S.; Herranz-López, M.; Martí, N.; Valero, M.; Micol, V.; Saura, D. Kinetic changes of polyphenols, anthocyanins and antioxidant capacity in forced aged hibiscus ale beer. J. Inst. Brew. 2017, 123, 58–65. [Google Scholar] [CrossRef] [Green Version]
- Hutzler, M.; Koob, J.; Riedl, R.; Schneiderbanger, H.; Mueller-Auffermann, K.; Jacob, F. Yeast Identification and Characterization; Elsevier Ltd.: Amsterdam, The Netherlands, 2015; ISBN 9781782423492. [Google Scholar]
- Hranilovic, A.; Gambetta, J.M.; Schmidtke, L.; Boss, P.K.; Grbin, P.R.; Masneuf-Pomarede, I.; Bely, M.; Albertin, W.; Jiranek, V. Oenological traits of Lachancea thermotolerans show signs of domestication and allopatric differentiation. Sci. Rep. 2018, 8, 1–13. [Google Scholar] [CrossRef]
- Michel, M.; Meier-Dörnberg, T.; Jacob, F.; Methner, F.J.; Wagner, R.S.; Hutzler, M. Review: Pure non-Saccharomyces starter cultures for beer fermentation with a focus on secondary metabolites and practical applications. J. Inst. Brew. 2016, 122, 569–587. [Google Scholar] [CrossRef]
- Canonico, L.; Agarbati, A.; Comitini, F.; Ciani, M. Torulaspora delbrueckii in the brewing process: A new approach to enhance bioflavour and to reduce ethanol content. Food Microbiol. 2016, 56, 45–51. [Google Scholar] [CrossRef]
- Canonico, L.; Comitini, F.; Ciani, M. Torulaspora delbrueckii contribution in mixed brewing fermentations with different Saccharomyces cerevisiae strains. Int. J. Food Microbiol. 2017, 259, 7–13. [Google Scholar] [CrossRef]
- Michel, M.; Kopecka, J.; Meier-Dörnberg, T.; Zarnkow, M.; Jacob, F. Screening for new brewing yeasts in the non- Saccharomyces sector with Torulaspora delbrueckii as model. Yeast 2016, 33, 129–144. [Google Scholar] [CrossRef] [Green Version]
- Holt, S.; Mukherjee, V.; Lievens, B.; Verstrepen, K.J.; Thevelein, J.M. Bioflavoring by non-conventional yeasts in sequential beer fermentations. Food Microbiol. 2018, 72, 55–66. [Google Scholar] [CrossRef]
- Canonico, L.; Galli, E.; Ciani, E.; Comitini, F.; Ciani, M. Exploitation of three non-conventional yeast species in the brewing process. Microorganisms 2019, 7. [Google Scholar] [CrossRef] [Green Version]
- Bellut, K.; Michel, M.; Hutzler, M.; Zarnkow, M.; Jacob, F.; De Schutter, D.P.; Daenen, L.; Lynch, K.M.; Zannini, E.; Arendt, E.K. Investigation into the Potential of Lachancea fermentati Strain KBI 12.1 for Low Alcohol Beer Brewing. J. Am. Soc. Brew. Chem. 2019, 77, 157–169. [Google Scholar]
- Domizio, P.; House, J.F.; Joseph, C.M.L.; Bisson, L.F.; Bamforth, C.W. Lachancea thermotolerans as an alternative yeast for the production of beer. J. Inst. Brew. 2016, 122, 599–604. [Google Scholar] [CrossRef] [Green Version]
- Kurtzman, C.P. Phylogenetic circumscription of Saccharomyces, Kluyveromyces and other members of the Saccharomycetaceae, and the proposal of the new genera Lachancea, Nakaseomyces, Naumovia, Vanderwaltozyma and Zygotorulaspora. FEMS Yeast Res. 2003, 4, 233–245. [Google Scholar] [CrossRef] [Green Version]
- Banilas, G.; Sgouros, G.; Nisiotou, A. Development of microsatellite markers for Lachancea thermotolerans typing and population structure of wine-associated isolates. Microbiol. Res. 2016, 193, 1–10. [Google Scholar] [CrossRef]
- Benito, S. The impacts of Lachancea thermotolerans yeast strains on winemaking. Appl. Microbiol. Biotechnol. 2018, 102, 6775–6790. [Google Scholar] [CrossRef] [Green Version]
- Hittinger, C.T.; Steele, J.L.; Ryder, D.S. Diverse yeasts for diverse fermented beverages and foods. Curr. Opin. Biotechnol. 2018, 49, 199–206. [Google Scholar] [CrossRef]
- Osburn, K.; Amaral, J.; Metcalf, S.R.; Nickens, D.M.; Rogers, C.M.; Sausen, C.; Caputo, R.; Miller, J.; Li, H.; Tennessen, J.M.; et al. Primary souring: A novel bacteria-free method for sour beer production. Food Microbiol. 2018, 70, 76–84. [Google Scholar] [CrossRef]
- The National Institute of Standards and Technology (NIST). Available online: http://webbook.nist.gov/chemistry/ (accessed on 23 December 2019).
