Arsenic Toxicity: Molecular Targets and Therapeutic Agents
Abstract
:1. Introduction
2. Sources of Exposure
2.1. Arsenic in Drinking Water
2.2. Arsenic in Food
2.3. Occupational Exposure
3. Health Effects of Arsenic Exposure
4. The Metabolism and Mechanisms of Toxicity
5. Treatment of Arsenic Poisoning
6. Chemical Features of BAL, DMSA, and DMPS and Their As(III)-Chelates
6.1. Protonation Constants
6.2. Chemical Stabilities of the As-Chelates
7. Discussion and Conclusions
Supplementary Materials
Funding
Conflicts of Interest
References
- Sackett, P.D. Elemental cycles in the Anthropocene: Mining aboveground. In Geological Society of America Special Papers; Geological Society of America: Boulder, CO, USA, 2016; Volume 520, pp. 99–116. ISBN 978-0-8137-2520-8. [Google Scholar]
- Rahman, F.A.; Allan, D.L.; Rosen, C.J.; Sadowsky, M.J. Arsenic availability from chromated copper arsenate (CCA)-treated wood. J. Environ. Qual. 2004, 33, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Mandal, B.K.; Suzuki, K.T. Arsenic round the world: A review. Talanta 2002, 58, 201–235. [Google Scholar] [CrossRef]
- Substance Priority List. ATSDR. Available online: https://www.atsdr.cdc.gov/SPL/ (accessed on 24 September 2019).
- Smoke, T.; Smoking, I. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; International Agency for Research on Cancer: Lyon, France, 2004; Volume 100C, ISBN 978-92-832-1320-8. [Google Scholar]
- Benford, D.J.; Alexander, J.; Baines, J.; Bellinger, D.C.; Carrington, C.; Devesa i Pérez, V.A.; Duxbury, J.; Fawell, J.; Hailemariam, K.; Montoro, R.; et al. ARSENIC. In Safety Evaluation of Certain Contaminants in Food; FAO and WHO: Geneva, Switzerland, 2011; ISBN 978-92-4-166063-1. [Google Scholar]
- Molin, M.; Ulven, S.M.; Meltzer, H.M.; Alexander, J. Arsenic in the human food chain, biotransformation and toxicology–Review focusing on seafood arsenic. J. Trace Elem. Med. Biol. 2015, 31, 249–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arsenic in Your Food. Available online: https://www.consumerreports.org/cro/magazine/2012/11/arsenic-in-your-food/index.htm. (accessed on 22 November 2019).
- US EPA. Arsenic Rule Compliance Success Stories. Available online: https://www.epa.gov/dwreginfo/arsenic-rule-compliance-success-stories (accessed on 26 September 2019).
- CDC Template Package 4. Available online: https://www.cdc.gov/index.htm (accessed on 26 September 2019).
- European Food and Safety Authority. Scientific Opinion on Arsenic in Food. EFSA J. 2009, 7, 1351. [Google Scholar] [CrossRef]
- Aaseth, J.; Skaug, M.A.; Cao, Y.; Andersen, O. Chelation in metal intoxication—Principles and paradigms. J. Trace Elem. Med. Biol. 2015, 31, 260–266. [Google Scholar] [CrossRef]
- Zaffiri, L.; Gardner, J.; Toledo-Pereyra, L.H. History of antibiotics. From salvarsan to cephalosporins. J. Investig. Surg. 2012, 25, 67–77. [Google Scholar] [CrossRef]
- Emadi, A.; Gore, S.D. Arsenic trioxide—An old drug rediscovered. Blood Rev. 2010, 24, 191–199. [Google Scholar] [CrossRef] [Green Version]
- Farber, E.M. History of the treatment of psoriasis. J. Am. Acad. Dermatol. 1992, 27, 640–645. [Google Scholar] [CrossRef]
- Lu, J.; Chew, E.-H.; Holmgren, A. Targeting thioredoxin reductase is a basis for cancer therapy by arsenic trioxide. Proc. Natl. Acad. Sci. USA 2007, 104, 12288–12293. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Caminero, A.; Howe, P.D.; Hughes, M.; Kenyon, E.; Lewis, D.R.; Moore, M.; Aitio, A.; Becking, G.C.; Ng, J.; Safety, I.P.; et al. Arsenic and Arsenic Compounds; World Health Organization: Geneva, Switzerland, 2001; ISBN 978-92-4-157224-8. [Google Scholar]
- Arsenic, Fact Sheet No 372. Geneva: World Health Organization; 2012. Available online: http://www.who.int/mediacentre/factsheets/fs372/en/ (accessed on 11 January 2020).
