N-Acetylaspartate Is an Important Brain Osmolyte
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of Protein Stock Solutions and Determination of Concentration
2.2.2. Thermal Denaturation Studies
2.2.3. Structural Measurements
3. Results
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Currais, A.; Fischer, W.; Maher, P.; Schubert, D. Intraneuronal protein aggregation as a trigger for inflammation and neurodegeneration in the aging brain. FASEB J. 2017, 31, 5–10. [Google Scholar] [CrossRef] [Green Version]
- Soto, C.; Estrada, L.D. Protein misfolding and neurodegeneration. Arch. Neurol. 2008, 65, 184–189. [Google Scholar] [CrossRef] [Green Version]
- Videen, J.S.; Michaelis, T.; Pinto, P.; Ross, B.D. Human cerebral osmolytes during chronic hyponatremia. A proton magnetic resonance spectroscopy study. J. Clin. Investig. 1995, 95, 788–793. [Google Scholar] [CrossRef]
- Baslow, M.H.; Suckow, R.F.; Gaynor, K.; Bhakoo, K.K.; Marks, N.; Saito, M.; Duff, K.; Matsuoka, Y.; Berg, M.J. Brain damage results in down-regulation of N-acetylaspartate as a neuronal osmolyte. Neuromol. Med. 2003, 3, 95–104. [Google Scholar] [CrossRef]
- Leandro, P.; Gomes, C.M. Protein misfolding in conformational disorders: Rescue of folding defects and chemical chaperoning. Mini Rev. Med. Chem. 2008, 8, 901–911. [Google Scholar] [CrossRef] [Green Version]
- Brown, C.R.; Brown, L.Q.H.; Welch, W.J. Correcting temperature-sensitive protein folding defects. J. Clin. Investig. 1997, 99, 1432–1444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, L.R. Forty Years of Research on Osmolyte-Induced Protein Folding and Stability. J. Iran. Chem. Soc. 2011, 8, 1–23. [Google Scholar] [CrossRef]
- Rahman, S.; Islam, A.; Hassan, M.I.; Kim, J.; Ahmad, F. Unfoldness of the denatured state of proteins determines urea: Methylamine counteraction in terms of Gibbs free energy of stabilization. Int. J. Biol. Macromol. 2019, 132, 666–676. [Google Scholar] [CrossRef]
- Rahman, S.; Ali, S.A.; Islam, A.; Hassan, M.I.; Ahmad, F. Testing the dependence of stabilizing effect of osmolytes on the fractional increase in the accessible surface area on thermal and chemical denaturations of proteins. Arch. Biochem. Biophys. 2016, 591, 7–17. [Google Scholar] [CrossRef]
- Chowhan, R.K.; Ali, F.; Bhat, M.Y.; Rahman, S.; Singh, L.R.; Ahmad, F.; Dar, T.A. Alanine Counteracts the Destabilizing Effect that Urea has on RNase-A. Protein. Pept. Lett. 2016, 23, 795–799. [Google Scholar] [CrossRef]
- Rahman, S.; Warepam, M.; Singh, L.R.; Dar, T.A. A current perspective on the compensatory effects of urea and methylamine on protein stability and function. Prog. Biophys. Mol. Biol. 2015, 119, 129–136. [Google Scholar]
- Singh, L.R.; Dar, T.A.; Rahman, S.; Jamal, S.; Ahmad, F. Glycine betaine may have opposite effects on protein stability at high and low pH values. Biochim. Biophys. Acta 2009, 1794, 929–935. [Google Scholar] [CrossRef]
- Rael, L.T.; Thomas, G.W.; Bar-Or, R.; Craun, M.L.; Bar-Or, D. An anti-inflammatory role for N-acetly aspartate in stimulated human astroglial cells. Biochem. Biophys. Res. Commun. 2004, 319, 847–853. [Google Scholar] [CrossRef]
- Clark, J.F.; Amos, D.; Jessica, A.F.; Wardle, R.L.; Lu, A.; Meeker, T.J.; Geithman, G.J. N-Acetylaspartate as a reservoir for glutamate. Med. Hypotheses 2006, 67, 506–512. [Google Scholar] [CrossRef]
- Madhavarao, C.N.; Arun, P.; Moffett, J.R.; Szucs, S.; Surendran, S.; Matalon, R.; Garbern, J.; Hristova, D.; Johnson, A.; Jiang, W.; et al. Defective N-acetylaspartate catabolism reduces brain acetate levels and myelin lipid synthesis in Canavan’s disease. Proc. Natl. Acad. Sci. USA 2005, 102, 5221–5226. [Google Scholar] [CrossRef] [Green Version]
