Myo-Inositol Transporter SLC5A3 Associates with Degenerative Changes and Inflammation in Sporadic Inclusion Body Myositis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Antibodies for Immunodetection
2.3. Immunofluorescence
2.4. Western Blotting
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cannizzaro, M.; Jarosova, J.; De Paepe, B. Relevance of solute carrier family 5 transporter defects to inherited and acquired human disease. J. Appl. Genet. 2019, 60, 305–317. [Google Scholar] [CrossRef]
- Tsai, L.J.; Hsiao, S.H.; Tsai, L.M.; Liu, C.Y.; Tsai, J.J.; Liou, D.M.; Lan, J.L. The sodium-dependent glucose cotransporter SLC5A11 as an autoimmune modifier gene in SLE. Tissue Antigens 2007, 71, 114–126. [Google Scholar] [CrossRef] [PubMed]
- Farias, V.X.; Uchoa, P.N.; Quino, C.P.; Britto, L.R.G.; Fonteles, M.C.; Leal-Cardoso, J.H.; Silva-Alvs, K.S.; Havt, A.; Prata, M.M.G.; Heimark, D.B.; et al. Expression of myo-inositol cotransporters in the sciatic nerve and dorsal root ganglia in experimental diabetes. Braz. J. Med. Biol. Res. 2019, 52, e8589. [Google Scholar] [CrossRef] [PubMed]
- Fruman, D.A.; Bismuth, G. Fine tuning the immune response with PI3K. Immunol. Rev. 2009, 228, 253–272. [Google Scholar] [CrossRef] [PubMed]
- Schneider, S. Inositol transport proteins. FEBS Lett. 2015, 589, 1049–1058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, J. Current classification and management of inflammatory myopathies. J. Neuromuscul. Dis. 2018, 5, 109–129. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, S.A. Inclusion body myositis: Clinical features and pathogenesis. Nat. Rev. 2019, 15, 257–272. [Google Scholar] [CrossRef]
- De Paepe, B. Sporadic inclusion body myositis: An acquired mitochondrial disease with extras. Biomolecules 2019, 9, 15. [Google Scholar] [CrossRef] [Green Version]
- Keller, C.W.; Schmidt, J.; Luenemann, J.D. Immune and myodegenerative pathomechanisms in inclusion body myositis. Ann. Clin. Transl. Neurol. 2017, 4, 422–445. [Google Scholar] [CrossRef]
- De Paepe, B.; Martin, J.J.; Herbelet, S.; Jimenez-Mallebrera, C.; Iglesias, E.; Jou, C.; Weis, J.; De Bleecker, J.L. Activation of osmolyte pathways in inflammatory myopathy and Duchenne muscular dystrophy points to osmotic regulation as a contributing pathogenic mechanism. Lab. Investig. 2016, 96, 872–884. [Google Scholar] [CrossRef] [Green Version]
- De Paepe, B.; Zschüntzsch, J.; Šokčević, T.; Weis, J.; Schmidt, J.; De Bleecker, J. Induction of osmolyte pathways in skeletal muscle inflammation: novel biomarkers for myositis. Front. Neurol. 2018, 9, e846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herbert, M.K.; Stammen-Vogelzangs, J.; Verbeek, M.M.; Rietveld, A.; Lundberg, I.E.; Chinoy, H.; Lamb, J.A.; Cooper, R.G.; Roberts, M.; Badrising, U.A.; et al. Disease specificity of autoantibodies to cytosolic 5′-nucleotidase 1A in sporadic inclusion body myositis versus known autoimmune diseases. Ann. Rheum. Dis. 2016, 75, 696–701. [Google Scholar] [CrossRef]
- Voevodskaya, O.; Sundgren, O.; Zetterberg, H.; Minthon, L.; Blennow, K.; Wahlund, L.O.; Westman, E.; Hansson, O. The Swedish BioFINDER Study Group. Myo-inositol changes precede amyloid pathology and relate to APOE genotype in Alzheimer disease. Neurology 2016, 86, 1754–1761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voevodskaya, O.; Poulakis, K.; Sundgren, P.; van Westen, D.; Palmqvist, S.; Wahlund, L.O.; Stomrud, E.; Hansson, O.; Westman, E.; Swedish BioFINDER Study Group. Brain myoinositol as a potential marker of amyloid-related pathology: A longitudinal study. Neurology 2019, 92, e395–e405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marjanska, M.; Weigand, S.D.; Preboske, G.; Wengenack, T.M.; Chamberlain, R.; Curran, G.L.; Poduslo, J.F.; Garwood, M.; Kobayashi, D.; Lin, J.C.; et al. Treatment effects in a transgenic mouse model of Alzheimer’s disease: a magnetic resonance spectroscopy study after passive immunization. Neuroscience 2014, 259, 94–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McLaurin, J.; Golomb, R.; Jurewicz, A.; Antel, J.P.; Fraser, P.E. Inositol stereoisomers stabilize an oligomeric aggregate of Alzheimer amyloid β peptide and inhibit Aβ-induced toxicity. J. Biol. Chem. 2000, 275, 18495–18502. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Pomes, R. Binding mechanism of inositol stereoisomers to monomers and aggregates of Aβ(16-22). J. Phys. Chem. 2013, 117, 6603–6613. [Google Scholar] [CrossRef]