- Chakraborti, D.; Rahman, M.M.; Mukherjee, A.; Alauddin, M.; Hassan, M.; Dutta, R.N.; Pati, S.; Mukherjee, S.C.; Roy, S.; Quamruzzman, Q.; et al. Groundwater arsenic contamination in Bangladesh-21 Years of research. J. Trace Elem. Med. Biol. 2015, 31, 237–248. [Google Scholar] [CrossRef]
- Arsenic Contamination Areas. Available online: https://commons.wikimedia.org/wiki/File:Arsenic_contamination_areas.png (accessed on 4 February 2020).
- Mondal, P.; Majumder, C.B.; Mohanty, B. Laboratory based approaches for arsenic remediation from contaminated water: Recent developments. J. Hazard. Mater. 2006, 137, 464–479. [Google Scholar] [CrossRef]
- Rahman, M.M.; Naidu, R.; Bhattacharya, P. Arsenic contamination in groundwater in the Southeast Asia region. Environ. Geochem. Health 2009, 31, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Bexfield, L.M.; Plummer, L.N. Occurrence of arsenic in ground water of the Middle Rio Grande Basin, central New Mexico. In Arsenic in Ground Water; Welch, A.H., Stollenwerk, K.G., Eds.; Kluwer Academic Publishers: Boston, MA, USA, 2003; pp. 295–327. ISBN 978-1-4020-7317-5. [Google Scholar]
- Scanlon, B.R.; Nicot, J.P.; Reedy, R.C.; Tachovsky, J.A.; Nance, S.H.; Smyth, R.C.; Keese, K.; Ashburn, R.E.; Christian, L. Evaluation of Arsenic Contamination in Texas; Prepared for Texas Commission on Environmental Quality Austin Texas; The University of Texas at Austin: Austin, TX, USA, 2005; p. 177. [Google Scholar]
- Foust, R.D.; Mohapatra, P.; Compton-O’Brien, A.-M.; Reifel, J. Groundwater arsenic in the Verde Valley in central Arizona, USA. Appl. Geochem. 2004, 19, 251–255. [Google Scholar] [CrossRef]
- George, C.M.; Sima, L.; Arias, M.H.J.; Mihalic, J.; Cabrera, L.Z.; Danz, D.; Checkley, W.; Gilman, R.H. Arsenic exposure in drinking water: An unrecognized health threat in Peru. Bull. World Health Organ. 2014, 92, 565–572. [Google Scholar] [CrossRef] [PubMed]
- Caceres, D.D.; Pino, P.; Montesinos, N.; Atalah, E.; Amigo, H.; Loomis, D. Exposure to inorganic arsenic in drinking water and total urinary arsenic concentration in a Chilean population. Environ. Res. 2005, 98, 151–159. [Google Scholar] [CrossRef]
- Concha, G.; Nermell, B.; Vahter, M.V. Metabolism of inorganic arsenic in children with chronic high arsenic exposure in northern Argentina. Environ. Health Perspect. 1998, 106, 355–359. [Google Scholar] [CrossRef]
- Stanisavljev, B.; Bulat, Z.; Buha, A.; Matović, V. Arsenic in drinking water in Northern region of Serbia. E3S Web Conf. 2013, 1, 24006. [Google Scholar] [CrossRef]
- Rowland, H.A.L.; Omoregie, E.O.; Millot, R.; Jimenez, C.; Mertens, J.; Baciu, C.; Hug, S.J.; Berg, M. Geochemistry and arsenic behaviour in groundwater resources of the Pannonian Basin (Hungary and Romania). Appl. Geochem. 2011, 26, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Hughes, M.F.; Beck, B.D.; Chen, Y.; Lewis, A.S.; Thomas, D.J. Arsenic exposure and toxicology: A historical perspective. Toxicol. Sci. 2011, 123, 305–332. [Google Scholar] [CrossRef] [Green Version]
- Khanam, R.; Kumar, A.; Nayak, A.K.; Shahid, M.; Tripathi, R.; Vijayakumar, S.; Bhaduri, D.; Kumar, U.; Mohanty, S.; Panneerselvam, P.; et al. Metal(loid)s (As, Hg, Se, Pb and Cd) in paddy soil: Bioavailability and potential risk to human health. Sci. Total Environ. 2020, 699, 134330. [Google Scholar] [CrossRef]
- Edmonds, J.S.; Francesconi, K.A. Methylated arsenic from marine fauna. Nature 1977, 265, 436. [Google Scholar] [CrossRef] [PubMed]
- Xue, X.-M.; Ye, J.; Raber, G.; Francesconi, K.A.; Li, G.; Gao, H.; Yan, Y.; Rensing, C.; Zhu, Y.-G. Arsenic Methyltransferase is Involved in Arsenosugar Biosynthesis by Providing DMA. Environ. Sci. Technol. 2017, 51, 1224–1230. [Google Scholar] [CrossRef] [PubMed]