- Satora, P.; Semik-Szczurak, D.; Tarko, T.; Bułdys, A. Influence of Selected Saccharomyces and Schizosaccharomyces Strains and Their Mixed Cultures on Chemical Composition of Apple Wines. J. Food Sci. 2018, 83, 424–431. [Google Scholar] [CrossRef]
- Analytica EBC, European Brewery Convention; Verlag Hans Carl Getränke-Fachverlag: Nürnberg, Germany, 1998.
- Porter, T.J.; Divol, B.; Setati, M.E. Investigating the biochemical and fermentation attributes of Lachancea species and strains: Deciphering the potential contribution to wine chemical composition. Int. J. Food Microbiol. 2019, 290, 273–287. [Google Scholar] [CrossRef]
- Gobbi, M.; Comitini, F.; Domizio, P.; Romani, C.; Lencioni, L.; Mannazzu, I.; Ciani, M. Lachancea thermotolerans and Saccharomyces cerevisiae in simultaneous and sequential co-fermentation: A strategy to enhance acidity and improve the overall quality of wine. Food Microbiol. 2013, 33, 271–281. [Google Scholar] [CrossRef]
- Balikci, E.K.; Tanguler, H.; Jolly, N.P.; Erten, H. Influence of Lachancea thermotolerans on cv. Emir wine fermentation. Yeast 2016, 33, 313–321. [Google Scholar] [CrossRef] [Green Version]
- Du Plessis, H.W.; du Toit, M.; Hoff, J.W.; Hart, R.S.; Ndimba, B.K.; Jolly, N.P. Characterisation of non-Saccharomyces yeasts using different methodologies and evaluation of their compatibility with malolactic fermentation. S. Afr. J. Enol. Vitic. 2017, 38, 46–63. [Google Scholar] [CrossRef]
- Comitini, F.; Gobbi, M.; Domizio, P.; Romani, C.; Lencioni, L.; Mannazzu, I.; Ciani, M. Selected non-Saccharomyces wine yeasts in controlled multistarter fermentations with Saccharomyces cerevisiae. Food Microbiol. 2011, 28, 873–882. [Google Scholar] [CrossRef]
- Benito, Á.; Calderón, F.; Benito, S. Combined use of S. pombe and L. thermotolerans in winemaking. Beneficial effects determined through the study of wines’ analytical characteristics. Molecules 2016, 21. [Google Scholar] [CrossRef] [Green Version]
- Kapsopoulou, K.; Kapaklis, A.; Spyropoulos, H. Growth and fermentation characteristics of a strain of the wine yeast Kluyveromyces thermotolerans isolated in Greece. World J. Microbiol. Biotechnol. 2005, 21, 1599–1602. [Google Scholar] [CrossRef]
- Morales, M.L.; Fierro-Risco, J.; Ríos-Reina, R.; Ubeda, C.; Paneque, P. Influence of Saccharomyces cerevisiae and Lachancea thermotolerans co-inoculation on volatile profile in fermentations of a must with a high sugar content. Food Chem. 2019, 276, 427–435. [Google Scholar] [CrossRef]