- Maurage, C.A.; Bussière, T.; Sergeant, N.; Ghesteem, A.; Figarella-Branger, D.; Ruchoux, M.M.; Pellissier, J.F.; Delacourte, A. Tau aggregates are abnormally phosphorylated in inclusion body myositis and have an immunoelectrophoretic profile distinct from other tauopathies. Neuropathol. Appl. Neurobiol. 2004, 30, 624–634. [Google Scholar] [CrossRef]
- Trama, J.; Go, W.Y.; Ho, S.N. The osmoprotective function of the NFAT5 transcription factor in T cell development and activation. J. Immunol. 2002, 169, 5477–5488. [Google Scholar] [CrossRef] [Green Version]
- Warskulat, U.; Zhang, F.; Häussinger, D. Taurine is an osmolyte in rat liver macrophages (Kupffer cells). J. Hepatol. 1997, 26, 1340–1347. [Google Scholar] [CrossRef]
- Denkert, C.; Warskulat, U.; Hensel, F.; Häussinger, D. Osmolyte strategy in human monocytes and macrophages: involvement of p38MAPK in hyperosmotic induction of betaine and myoinositol transporters. Arch. Biochem. Biophys. 1998, 354, 172–180. [Google Scholar] [CrossRef] [PubMed]
- Ostrin, E.J.; Unver, N.; Delgado, O.; Caetano, M.; Zeleke, K.; Cumpian, A.; Tang, X.; Wang, H.; Katayama, H.; Wistuba, I.; et al. Myo-inositol reduces pro-tumoral IL6 inflammation in a mouse model of lung cancer chemoprevention. Am. J. Respir. Crit. Care Med. 2017, 195, A4955. [Google Scholar]
- Unver, N.; Delgado, O.; Zeleke, K.; Cumpian, A.; Tang, X.; Caetano, M.S.; Wang, H.; Katayama, H.; Yu, H.; Szabo, E.; et al. Reduced IL-6 levels and tumor-associated phosphor-STAT3 are associated with reduced tumor development in a mouse model of lung cancer chemoprevention with myo-inositol. Int. J. Cancer 2018, 142, 1405–1417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Paepe, B. A recipe for myositis: nuclear factor κB and nuclear factor of activated T-cells transcription factor pathways spiced up by cytokines. AIMS All. Immunol. 2017, 1, 31–42. [Google Scholar] [CrossRef] [Green Version]
- Nascimento, N.R.F.; Lessa, L.M.A.; Kerntopf, M.R.; Sousa, C.M.; Alves, R.S.; Queiroz, M.G.R.; Price, J.; Heimark, D.B.; Larner, J.; Du, X.; et al. Inositols prevent and reverse endothelial function in diabetic rat and rabbit vasculature metabolically and by scavenging superoxide. Proc. Natl. Acad. Sci. USA 2006, 103, 218–223. [Google Scholar] [CrossRef] [Green Version]
- Lin, X.C.; Pan, M.; Zhu, L.P.; Sun, Q.; Zhou, Z.S.; Li, C.C.; Zhang, G.G. NFAT5 promotes arteriogenesis via MCP-1-dependent monocyte recruitment. J. Cell. Mol. Med. 2020, 24, 2025–2063. [Google Scholar] [CrossRef] [Green Version]
- De Bleecker, J.L.; De Paepe, B.; Vanwalleghem, I.E.; Schröder, J.M. Differential expression of chemokines in inflammatory myopathies. Neurology 2002, 58, 1779–1785. [Google Scholar] [CrossRef]
- Keller, C.W.; Schmitz, M.; Münz, C.; Lünemann, J.D.; Schmidt, J. TNF-α upregulates macroautophagic processing of APP/β-amyloid in a human rhabdomyosarcoma cell line. J. Neurol. Sci. 2013, 325, 103–107. [Google Scholar] [CrossRef]
- Pietrobono, D.; Giacomelli, C.; Trincavelli, M.L.; Daniele, S.; Martini, C. Inhibitors of protein aggregates as novel drugs in neurodegenerative diseases. Glob. Drugs Therap. 2017, 2, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Rabbani, G.; Choi, I. Roles of osmolytes in protein folding and aggregation in cells and their biotechnological applications. Int. J. Biol. Marcomolec. 2018, 109, 483–491. [Google Scholar] [CrossRef]