- Taleshi, M.S.; Edmonds, J.S.; Goessler, W.; Ruiz-Chancho, M.J.; Raber, G.; Jensen, K.B.; Francesconi, K.A. Arsenic-Containing Lipids Are Natural Constituents of Sashimi Tuna. Environ. Sci. Technol. 2010, 44, 1478–1483. [Google Scholar] [CrossRef] [PubMed]
- Glabonjat, R.A.; Ehgartner, J.; Duncan, E.G.; Raber, G.; Jensen, K.B.; Krikowa, F.; Maher, W.A.; Francesconi, K.A. Arsenolipid biosynthesis by the unicellular alga Dunaliella tertiolecta is influenced by As/P ratio in culture experiments. Metallomics 2018, 10, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Román, M.D.; Niclis, C.; Aballay, L.R.; Lantieri, M.J.; Díaz, M.D.P.; Muñoz, S.E. Do Exposure to Arsenic, Occupation and Diet Have Synergistic Effects on Prostate Cancer Risk? Asian Pac. J. Cancer Prev. 2018, 19, 1495–1501. [Google Scholar] [PubMed]
- Pershagen, G. Lung cancer mortality among men living near an arsenic-emitting smelter. Am. J. Epidemiol. 1985, 122, 684–694. [Google Scholar] [CrossRef]
- De Gregori, I.; Fuentes, E.; Rojas, M.; Pinochet, H.; Potin-Gautier, M. Monitoring of copper, arsenic and antimony levels in agricultural soils impacted and non-impacted by mining activities, from three regions in Chile. J. Environ. Monitor. 2003, 5, 287–295. [Google Scholar] [CrossRef]
- Ratnaike, R. Acute and chronic arsenic toxicity. Postgrad Med J 2003, 79, 391–396. [Google Scholar] [CrossRef]
- Tseng, H.-P.; Wang, Y.-H.; Wu, M.-M.; The, H.-W.; Chiou, H.-Y.; Chen, C.-J. Association between chronic exposure to arsenic and slow nerve conduction velocity among adolescents in Taiwan. J. Health Popul. Nutr. 2006, 24, 182–189. [Google Scholar]
- National Research Council. Arsenic in Drinking Water; National Academy Press: Washington, DC, USA, 2001. [Google Scholar]
- Mink, P.J.; Alexander, D.D.; Barraj, L.M.; Kelsh, M.A.; Tsuji, J.S. Low-level arsenic exposure in drinking water and bladder cancer: A review and meta-analysis. Regul. Toxicol. Pharmacol. 2008, 52, 299–310. [Google Scholar] [CrossRef]
- Boffetta, P.; Borron, C. Low-Level Exposure to Arsenic in Drinking Water and Risk of Lung and Bladder Cancer: A Systematic Review and Dose-Response Meta-Analysis. Dose-Response 2019, 17, 1559325819863634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreccio, C.; González, C.; Milosavjlevic, V.; Marshall, G.; Sancha, A.M.; Smith, A.H. Lung Cancer and Arsenic Concentrations in Drinking Water in Chile. Epidemiology 2000, 11, 673–679. [Google Scholar] [CrossRef] [PubMed]
- Steinmaus, C.M.; Ferreccio, C.; Romo, J.A.; Yuan, Y.; Cortes, S.; Marshall, G.; Moore, L.E.; Balmes, J.R.; Liaw, J.; Golden, T.; et al. Drinking Water Arsenic in Northern Chile: High Cancer Risks 40 Years after Exposure Cessation. Cancer Epidemiol. Biomarkers Prev. 2013, 22, 623–630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bjørklund, G.; Tippairote, T.; Rahaman, M.D.S.; Aaseth, J. Developmental toxicity of arsenic: A drift from the classical dose–response relationship. Arch. Toxicol. 2019, 94, 57–75. [Google Scholar] [CrossRef] [PubMed]
- Skalny, A.V.; Simashkova, N.V.; Klyushnik, T.P.; Grabeklis, A.R.; Bjørklund, G.; Skalnaya, M.G.; Nikonorov, A.A.; Tinkov, A.A. Hair toxic and essential trace elements in children with autism spectrum disorder. Metab. Brain Dis. 2017, 32, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Bjørklund, G.; Skalny, A.V.; Rahman, M.M.; Dadar, M.; Yassa, H.A.; Aaseth, J.; Chirumbolo, S.; Skalnaya, M.G.; Tinkov, A.A. Toxic metal(loid)-based pollutants and their possible role in autism spectrum disorder. Environ. Res. 2018, 166, 234–250. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhao, F.; Liao, Y.; Jin, Y.; Sun, G. Arsenic exposure and glutamate-induced gliotransmitter release from astrocytes. Neural. Regen. Res. 2012, 7, 2439–2445. [Google Scholar]