- Kutyna, D.R.; Varela, C.; Henschke, P.A.; Chambers, P.J.; Stanley, G.A. Microbiological approaches to lowering ethanol concentration in wine. Trends Food Sci. Technol. 2010, 21, 293–302. [Google Scholar] [CrossRef]
- Varela, C.; Dry, P.R.; Kutyna, D.R.; Francis, I.L.; Henschke, P.A.; Curtin, C.D.; Chambers, P.J. Strategies for reducing alcohol concentration in wine. Aust. J. Grape Wine Res. 2015, 21, 670–679. [Google Scholar] [CrossRef]
- Callejo, M.J.; García Navas, J.J.; Alba, R.; Escott, C.; Loira, I.; González, M.C.; Morata, A. Wort fermentation and beer conditioning with selected non-Saccharomyces yeasts in craft beers. Eur. Food Res. Technol. 2019, 245, 1229–1238. [Google Scholar] [CrossRef]
- Shekhawat, K.; Porter, T.J.; Bauer, F.F.; Setati, M.E. Employing oxygen pulses to modulate Lachancea thermotolerans–Saccharomyces cerevisiae Chardonnay fermentations. Ann. Microbiol. 2018, 68, 93–102. [Google Scholar] [CrossRef]
- Klopper, B.W.J.; Angelino, S.A.G.F.; Tuning, B.; Vermeire, H.A. Centenary Review Organic Acids and Glycerol in Beer. J. Inst. Brew. 1986, 92, 225–228. [Google Scholar] [CrossRef]
- Kapsopoulou, K.; Mourtzini, A.; Anthoulas, M.; Nerantzis, E. Biological acidification during grape must fermentation using mixed cultures of Kluyveromyces thermotolerans and Saccharomyces cerevisiae. World J. Microbiol. Biotechnol. 2007, 23, 735–739. [Google Scholar] [CrossRef]
- Pugh, T.A.; Maurer, J.M.; Pringle, A.T. The impact of wort nitrogen limitation on yeast fermentation performance and diacetyl. Master Brew. Assoc. Am. 1997, 34, 189. [Google Scholar]
- Hill, A.E.; Stewart, G.G. Free amino nitrogen in brewing. Fermentation 2019, 5. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, H.; Mizuno, S.; Hiroshima, T.; Shioya, S. Effect of carbon and nitrogen additions on consumption activity of apparent extract of yeast cells in a brewing process. J. Am. Soc. Brew. Chem. 2002, 60, 163–169. [Google Scholar] [CrossRef]
- Lekkas, C.; Hill, A.E.; Stewart, G.G. Extraction of FAN from malting barley during malting and mashing. J. Am. Soc. Brew. Chem. 2014, 72, 6–11. [Google Scholar]
- Evans, D.E.; Goldsmith, M.; Redd, K.S.; Nischwitz, R.; Lentini, A. Impact of mashing conditions on extract, its fermentability, and the levels of wort free amino nitrogen (FAN), β-glucan, and lipids. J. Am. Soc. Brew. Chem. 2012, 70, 39–49. [Google Scholar] [CrossRef]