- DaSilva, K.A.; Brown, M.E.; Cousins, J.E.; Rappaport, R.V.; Aubert, I.; Westaway, D.; McLaurin, J.A. Scyllo-inositol (elnd005) ameliorates amyloid pathology in an aggressive mouse model of Alzheimer’s disease. Alzheimer’s Dementia 2009, 5, P425. [Google Scholar] [CrossRef]
- Salloway, S.; Sperling, R.; Keren, R.; Porsteinsson, A.P.; van Dyck, C.H.; Tariott, P.N.; Gilman, S.; Arnold, D.; Abushakra, S.; Hernandez, C.; et al. ELND005-AD201 Investigators. A phase 2 randomized trial of ELND005, scyllo-inositol, in mild to moderate Alzheimer disease. Neurology 2011, 77, 1253–1262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Patient | Gender/Age | Clinical Features | Muscle Pathology | Autoantibodies |
---|---|---|---|---|
IBM1 | M/63 | Forearm, finger, and quadriceps weakness. | Several non-necrotic invaded fibers and fibers with rimmed vacuoles and inclusions. | cNIA+ |
IBM2 | M/71 | Forearm and finger flexor weakness. | Several muscle fibers with rimmed vacuoles and inclusions, rare inflammation. | cNIA- |
IBM3 | M/72 | Forearm, finger, and quadriceps weakness. | Some fibers with rimmed vacuoles and with inclusions. | cNIA- |
IBM4 | M/70 | Quadriceps muscle weakness. | Severe inflammation and fibrosis, many fibers with inclusions. | ND |
IBM5 | M/65 | Forearm flexor and quadriceps weakness. | Severe inflammation, many fibers with inclusions. | ND |
IBM6 | F/59 | Proximal leg and distal finger flexor muscle weakness. | Many non-necrotic invaded fibers, some fibers with inclusions, mild fibrosis. | ND |
IBM7 | M/83 | Forearm flexor and quadriceps weakness. | Several non-necrotic invaded fibers and fibers with rimmed vacuoles and inclusions. | cNIA- |
IBM8 | F/59 | Dysphagia, forearm finger flexor, and quadriceps weakness. | Rare non-necrotic invaded fibers, few inclusions, mild fibrosis. | cNIA- |
IBM9 | M/72 | Quadriceps muscle weakness. | Many fibers with rimmed vacuoles and inclusions, scarce inflammation. | cNIA+ |
Antibody | Antigen | Species and Specifications | Concentration | Reference | Source |
---|---|---|---|---|---|
Ab1 | SLC5A3 | rabbit anti-AA221-270 | IF 2.5 µg/mL | B4872/27459 | LS-Bio |
Ab2 | SLC5A3 | rabbit anti-central region | IF 10 µg/mL | C358323/125465 | LS-Bio |
Ab3 | SLC5A3 | mouse anti-AA533-642 IgG1 | WB 0.8 µg/mL | SAB1402920 | Sigma |
Ab4 | GAPDH | mouse IgG1 | WB 0.2 µg/mL | B9310/127452 | LS-Bio |
Ab5 | SLC5A11 | rabbit polyclonal IgG | IF 4 µg/mL | HPA035331 | AtlasAntibodies |
Ab6 | CD3 | mouse IgG1 | IF 10 µg/mL | M7254 | Dako |
Ab7 | CD56 | mouse IgG1 | IF 5 µg/mL | MAB2120Z | Millipore |
Ab8 | CD68 | mouse IgG1 | IF 10 µg/mL | Ab955 | Abcam |
Ab9 | CD206 | mouse IgG1 | IF 0.4 µg/mL | MCA2155 | Biorad |
Ab10 | SQSTM1 | mouse anti-AA257-437 IgG1 | IF 1.3 µg/mL | 610833 | BDTransduction |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Paepe, B.; Merckx, C.; Jarošová, J.; Cannizzaro, M.; De Bleecker, J.L. Myo-Inositol Transporter SLC5A3 Associates with Degenerative Changes and Inflammation in Sporadic Inclusion Body Myositis. Biomolecules 2020, 10, 521. https://doi.org/10.3390/biom10040521
De Paepe B, Merckx C, Jarošová J, Cannizzaro M, De Bleecker JL. Myo-Inositol Transporter SLC5A3 Associates with Degenerative Changes and Inflammation in Sporadic Inclusion Body Myositis. Biomolecules. 2020; 10(4):521. https://doi.org/10.3390/biom10040521
Chicago/Turabian StyleDe Paepe, Boel, Caroline Merckx, Jana Jarošová, Miryam Cannizzaro, and Jan L. De Bleecker. 2020. "Myo-Inositol Transporter SLC5A3 Associates with Degenerative Changes and Inflammation in Sporadic Inclusion Body Myositis" Biomolecules 10, no. 4: 521. https://doi.org/10.3390/biom10040521
APA StyleDe Paepe, B., Merckx, C., Jarošová, J., Cannizzaro, M., & De Bleecker, J. L. (2020). Myo-Inositol Transporter SLC5A3 Associates with Degenerative Changes and Inflammation in Sporadic Inclusion Body Myositis. Biomolecules, 10(4), 521. https://doi.org/10.3390/biom10040521