- Castro-Coronel, Y.; Del Razo, L.M.; Huerta, M.; Hernandez-Lopez, A.; Ortega, A.; López-Bayghen, E. Arsenite exposure downregulates EAAT1/GLAST transporter expression in glial cells. Toxicol. Sci. 2011, 122, 539–550. [Google Scholar] [CrossRef]
- Chandravanshi, L.P.; Yadav, R.S.; Shukla, R.K.; Singh, A.; Sultana, S.; Pant, A.B.; Parmar, D.; Khanna, V.K. Reversibility of changes in brain cholinergic receptors and acetylcholinesterase activity in rats following early life arsenic exposure. Int. J. Dev. Neurosci. 2014, 34, 60–75. [Google Scholar] [CrossRef]
- Shavali, S.; Sens, D.A. Synergistic neurotoxic effects of arsenic and dopamine in human dopaminergic neuroblastoma SH-SY5Y cells. Toxicol. Sci. 2008, 102, 254–261. [Google Scholar] [CrossRef]
- Maull, E.A.; Ahsan, H.; Edwards, J.; Longnecker, M.P.; Navas-Acien, A.; Pi, J.; Silbergeld, E.K.; Styblo, M.; Tseng, C.-H.; Thayer, K.A.; et al. Evaluation of the Association between Arsenic and Diabetes: A National Toxicology Program Workshop Review. Environ. Health Perspect. 2012, 120, 1658–1670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumagai, Y.; Pi, J. Molecular basis for arsenic-Induced alteration in nitric oxide production and oxidative stress: Implication of endothelial dysfunction. Toxicol. Appl. Pharmacol. 2004, 198, 450–457. [Google Scholar] [CrossRef] [PubMed]
- Balakumar, P.; Kaur, J. Arsenic Exposure and Cardiovascular Disorders: An Overview. Cardiovasc. Toxicol. 2009, 9, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Lovaković, B.T. Cadmium, arsenic and lead—Elements affecting male reproductive health. Curr. Opin. Toxicol. 2019. [Google Scholar]
- Naranmandura, H.; Xu, S.; Sawata, T.; Hao, W.H.; Liu, H.; Bu, N.; Ogra, Y.; Lou, Y.J.; Suzuki, N. Mitochondria are the main target organelle for trivalent monomethylarsonous acid (MMA(III))-induced cytotoxicity. Chem. Res. Toxicol. 2011, 24, 1094–1103. [Google Scholar] [CrossRef]
- Bozack, A.K.; Saxena, R.; Gamble, M.V. Nutritional Influences on One-Carbon Metabolism: Effects on Arsenic Methylation and Toxicity. Annu. Rev. Nutr. 2018, 38, 401–429. [Google Scholar] [CrossRef]
- Zakharyan, R.A.; Tsaprailis, G.; Chowdhury, U.K.; Hernandez, A.; Aposhian, H.V. Interactions of sodium selenite, glutathione, arsenic species, and omega class human glutathione transferase. Chem. Res. Toxicol. 2005, 18, 1287–1295. [Google Scholar] [CrossRef]
- Németi, B.; Gregus, Z. Reduction of arsenate to arsenite by human erythrocyte lysate and rat liver cytosol—Characterization of a glutathione—And NAD-dependent arsenate reduction linked to glycolysis. Toxicol. Sci. 2005, 85, 847–858. [Google Scholar] [CrossRef]
- Twaddle, N.C.; Vanlandingham, M.; Beland, F.A.; Doerge, D.R. Metabolism and disposition of arsenic species from controlled dosing with dimethylarsinic acid (DMAV) in adult female CD-1 mice. V. Toxicokinetic studies following oral and intravenous administration. Food Chem. Toxicol. 2019, 130, 22–31. [Google Scholar] [CrossRef]
- Frankel, S.; Concannon, J.; Brusky, K.; Pietrowicz, E.; Giorgianni, S.; Thompson, W.D.; Currie, D.A. Arsenic exposure disrupts neurite growth and complexity in vitro. Neurotoxicology 2009, 30, 529–537. [Google Scholar] [CrossRef]