- Burgal, M.; Jorda, A.; Grisolia, S. Effects of N-acetyl aspartate, aspartate, and glutamate on cAMP and cGMP levels in developing rat cerebral cortex. J. Neurochem. 1982, 38, 1498–1500. [Google Scholar] [CrossRef]
- Cecchi, L.; De Santis, A.; Eusebi, F.; Curatolo, A. An electrophysiological study of N-acetyl-L-aspartic acid (NAAA) on the stellate ganglion of the squid. Experientia 1978, 34, 1475–1476. [Google Scholar] [CrossRef]
- Baslow, M.H. Brain N-acetylaspartate as a molecular water pump and its role in the etiology of Canavan disease: A mechanistic explanation. J. Mol. Neurosci. 2003, 21, 185–190. [Google Scholar] [CrossRef]
- Taylor, D.L.; Davies, S.E.; Obrenovitch, T.P.; Doheny, M.H.; Patsalos, P.N.; Clark, J.B.; Symon, L. Investigation into the role of N-acetylaspartate in cerebral osmoregulation. J. Neurochem. 1995, 65, 275–281. [Google Scholar] [CrossRef]
- Arun, P.; Madhavarao, C.N.; Moffet, J.R.; Namboodiri, M.A.A. Regulation of N-acetylaspartate and N-acetylaspartylglutamate biosynthesis by protein kinase activators. J. Neurochem. 2006, 98, 2034–2042. [Google Scholar]
- Clarke, D.D.; Greenfield, S.; Dicker, E.; Tirri, L.J.; Ronan, E.J. A relationship of N-Acetylaspartate biosynthesis to neuronal protein synthesis. J. Neurochem. 1975, 24, 479–485. [Google Scholar] [CrossRef]
- Burlina, A.P.; Ferrari, V.; Facci, L.; Skaper, S.D.; Burlina, A.B. Mast cells contain large quantities of secretagogue-sensitive N-Acetylaspartate. J. Neurochem. 1997, 69, 1314–1317. [Google Scholar] [CrossRef]
- Jung, R.E.; Brooks, W.M.; Yeo, R.A.; Chiulli, S.J.; Weers, D.C.; Sibbitt, W.L., Jr. Biochemical markers of intelligence: A proton MR spectroscopy study of normal human brain. Proc. Biol. Sci. 1999, 266, 1375–1379. [Google Scholar] [CrossRef] [Green Version]
- Bigelow, C.C. Difference spectra of ribonuclease and two ribonuclease derivatives. Comptes-rendus Trav. Lab. Carlsberg 1960, 31, 305–324. [Google Scholar]
- Hamaguchi, K.; Kurono, A. Structure of Muramidase (Lysozyme). I. The Effect of Guanidine Hydrochloride on Muramidase. J. Biochem. 1963, 54, 111–122. [Google Scholar]
- Sinha, A.; Yadav, S.; Ahmad, R.; Ahmad, F. A possible origin of differences between calorimetric and equilibrium estimates of stability parameters of proteins. Biochem. J. 2000, 345, 711–717. [Google Scholar] [CrossRef]
- Becktel, W.J.; Schellman, J.A. Protein stability curves. Biopolymers 1987, 26, 1859–1877. [Google Scholar] [CrossRef]
- Kim, Y.S.; Jones, L.S.; Dong, A.; Kendrick, B.S.; Chang, B.S.; Manning, M.C.; Randolph, T.W.; Carpenter, J.F. Effects of sucrose on conformational equilibria and fluctuations within the native-state ensemble of proteins. Protein Sci. 2003, 12, 1252–1261. [Google Scholar] [CrossRef]
- Pradeep, L.; Udgaonkar, J. Osmolytes induce structure in an early intermediate on the folding pathway of Barstar. J. Biol. Chem. 2004, 279, 40303–40313. [Google Scholar] [CrossRef] [Green Version]
- Minton, A.P. Implications of macromolecular crowding for protein assembly. Curr. Opin. Struct. Biol. 2000, 10, 34–39. [Google Scholar] [CrossRef]
- Ellis, R.J. Macromolecular crowding: An important but neglected aspect of the intracellular environment. Curr. Opin. Struct. Biol. 2001, 11, 114–119. [Google Scholar] [CrossRef]
- Singh, L.R.; Ali Dar, T.; Haque, I.; Anjum, F.; Moosavi-Movahedi, A.A.; Ahmad, F. Testing the paradigm that the denaturing effect of urea on protein stability is offset by methylamines at the physiological concentration ratio of 2:1 (urea:methylamines). Biochim. Biophys. Acta 2007, 1774, 1555–1562. [Google Scholar] [CrossRef]