- De Rouck, G.; Jaskula, B.; De Causmaecker, B.; Malfliet, S.; Van Opstaele, F.; De Clippeleer, J.; De Brabanter, J.; De Cooman, L.; Aerts, G. The influence of very thick and fast mashing conditions on wort composition. J. Am. Soc. Brew. Chem. 2013, 71, 1–14. [Google Scholar] [CrossRef]
- Psota, V. Free amino nitrogen in sweet wort made from barley varieties tested in the Czech Republic. Kvas. Prum. 2019, 65, 142–148. [Google Scholar] [CrossRef]
- Stewart, G.G.; Russell, I.; Anstruther, A. Handbook of Brewing, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Butzke, C. Survey of yeast assimilable nitrogen status in musts from California, Oregon, and Washington. Am. J. Enol. Vitic. 1998, 49, 220–224. [Google Scholar]
- Brewers Association. Malting Barley Characteristics for Craft Brewers Executive Summary; Brewers Association: Boulder, CO, USA, 2015; pp. 1–6. [Google Scholar]
- Capece, A.; Romaniello, R.; Siesto, G.; Romano, P. Conventional and non-conventional yeasts in beer production. Fermentation 2018, 4. [Google Scholar] [CrossRef] [Green Version]
- Jaskula-Goiris, B.; De Causmaecker, B.; De Rouck, G.; De Cooman, L.; Aerts, G. Detailed multivariate modeling of beer staling in commercial pale lagers. Brew. Sci. 2011, 64, 119–139. [Google Scholar]
- De Rouck, G.; De Clippeleer, J.; Poiz, S.; De Cock, J.; van Waesberghe, J.; De Cooman, L.; Aerts, G. Prolonged Flavour Stability by Production of Beer with Low Residual FAN Using Active Dry Yeast. In Proceedings of the 31st Congress of the European Brewery Convention, Venice, Italy, 6–10 May 2007; pp. 455–467. [Google Scholar]
- Holt, S.; Miks, M.H.; De Carvalho, B.T.; Foulquié-Moreno, M.R.; Thevelein, J.M. The molecular biology of fruity and floral aromas in beer and other alcoholic beverages. FEMS Microbiol. Rev. 2019, 43, 193–222. [Google Scholar] [CrossRef] [Green Version]
- Budroni, M.; Zara, G.; Ciani, M.; Comitini, F. Saccharomyces and Non-Saccharomyces Starter Yeasts. Brew. Technol. InTech 2017, 20. [Google Scholar]
- Saerens, S.M.G.; Delvaux, F.; Verstrepen, K.J.; Van Dijck, P.; Thevelein, J.M.; Delvaux, F.R. Parameters affecting ethyl ester production by Saccharomyces cerevisiae during fermentation. Appl. Environ. Microbiol. 2008, 74, 454–461. [Google Scholar] [CrossRef] [Green Version]
- Ilc, T.; Werck-Reichhart, D.; Navrot, N. Meta-analysis of the core aroma components of grape and wine aroma. Front. Plant Sci. 2016, 7. [Google Scholar] [CrossRef] [Green Version]
- Rybacek, V. Hop Production (Developments in Crop Science 16); Elsevier Publishing Company: Amsterdam, The Netherlands; New York, NY, USA, 1991. [Google Scholar]