- Chen, G.; Mao, J.; Zhao, J.; Zhang, Y.; Li, T.; Wang, C.; Xu, L.; Hu, Q.; Wang, X.; Jiang, S.; et al. Arsenic trioxide mediates HAPI microglia inflammatory response and the secretion of inflammatory cytokine IL-6 via Akt/NF-κB signaling pathway. Regul. Toxicol. Pharmacol. 2016, 81, 480–488. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Gao, Y.; Yao, H.; Zhou, L.; Sun, D.; Wang, J. Neuroglobin involvement in the course of arsenic toxicity in rat cerebellar granule neurons. Biol. Trace Elem. Res. 2013, 155, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Prakash, C.; Soni, M.; Kumar, V. Mitochondrial oxidative stress and dysfunction in arsenic neurotoxicity: A review. J. Appl. Toxicol. 2016, 36, 179–188. [Google Scholar] [CrossRef]
- Kharroubi, W.; Haj Ahmed, S.; Nury, T.; Andreoletti, P.; Sakly, R.; Hammami, M.; Lizard, G. Mitochondrial dysfunction, oxidative stress and apoptotic induction in microglial BV-2 cells treated with sodium arsenate. J. Environ. Sci. 2017, 51, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.J.; Weng, S.T.; Tzeng, S.F. Effect of arsenite and arsenate on microglial cell survival. In Arsenic in Geosphere and Human Diseases Arsenic 2010, Proceedings of the Third International Congress on Arsenic in the Environment (As-2010); CRC Press: London, UK, 2010; ISBN 9780415578981. [Google Scholar]
- Selim, S.A.; Selim, A.O.; Askar, E.M. Harmful effects of arsenic on the cerebral cortex of adult male albino rats: Light and electron microscopic studies. Egyptian J. Histol. 2012, 35, 249–258. [Google Scholar] [CrossRef]
- Wang, X.; Meng, D.; Chang, Q.; Pan, J.; Zhang, Z.; Chen, G.; Ke, Z.; Luo, J.; Shi, X. Arsenic Inhibits Neurite Outgrowth by Inhibiting the LKB1–AMPK Signaling Pathway. Environ. Health Perspect. 2010, 118, 627–634. [Google Scholar] [CrossRef] [Green Version]
- Pandey, R.; Rai, V.; Mishra, J.; Mandrah, K.; Kumar Roy, S.; Bandyopadhyay, S. From the Cover: Arsenic Induces Hippocampal Neuronal Apoptosis and Cognitive Impairments via an Up-Regulated BMP2/Smad-Dependent Reduced BDNF/TrkB Signaling in Rats. Toxicol. Sci. 2017, 159, 137–158. [Google Scholar] [CrossRef] [Green Version]
- Chandravanshi, L.P.; Shukla, R.K.; Sultana, S.; Pant, A.B.; Khanna, V.K. Early life arsenic exposure and brain dopaminergic alterations in rats. Int. J. Dev. Neurosci. 2014, 38, 91–104. [Google Scholar] [CrossRef]
- Ramos-Chávez, L.A.; Rendón-López, C.R.R.; Zepeda, A.; Silva-Adaya, D.; Del Razo, L.M.; Gonsebatt, M.E. Neurological effects of inorganic arsenic exposure: Altered cysteine/glutamate transport, NMDA expression and spatial memory impairment. Front. Cell Neurosci. 2015, 9, 21. [Google Scholar] [CrossRef] [Green Version]
- Anwar-Mohamed, A.; Elshenawy, O.H.; El-Sherbeni, A.A.; Abdelrady, M.; El-Kadi, A.O.S. Acute arsenic treatment alters arachidonic acid and its associated metabolite levels in the brain of C57Bl/6 mice. Can. J. Physiol. Pharmacol. 2014, 92, 693–702. [Google Scholar] [CrossRef]
- Escudero-Lourdes, C.; Uresti-Rivera, E.E.; Oliva-González, C.; Torres-Ramos, M.A.; Aguirre-Bañuelos, P.; Gandolfi, A.J. Erratum to: Cortical Astrocytes Acutely Exposed to the Monomethylarsonous Acid (MMAIII) Show Increased Pro-inflammatory Cytokines Gene Expression that is Consistent with APP and BACE-1 Over-expression. Neurochem. Res. 2016, 41, 2573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Namgung, U.; Xia, Z. Arsenic induces apoptosis in rat cerebellar neurons via activation of JNK3 and p38 MAP kinases. Toxicol. Appl. Pharmacol. 2001, 174, 130–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Witt, B.; Ebert, F.; Meyer, S.; Francesconi, K.A.; Schwerdtle, T. Assessing neurodevelopmental effects of arsenolipids in pre-differentiated human neurons. Mol. Nutr. Food Res. 2017, 61, 1700199. [Google Scholar] [CrossRef] [PubMed]
- Witt, B.; Meyer, S.; Ebert, F.; Francesconi, K.A.; Schwerdtle, T. Toxicity of two classes of arsenolipids and their water-soluble metabolites in human differentiated neurons. Arch. Toxicol. 2017, 91, 3121–3134. [Google Scholar] [CrossRef]