- McIntosh, J.C.; Cooper, J.R. Studies on the function of N-acetyl aspartic acid in brain. J. Neurochem. 2006, 12, 825–835. [Google Scholar] [CrossRef]
- Murphy, M.P.; LeVine, H., 3rd. Alzheimer’s Disease and the b-Amyloid Peptide. J. Alzheimers Dis. 2010, 19, 311. [Google Scholar] [CrossRef] [Green Version]
- Dolle, J.P.; Rodgers, J.M.; Browne, K.D.; Troxler, T.; Gai, F.; Smith, D.H. Newfound effect of N-acetylaspartate in preventing and reversing aggregation of amyloid-beta in vitro. Neurobiol. Dis. 2018, 117, 161–169. [Google Scholar] [CrossRef]
- Singh, R.; Haque, I.; Ahmad, F. Counteracting osmolyte trimethylamine N-oxide destabilizes proteins at pH below its pKa. Measurements of thermodynamic parameters of proteins in the presence and absence of trimethylamine N-oxide. J. Biol. Chem. 2005, 280, 11035–11042. [Google Scholar] [CrossRef] [Green Version]
- Haque, I.; Singh, R.; Moosavi-Movahedi, A.A.; Ahmad, F. Effect of polyol osmolytes on DeltaG(D), the Gibbs energy of stabilisation of proteins at different pH values. Biophys. Chem. 2005, 117, 1–12. [Google Scholar] [CrossRef]
- Kevin, C. The nervous system and pH. Open J. Intern. Med. 2013, 3, 126–128. [Google Scholar]
RNase-A | ||||||||||||||||
pH 7.0 | pH 5.5 | pH 5.0 | pH 4.0 | pH 2.5 | ||||||||||||
[NAA] | Tm | ∆Hm | ∆GD° | Tm | ∆Hm | ∆GD° | Tm | ∆Hm | ∆GD° | Tm | ∆Hm | ∆GD° | Tm | ∆Hm | ∆GD° | ∆Cp |
0.00 | 64.1 | 111 | 9.9 | 60.8 | 106 | 8.9 | 60.0 | 106 | 8.8 | 57.2 | 105 | 8.2 | 43.6 | 85 | 4.3 | 1.25 |
0.25 | 65.8 | 113 | 10.2 | 62.5 | 109 | 9.3 | 61.0 | 107 | 9.0 | 57.7 | 107 | 8.3 | 44.0 | 84 | 4.3 | 1.33 |
0.50 | 67.6 | 116 | 10.6 | 63.9 | 113 | 9.7 | 62.2 | 111 | 9.3 | 58.7 | 108 | 8.5 | 44.8 | 85 | 4.4 | 1.40 |
0.75 | 69.4 | 121 | 11.3 | 65.6 | 116 | 10.1 | 64.0 | 113 | 9.6 | 60.5 | 110 | 8.8 | 44.9 | 85 | 4.4 | 1.47 |
1.00 | 72.7 | 124 | 11.9 | 67.5 | 118 | 10.5 | 65.4 | 116 | 10.1 | 61.3 | 111 | 9.0 | 45.6 | 84 | 4.4 | 1.50 |
(64.4) | ||||||||||||||||
Lysozyme | ||||||||||||||||
pH 7.0 | pH 5.5 | pH 5.0 | pH 4.0 | pH 2.5 | ||||||||||||
[NAA] | Tm | ∆Hm | ∆GD° | Tm | ∆Hm | ∆GD° | Tm | ∆Hm | ∆GD° | Tm | ∆Hm | ∆GD° | Tm | ∆Hm | ∆GD° | ∆Cp |
0.00 | 66.4 | 106 | 8.6 | 64.1 | 99 | 7.5 | 63.2 | 96 | 71 | 61.3 | 91 | 6.5 | 52.8 | 82 | 4.9 | 1.65 |
0.25 | 68.3 | 111 | 9.2 | 65.7 | 103 | 8.0 | 64.1 | 98 | 7.3 | 62.4 | 94 | 6.7 | 53.0 | 83 | 5.0 | 1.71 |
0.50 | 72.0 | 116 | 9.9 | 67.4 | 107 | 8.4 | 66.2 | 103 | 7.9 | 63.9 | 96 | 6.9 | 54.0 | 84 | 5.1 | 1.77 |
0.75 | 74.6 | 121 | 10.3 | 70.6 | 111 | 8.8 | 69.0 | 106 | 8.1 | 66.4 | 100 | 7.3 | 55.8 | 85 | 5.2 | 1.86 |
1.00 | 76.5 (66.8) | 127 | 11.0 | 72.9 | 114 | 9.1 | 71.2 | 110 | 8.5 | 68.8 | 103 | 7.6 | 57.0 | 87 | 5.4 | 1.92 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Warepam, M.; Ahmad, K.; Rahman, S.; Rahaman, H.; Kumari, K.; Singh, L.R. N-Acetylaspartate Is an Important Brain Osmolyte. Biomolecules 2020, 10, 286. https://doi.org/10.3390/biom10020286
Warepam M, Ahmad K, Rahman S, Rahaman H, Kumari K, Singh LR. N-Acetylaspartate Is an Important Brain Osmolyte. Biomolecules. 2020; 10(2):286. https://doi.org/10.3390/biom10020286
Chicago/Turabian StyleWarepam, Marina, Khurshid Ahmad, Safikur Rahman, Hamidur Rahaman, Kritika Kumari, and Laishram Rajendrakumar Singh. 2020. "N-Acetylaspartate Is an Important Brain Osmolyte" Biomolecules 10, no. 2: 286. https://doi.org/10.3390/biom10020286
APA StyleWarepam, M., Ahmad, K., Rahman, S., Rahaman, H., Kumari, K., & Singh, L. R. (2020). N-Acetylaspartate Is an Important Brain Osmolyte. Biomolecules, 10(2), 286. https://doi.org/10.3390/biom10020286