- De Almeida, N.E.C.; De Aguiar, I.; Cardoso, D.R. Mechanism of hop-derived terpenes oxidation in beer. J. Braz. Chem. Soc. 2015, 26, 2362–2368. [Google Scholar] [CrossRef]
- King, A.J.; Dickinson, J.R. Biotransformation of hop aroma terpenoids by ale and lager yeasts. FEMS Yeast Res. 2006, 3, 53–62. [Google Scholar] [CrossRef] [Green Version]
- Walker, G.M. Magnesium as a Stress-Protectant for Industrial Strains of Saccharomyces cerevisiae. J. Am. Soc. Brew. Chem. 1998, 56, 109–113. [Google Scholar] [CrossRef]
- Walker, G.M.; Birch, R.M.; Chandrasena, G.; Maynard, A.I.; Sciences, L. Magnesium, Calcium, and Fermentative Metabolism in Industrial Yeasts. J. Am. Soc. Brew. Chem. 1996, 54, 13–18. [Google Scholar] [CrossRef]
- Jones, R.P.; Greenfield, P.F. Ethanol and the fluidity of the yeast plasma membrane. Yeast 1987, 3, 223–232. [Google Scholar] [CrossRef]
- Bromberg, S.K.; Bower, P.A.; Fehring, J.; Gerber, L.; Lau, V.L.; Tata, M. Requirements for Zin, Manganese, Calcium in wort. J. Am. Soc. Brew. Chem. 1997, 55, 123–128. [Google Scholar]
- Chandrasena, G.; Walker, G.M.; Sciences, L.; Dundee, A. Use of Response Surfaces to Investigate Metal Ion Interactions in Yeast Fermentations. J. Am. Soc. Brew. Chem. 1997, 55, 24–29. [Google Scholar] [CrossRef]
Extract | Glucose | Maltose | FAN | IBU | |
---|---|---|---|---|---|
% (w/w) | g/L | mg/L | |||
Lubelski | 12.0 ± 0.02 | 12.52 ± 0.75 | 79.40 ± 4.71 | 131.07 ± 0.92 | 40 ± 2 a |
Marynka | 12.0 ± 0.03 | 14.49 ± 2.58 | 83.03 ± 6.29 | 139.18 ± 0.77 | 53 ± 3 b |
Sig. 1 | ns | ns | ns | ns | *** |
L. thermotolerans MN477031 | S. cerevisiae Safbrew T-58 | Sig. 1 | |||
---|---|---|---|---|---|
Lubelski | Marynka | Lubelski | Marynka | ||
Ethanol (% v/v) | 4.3 ± 0.02 a | 4.25 ± 0.17 a | 5.37 ± 0.08 b | 5.22 ±0.16 b | *** |
Real extract (% w/w) | 5.46 ± 0.017 a | 5.41 ± 0.010 a | 4.03 ± 0.035 b | 3.92 ± 0.028 c | *** |
Apparent Degree of Fermentation (%) | 67.38 ± 0.1 a | 67.31 ± 1.2 a | 82.83 ± 0.28 b | 82.83 ± 0.69 b | *** |
pH | 4.43 ± 0.1 a | 4.39 ± 0.09 a | 4.72 ± 0.08 b | 4.67 ± 0.11 b | ** |
Color (EBC) | 8.0 ± 0.91 a | 6.9 ± 0.36 a | 14.0 ± 0.36 b | 7.5 ± 0.12 a | *** |
Glycerol (g/L) | 8.61 ± 2.33 a | 9.29 ± 2.37 a | 4.72 ± 1.14 b | 4.48 ± 1.25 b | ** |
FAN (mg/L) | 56.6 ± 9.7 | 65.9 ± 6.5 | 41.32 ± 14.1 | 53.38 ± 2.8 | ns |
Glucose | Maltose | Oxalic Acid | Acetic Acid | Citric Acid | Malic Acid | Succinic Acid | Lactic Acid | |
---|---|---|---|---|---|---|---|---|