- Müller, S.M.; Ebert, F.; Raber, G.; Meyer, S.; Bornhorst, J.; Hüwel, S.; Galla, H.-J.; Francesconi, K.A.; Schwerdtle, T. Effects of arsenolipids on in vitro blood-brain barrier model. Arch. Toxicol. 2018, 92, 823–832. [Google Scholar] [CrossRef]
- Peters, R.A.; Stocken, L.A.; Thompson, R.H.S. British Anti-Lewisite (BAL). Nature 1945, 156, 616–619. [Google Scholar] [CrossRef]
- Shila, S.; Subathra, M.; Devi, M.A.; Panneerselvam, C. Arsenic intoxication-induced reduction of glutathione level and of the activity of related enzymes in rat brain regions: Reversal by DL-alpha-lipoic acid. Arch. Toxicol. 2005, 79, 140–146. [Google Scholar] [CrossRef]
- Rodríguez, V.M.; Del Razo, L.M.; Limón-Pacheco, J.H.; Giordano, M.; Sánchez-Peña, L.C.; Uribe-Querol, E.; Gutiérrez-Ospina, G.; Gonsebatt, M.E. Glutathione reductase inhibition and methylated arsenic distribution in Cd1 mice brain and liver. Toxicol. Sci. 2005, 84, 157–166. [Google Scholar] [CrossRef]
- Nordberg, G.F.; Fowler, B.A.; Nordberg, M. Handbook on the Toxicology of Metals; Elsevier: London, UK, 2014; pp. 581–624. [Google Scholar]
- Zhou, Q.; Xi, S. A review on arsenic carcinogenesis: Epidemiology, metabolism, genotoxicity and epigenetic changes. Regul. Toxicol. Pharmacol. 2018, 99, 78–88. [Google Scholar] [CrossRef]
- Bjørklund, G.; Aaseth, J.; Chirumbolo, S.; Urbina, M.A.; Uddin, R. Effects of arsenic toxicity beyond epigenetic modifications. Environ. Geochem. Health 2018, 40, 955–965. [Google Scholar] [CrossRef]
- Ebert, F.; Weiss, A.; Bültemeyer, M.; Hamann, I.; Hartwig, A.; Schwerdtle, T. Arsenicals affect base excision repair by several mechanisms. Mutat. Res.-Fund. Mol. M 2011, 715, 32–41. [Google Scholar] [CrossRef]
- Holcomb, N.; Goswami, M.; Han, S.G.; Scott, T.; D’Orazio, J.; Orren, D.K.; Gairola, C.G.; Mellon, I. Inorganic arsenic inhibits the nucleotide excision repair pathway and reduces the expression of XPC. DNA Repair 2017, 52, 70–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartwig, A. Metal interaction with redox regulation: An integrating concept in metal carcinogenesis? Free Rad. Biol. Med. 2013, 55, 63–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nollen, M.; Ebert, F.; Moser, J.; Mullenders, L.H.F.; Hartwig, A.; Schwerdtle, T. Impact of arsenic on nucleotide excision repair: XPC function, protein level, and gene expression. Mol. Nutr. Food Res. 2009, 53, 572–582. [Google Scholar] [CrossRef] [PubMed]
- Taylor, V.F.; Li, Z.; Sayarath, V.; Palys, T.J.; Morse, K.R.; Scholz-Bright, R.A.; Karagas, M.R. Distinct arsenic metabolites following seaweed consumption in humans. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef] [PubMed]
- Aaseth, J. Recent advance in the therapy of metal poisonings with chelating agents. Hum. Toxicol. 1983, 2, 257–272. [Google Scholar] [CrossRef] [PubMed]
- Bjørklund, G.; Mutter, J.; Aaseth, J. Metal chelators and neurotoxicity: Lead, mercury, and arsenic. Arch. Toxicol. 2017, 91, 3787–3797. [Google Scholar] [CrossRef]
- Andersen, O.; Aaseth, J. Molecular mechanisms of in vivo metal chelation: Implications for clinical treatment of metal intoxications. Environ. Health Perspect. 2002, 110 (Suppl. 5), 887–890. [Google Scholar] [CrossRef] [Green Version]
- Ding, G.S.; Liang, Y.Y. Antidotal effects of dimercaptosuccinic acid. J. Appl. Toxicol. 1991, 11, 7–14. [Google Scholar] [CrossRef]
- Oginski, M. Use of Unitiol for speeding up renal excretion of chlormerodrin 203 Hg. Int. Urol. Nephrol. 1971, 3, 203–208. [Google Scholar] [CrossRef]
- Friedheim, E.A.; Da Silva, J.R.; Martins, A.V. Treatment of schistosomiasis mansoni with antimony-omega, omega-dimercapto-potassium succinate (TWSb). Am. J. Trop. Med. Hyg. 1954, 3, 714–727. [Google Scholar] [CrossRef] [PubMed]
- Aaseth, J.; Frieheim, E.A. Treatment of methyl mercury poisoning in mice with 2,3-dimercaptosuccinic acid and other complexing thiols. Acta Pharmacol. Toxicol. (Copenh) 1978, 42, 248–252. [Google Scholar] [CrossRef] [PubMed]
- Gerhardsson, L.; Aaseth, J. Guidance for clinical treatment of metal poisonings—Use and misuse of chelating agents. In Chelation Therapy in Treatment of Metal Intoxication; Aaseth, J., Crisponi, G., Andersen, O., Eds.; Elsevier: London, UK, 2016; pp. 313–341. [Google Scholar]
- Aaseth, J.; Ajsuvakova, O.P.; Skalny, A.V.; Skalnaya, M.G.; Tinkov, A.A. Chelator combination as therapeutic strategy in mercury and lead poisonings. Coord. Chem. Rev. 2018, 358, 1–12. [Google Scholar] [CrossRef]
- Moore, D.F.; O’Callaghan, C.A.; Berlyne, G.; Ogg, C.S.; Davies, H.A.; House, I.M.; Henry, J.A. Acute arsenic poisoning: Absence of polyneuropathy after treatment with 2,3-dimercaptopropanesulphonate (DMPS). J. Neurol. Neurosurg. Psychiatry 1994, 57, 1133–1135. [Google Scholar] [CrossRef]
- Wax, P.M.; Thornton, C.A. Recovery from severe arsenic-induced peripheral neuropathy with 2,3-dimercapto-1-propanesulphonic acid. J. Toxicol. Clin. Toxicol. 2000, 38, 777–780. [Google Scholar] [CrossRef]
- Vantroyen, B.; Heilier, J.F.; Meulemans, A.; Michels, A.; Buchet, J.P.; Vanderschueren, S.; Haufroid, V.; Sabbe, M. Survival after a lethal dose of arsenic trioxide. J. Toxicol. Clin. Toxicol. 2004, 42, 889–895. [Google Scholar] [CrossRef]
- Aaseth, J.; Crisponi, G.; Anderson, O. Chelation Therapy in the Treatment of Metal Intoxication; Elsevier: London, UK, 2016; pp. 85–252. [Google Scholar]
- Guha Mazumder, D.N.; De, B.K.; Santra, A.; Ghosh, N.; Das, S.; Lahiri, S.; Das, T. Randomized placebo-controlled trial of 2,3-dimercapto-1-propanesulfonate (DMPS) in therapy of chronic arsenicosis due to drinking arsenic-contaminated water. J. Toxicol. Clin. Toxicol. 2001, 39, 665–674. [Google Scholar] [CrossRef]
- Stenehjem, A.-E.; Vahter, M.; Nermell, B.; Aasen, J.; Lierhagen, S.; Mørland, J.; Jacobsen, D. Slow recovery from severe inorganic arsenic poisoning despite treatment with DMSA (2.3-dimercaptosuccinic acid). Clin. Toxicol. 2007, 45, 424–428. [Google Scholar] [CrossRef]
- Spallholz, J.; Malloryboylan, L.; Rhaman, M. Environmental hypothesis: Is poor dietary selenium intake an underlying factor for arsenicosis and cancer in Bangladesh and West Bengal, India? Sci. Tot. Environ. 2004, 323, 21–32. [Google Scholar] [CrossRef]
- Chen, Y.; Hall, M.; Graziano, J.H.; Slavkovich, V.; van Geen, A.; Parvez, F.; Ahsan, H. A Prospective Study of Blood Selenium Levels and the Risk of Arsenic-Related Premalignant Skin Lesions. Cancer Epidemiol. Biomarkers Prev. 2007, 16, 207–213. [Google Scholar] [CrossRef] [Green Version]
- Zeng, H.; Uthus, E.O.; Combs, G.F., Jr. Mechanistic aspects of the interaction between selenium and arsenic. J. Inorg. Biochem. 2005, 99, 1269–1274. [Google Scholar] [CrossRef] [PubMed]
- Arnold, A.P.; Canty, A.J.; Reid, R.S.; Rabenstein, D.L. Nuclear magnetic resonance and potentiometric studies of the complexation of methylmercury(II) by dithiols. Can. J. Chem. 1985, 63, 2430–2436. [Google Scholar] [CrossRef] [Green Version]
- Carla Aragoni, M.; Arca, M.; Crisponi, G.; Cristiani, F.; Isaia, F.; Nurchi, V.M. Characterization of the ionization and spectral properties of mercapto-carboxylic acids Correlation with substituents and structural features. Talanta 1996, 43, 1357–1366. [Google Scholar] [CrossRef]