g/L | ||||||||
Lt_L | 0.00 ± 0.00 a | 2.786 ± 1.99 a | 0.082 ± 0.03 | 0.160 ± 0.03 | 0.000 ± 0.00 | 0.030 ± 0.01 | 0.170 ± 0.1 | 0.01 ± 0.00 |
Lt_M | 0.00 ± 0.00 a | 2.811 ± 2.74 a | 0.075 ± 0.02 | 0.174 ± 0.13 | 0.003 ± 0.00 | 0.052 ± 0.02 | 0.275 ± 0.08 | 0.06 ± 0.07 |
Sc_L | 0.039 ± 0.02 b | 3.628 ± 1.17 a | 0.031 ± 0.01 | 0.390 ± 0.04 | 0.116 ± 0.00 | 0.039 ± 0.01 | 0.324 ± 0.04 | 0.00 ± 0.00 |
Sc_M | 0.036 ± 0.01 c | 4.034 ± 0.04 b | 0.039 ± 0.04 | 0.232 ± 0.18 | 0.045 ± 0.00 | 0.025 ± 0.01 | 0.233 ± 0.2 | 0.00 ± 0.00 |
Sig. 1 | ** | * | ns | ns | ns | ns | ns | ns |
Compound [µg/L] | LRI 2 | Lt | Sc | Sig. 1 | ||
---|---|---|---|---|---|---|
L | M | L | M | |||
Esters | ||||||
Ethyl Acetate | 614 | 4302 a | 3200 a | 8525 b | 3116 a | *** |
n-Propyl acetate 3 | 694 | 0 b | 0 b | 76.6 b | 21.5 a | ** |
Ethyl butanoate | 789 | 7.4 a | 8.1a | 34.8 b | 36.2 b | *** |
Isoamyl acetate | 872 | 43.0 a | 65.0 b | 271.7 c | 293.8 c | *** |
Ethyl hexanoate | 986 | 4.1 a | 8.6 a | 116.4 b | 91.1 b | *** |
Ethyl octanoate | 1180 | 10.4 a | 11.8 a | 1776.6 b | 2480.4 b | *** |
Ethyl 2-methyloctanoate 3 | 1209 | 69.7 a | 43.2 a | 10.7 b | 29.2 b | *** |
2-Phenylethyl acetate | 1228 | 55.8 a | 57.8 a | 777.14 b | 2863.32 c | *** |
Ethyl 9-decenoate 3 | 1389 | 0.6 a | 0.4 a | 38.6 b | 105.9 c | *** |
Ethyl decanoate | 1397 | 4.4 a | 2.7 a | 306.2 b | 392.9 b | *** |
Isobutyl decanoate 3 | 1546 | 0 a | 0 a | 0.24 b | 0.60 c | *** |
Ethyl dodecanoate | 1581 | 0.8 a | 0.4 a | 48.3 b | 38.1b | *** |
Benzyl Benzoate 3 | 1750 | 1.05 | 0.45 | 0.38 | 0.14 | ns |
Ethyl tetradecanoate | 1790 | 1.1 a | 0.4 a | 4.8 b | 3.2 b | *** |
Ethyl pentadecanoate 3 | 1880 | 0 | 0 | 0.6 | 0.8 | ns |
Ethyl 9-hexadecenoate 3 | 1977 | 1.04 ab | 0.55 b | 1.35 a | 1.08 ab | *** |
Ethyl hexadecanoate | 1990 | 3.4 a | 1.5 a | 10.9 b | 9.8 b | *** |
Ethyl octadecanoate | 2189 | 0.8 | 0.1 | 0.7 | 0.6 | ns |
Alcohols | ||||||
2-Methyl-1-propanol | 617 | 123.2 a | 113.7 a | 343.8 b | 441.4 b | *** |
3-Methyl-1-butanol | 723 | 8856 a | 7379 a | 11105 b | 17997 c | *** |
2-Methyl-1-butanol | 740 | 2413 a | 1792 a | 3888 b | 6544 c | *** |
2,3-Butanediol | 768 | 174 a | 136 a | 585 b | 1446 c | *** |
3-Ethoxy-1-propanol 3 | 862 | 276.5 a | 91.7 a | 0 b | 0 b | *** |
1-Hexanol | 865 | 32.5 a | 27.9 ac | 26.9 ac | 23.4 c | * |
1-Heptanol 3 | 954 | 6.6 a | 5.5 a | 12.3b | 12.8 b | ** |
2-Ethyl-1-hexanol 3 | 1020 | 37.8 | 31.7 | 23.6 | 24.9 | ns |
2-Phenylethanol | 1084 | 2151 a | 3807 b | 3892 b | 9196 c | *** |