- Bjørklund, G.; Crisponi, G.; Nurchi, V.M.; Cappai, R.; Buha Djordjevic, A.; Aaseth, J. A Review on Coordination Properties of Thiol-Containing Chelating Agents Towards Mercury, Cadmium, and Lead. Molecules 2019, 24, 3247. [Google Scholar] [CrossRef] [Green Version]
- Bonomi, F.; Pagani, S.; Cariati, F.; Pozzi, A.; Crisponi, G.; Cristiani, F.; Diaz, A.; Zanoni, R. Synthesis and characterization of metal derivatives of dihydrolipoic acid and dihydrolipoamide. Inorganica Chim. Acta 1992, 192, 237–242. [Google Scholar] [CrossRef]
- Dill, K.; Hu, S.; O’Connor, R.J.; McGown, E.L. Preparation, structure, and solution dynamics of phenyldichloroarsine-thio sugar adducts. Carbohydr. Res. 1990, 196, 141–146. [Google Scholar] [CrossRef]
- O’Connor, R.J.; McGown, E.L.; Dill, K.; Hallowell, S.F. Two-dimensional NMR studies of arsenical-sulfhydryl adducts. Magn. Reson. Chem. 1989, 27, 669–675. [Google Scholar] [CrossRef]
- Adams, E.; Jeter, D.; Cordes, A.W.; Kolis, J.W. Chemistry of organometalloid complexes with potential antidotes: Structure of an organoarsenic(III) dithiolate ring. Inorg. Chem. 1990, 29, 1500–1503. [Google Scholar] [CrossRef]
- Fairlamb, A.H.; Carter, N.S.; Cunningham, M.; Smith, K. Characterisation of melarsen-resistant Trypanosoma brucei brucei with respect to cross-resistance to other drugs and trypanothione metabolism. Mol. Biochem. Parasit. 1992, 53, 213–222. [Google Scholar] [CrossRef]
- Fairlamb, A.H.; Henderson, G.B.; Cerami, A. Trypanothione is the primary target for arsenical drugs against African trypanosomes. Proc. Natl. Acad. Sci. USA 1989, 86, 2607–2611. [Google Scholar] [CrossRef] [Green Version]
- Von Döllen, A.; Strasdeit, H. Models for the Inhibition of Dithiol-Containing Enzymes by Organoarsenic Compounds: Synthetic Routes and the Structure of [PhAs(HlipS2)] (HlipS22− = Reduced Lipoic Acid). Eur. J. Inorg. Chem. 1998, 1998, 61–66. [Google Scholar] [CrossRef]
- Spuches, A.M.; Kruszyna, H.G.; Rich, A.M.; Wilcox, D.E. Thermodynamics of the As(III)−Thiol Interaction: Arsenite and Monomethylarsenite Complexes with Glutathione, Dihydrolipoic Acid, and Other Thiol Ligands. Inorg. Chem. 2005, 44, 2964–2972. [Google Scholar] [CrossRef] [PubMed]
- Cavanillas, S.; Chekmeneva, E.; Ariño, C.; Díaz-Cruz, J.M.; Esteban, M. Electroanalytical and isothermal calorimetric study of As(III) complexation by the metal poisoning remediators, 2,3-dimercapto-1-propanesulfonate and meso-2,3-dimercaptosuccinic acid. Anal. Chim. Acta 2012, 746, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Harper, L.K.; Bayse, C.A. Modeling the chelation of As(III) in lewisite by dithiols using density functional theory and solvent-assisted proton exchange. J. Inorg. Biochem. 2015, 153, 60–67. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nurchi, V.M.; Buha Djordjevic, A.; Crisponi, G.; Alexander, J.; Bjørklund, G.; Aaseth, J. Arsenic Toxicity: Molecular Targets and Therapeutic Agents. Biomolecules 2020, 10, 235. https://doi.org/10.3390/biom10020235
Nurchi VM, Buha Djordjevic A, Crisponi G, Alexander J, Bjørklund G, Aaseth J. Arsenic Toxicity: Molecular Targets and Therapeutic Agents. Biomolecules. 2020; 10(2):235. https://doi.org/10.3390/biom10020235
Chicago/Turabian StyleNurchi, Valeria M., Aleksandra Buha Djordjevic, Guido Crisponi, Jan Alexander, Geir Bjørklund, and Jan Aaseth. 2020. "Arsenic Toxicity: Molecular Targets and Therapeutic Agents" Biomolecules 10, no. 2: 235. https://doi.org/10.3390/biom10020235
APA StyleNurchi, V. M., Buha Djordjevic, A., Crisponi, G., Alexander, J., Bjørklund, G., & Aaseth, J. (2020). Arsenic Toxicity: Molecular Targets and Therapeutic Agents. Biomolecules, 10(2), 235. https://doi.org/10.3390/biom10020235