1-Nonanol | 1156 | 61.9 a | 59.2 a | 15.6 b | 16.2 b | ** |
2-Propyl-1-heptanol 3 | 1203 | 16.3 | 15.8 | 11.3 | 10.9 | ns |
2-[(2-Ethylhexyl)oxy]-ethanol 3 | 1226 | 507 a | 487 ab | 481 ab | 311 b | * |
1-Decanol | 1272 | 465 a | 467.8 a | 320.5 b | 186.9 c | *** |
1-Undecanol | 1374 | 37.0 | 33.1 | 20.4 | 9.8 | ns |
2-Dodecanol | 1417 | 4.8 | 4.5 | 1.3 | 1.4 | ns |
Acids | ||||||
3-Methylbutanoic acid 3 | 833 | 112.2 | 75.9 | 116.2 | 139.6 | ns |
2-Methylbutanoic acid 3 | 858 | 16.9 | 0 | 31.5 | 21.8 | ns |
Hexanoic acid | 982 | 16.5 a | 11.9 a | 44.0 b | 79.9 b | *** |
Octanoic acid | 1160 | 297 a | 293 a | 1724 b | 2874 c | *** |
9-Decenoic acid 3 | 1358 | 11.0 a | 4.8 b | 12.3 a | 18.8 c | * |
n-Decanoic acid | 1368 | 69.3 a | 46.6 b | 72.9 a | 126.5 c | *** |
Phenols | ||||||
2-Methoxy-4-vinylphenol 3 | 1324 | 1.49 a | 1.08 b | 0.47 c | 27.4 d | *** |
Butylated Hydroxytoluene 3 | 1513 | 0.49 a | 0.7 a | 0.25 b | n/d | *** |
Carbonyl compounds | ||||||
Decanal | 1182 | 17.5 a | 14.8 a | 0 b | 0 b | *** |
2-Dodecanol 3 | 1417 | 4.75 a | 4.55 a | 1.26 b | 1.35 b | * |
Acetals | ||||||
Diethyl acetal | 730 | 7178 a | 6561 a | 2874 b | 2750 b | * |
1-Ethoxy-1-propoxyethane 3 | 755 | 24.9 a | 18.3 a | 13 a | 0 b | * |
1-Butoxy-1-ethoxyethane 3 | 875 | 21.7 a | 19.8 a | 14.9 a | 39.4 b | * |
1-(1-Ethoxyethoxy)pentane | 977 | 133.2 | 123.3 | 112.7 | 140.4 | ns |
Other compounds | ||||||
Benzothiazole 3 | 1186 | 78.4 | 156.9 | 134.7 | 88.2 | ns |
Octane, 1,1′-oxybis- 3 | 1657 | 3.93 | 4.36 | 2.34 | 4.38 | ns |
Compound [µg/L] | LRI 2 | Wort | Lt | Sc | Sig. 1 | |||
---|---|---|---|---|---|---|---|---|
L | M | L | M | L | M | |||
Limonene | 1027 | 0.08 ab | 0.28 b | 0.00 a | 0.00 a | 0.00 a | 0.00 a | *** |
cis-Linalol oxide | 1066 | 0.34 ab | 0.28 ab | 0.42 b | 0.34 ab | 0.41 b | 0.18 a | * |
Linalool | 1092 | 1.21 | 0.80 | 0.98 | 0.80 | 1.15 | 0.44 | ns |
Perillen 3 | 1101 | 0.31 b | 0.36 b | 0.00 a | 0.00 a | 0.00 a | 0.00 a | *** |
α-Terpineol | 1171 | 0.84 | 0.69 | 0.70 | 0.68 | 0.46 | 0.65 | ns |
Citronellol | 1210 | 0.00 a | 0.00 a | 0.88 ab | 2.22 c | 1.23 bc | 3.50 d | *** |
Nerol 3 | 1218 | 0.59 b | 1.06 c | 0.00 a | 0.00 a | 0.00 a | 0.00 a | *** |
Geraniol | 1257 | 3.41 c | 12.25 e | 1.28 b | 4.34 d | 0.60 ab | 0.34 a | *** |
Perilla alcohol 3 | 1295 | 0.74 c | 0.41 b | 0.20 a | 0.09 a | 0.00 a | 0.00 a | *** |
β-Damascenone | 1384 | 0.00 a | 0.00 a | 0.18 b | 0.16 b | 0.48 b | 0.40 b | * |
β-Caryophyllene | 1414 | 1.06 bc | 1.33 c | 0.65 ab | 0.62 ab | 0.66 ab | 0.27 a | *** |
Geranyl acetone 3 | 1443 | 0.83 ab | 1.09 b | 0.73 ab | 0.54 a | 0.65 ab | 0.51 a | * |
Humulene | 1455 | 3.46 b | 3.61 b | 0.00 a | 0.00 a | 0.00 a | 0.00 a | *** |
β-Farnesene 3 | 1462 | 2.43 b | 3.12 b | 0.70 a | 0.76 a | 0.57 a | 0.54 a | *** |
α-Calacorene 3 | 1540 | 0.06 a | 0.08 ab | 0.13 bc | 0.14 c | 0.18 c | 0.13 bc | *** |
Caryophyllene oxide | 1573 | 1.40 b | 1.85 c | 0.19 a | 0.20 a | 0.00 a | 0.00 a | *** |
Nerolidol 3 | 1562 | 0.00 a | 0.00 a | 0.71 b | 0.63 b | 0.42 b | 0.41 b | *** |
Humulol 3 | 1600 | 0.70 b | 0.71 b | 0.44 a | 0.31 a | 0.47 a | 0.31 a | * |
Humulene epoxide II 3 | 1606 | 5.66 bc | 6.50 c | 3.66 ab | 2.61 a | 2.72 a | 1.80 a | *** |
Patchulane 3 | 1618 | 2.78 b | 2.91 b | 1.65 a | 1.56 a | 1.71 a | 1.23 a | *** |
Aromadendrene epoxide 3 | 1623 | 1.21 d | 1.05 cd | 0.71 bc | 0.53 b | 0.19 a | 0.13 a | *** |
α-Muurolol 3 | 1632 | 0.51 b | 0.60 b | 0.24 a | 0.20 a | 0.17 a | 0.12 a | *** |
τ-Muurolol 3 | 1646 | 1.69 d | 2.14 d | 0.89 c | 0.85 bc | 0.34 ab | 0.28 a | *** |
L mg/L | M mg/L | Lt_L mg/L | Lt_M mg/L | Sc_L mg/L | Sc_M mg/L | Sig. 1 | |
---|---|---|---|---|---|---|---|
Ca 422.7 | 53.0 | 67.3 | 43.1 ± 5.04 | 62.8 ± 26.3 | 50.9 ± 3.4 | 42.6 ± 2.25 | ns |
Fe 248.3 | 10.0 | 12.1 | 9.9 ± 0.23 | 10.5 ± 0.1 | 10.3 ± 0.69 | 10.1 ± 0.13 | ns |
Zn 213.9 | 1.65 | 1.69 | 1.64 ± 0.19 | 1.72 ± 0.9 | 1.49 ± 0.25 | 1.09 ± 0.13 | ns |
Mg 202.6 | 197.9 | 199.7 | 147.21 ± 17.46 | 150.75 ± 21.9 | 168.82 ± 13.3 | 165.59 ± 3.01 | ns |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zdaniewicz, M.; Satora, P.; Pater, A.; Bogacz, S. Low Lactic Acid-Producing Strain of Lachancea thermotolerans as a New Starter for Beer Production. Biomolecules 2020, 10, 256. https://doi.org/10.3390/biom10020256
Zdaniewicz M, Satora P, Pater A, Bogacz S. Low Lactic Acid-Producing Strain of Lachancea thermotolerans as a New Starter for Beer Production. Biomolecules. 2020; 10(2):256. https://doi.org/10.3390/biom10020256
Chicago/Turabian StyleZdaniewicz, Marek, Paweł Satora, Aneta Pater, and Sylwia Bogacz. 2020. "Low Lactic Acid-Producing Strain of Lachancea thermotolerans as a New Starter for Beer Production" Biomolecules 10, no. 2: 256. https://doi.org/10.3390/biom10020256
APA StyleZdaniewicz, M., Satora, P., Pater, A., & Bogacz, S. (2020). Low Lactic Acid-Producing Strain of Lachancea thermotolerans as a New Starter for Beer Production. Biomolecules, 10(2), 256. https://doi.org/10.3390/biom10020256