Evaluation of Pharmacological and Phytochemical Profiles of Piptadeniastrum africanum (Hook.f.) Brenan Stem Bark Extracts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Extraction
2.2. Chemical Profiling
2.3. Determination of Antioxidant and Enzyme Inhibitory Effects
2.4. Artemia Salina Lethality Bioassay
2.5. In Vitro Studies
2.6. High Performance Liquid Chromatography (HPLC) Determination of Dopamine (DA), Norepinephrine (NE), and 3-Hydroxykinurenine (3-HK)
2.7. Statistical Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Dlamini, L.M.; Tata, C.M.; Djuidje, M.C.F.; Ikhile, M.I.; Nikolova, G.D.; Karamalakova, Y.D.; Gadjeva, V.G.; Zheleva, A.M.; Njobeh, P.B.; Ndinteh, D.T. Antioxidant and prooxidant effects of Piptadeniastrum africanum as the possible rationale behind its broad scale application in African ethnomedicine. J. Ethnopharmacol. 2019, 231, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Chinsembu, K.C. Tuberculosis and nature’s pharmacy of putative anti-tuberculosis agents. Acta Trop. 2016, 153, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Brusotti, G.; Tosi, S.; Tava, A.; Picco, A.M.; Grisoli, P.; Cesari, I.; Caccialanza, G. Antimicrobial and phytochemical properties of stem bark extracts from Piptadeniastrum africanum (Hook f.) Brenan. Ind. Crops Prod. 2013, 43, 612–616. [Google Scholar] [CrossRef]
- Mbiantcha, M.; Almas, J.; Shabana, S.U.; Nida, D.; Aisha, F. Anti-arthritic property of crude extracts of Piptadeniastrum africanum (Mimosaceae) in complete Freund’s adjuvant-induced arthritis in rats. BMC Complement. Altern. Med. 2017, 17, 111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muganza, D.M.; Fruth, B.; Lami, J.N.; Mesia, G.; Kambu, O.; Tona, G.; Kanyanga, R.C.; Cos, P.; Maes, L.; Apers, S.; et al. In vitro antiprotozoal and cytotoxic activity of 33 ethonopharmacologically selected medicinal plants from Democratic Republic of Congo. J. Ethnopharmacol. 2012, 141, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, A.; Mokam, E.C.D.; Mbiantcha, M.; Feudjio, R.B.D.; David, N.; Kamanyi, A. Gastroprotective and ulcer healing effects of Piptadeniastrum Africanum on experimentally induced gastric ulcers in rats. BMC Complement. Altern. Med. 2015, 15, 214. [Google Scholar]
- Noté, O.P.; Tapondjou, A.L.; Mitaine-Offer, A.-C.; Miyamoto, T.; Pegnyemb, D.; Lacaille-Dubois, M.-A. Triterpenoid saponins from Piptadeniastrum africanum (Hook. f.) Brenan. Phytochem. Lett. 2013, 6, 505–510. [Google Scholar]
- Brunetti, L.; Di Nisio, C.; Recinella, L.; Orlando, G.; Ferrante, C.; Chiavaroli, A.; Leone, S.; Di Michele, P.; Shohreh, R.; Vacca, M. Obestatin inhibits dopamine release in rat hypothalamus. Eur. J. Pharmacol. 2010, 641, 142–147. [Google Scholar] [CrossRef]
- Brunetti, L.; Orlando, G.; Ferrante, C.; Chiavaroli, A.; Vacca, M. Peptide YY (3–36) inhibits dopamine and norepinephrine release in the hypothalamus. Eur. J. Pharmacol. 2005, 519, 48–51. [Google Scholar] [CrossRef]
- Parrott, J.M.; Redus, L.; O’Connor, J.C. Kynurenine metabolic balance is disrupted in the hippocampus following peripheral lipopolysaccharide challenge. J. Neuroinflammation 2016, 13, 124. [Google Scholar] [CrossRef] [Green Version]
- Dall’Acqua, S.; Aktumsek, A. Investigation of Antioxidant Potentials of Solvent Extracts From Different Anatomical Parts of Asphodeline Anatolica E. Tuzlaci: An Endemic Plant to Turkey. Afr. J. Tradit. Complement. Altern. Med. 2014, 11, 481–488. [Google Scholar]
- Dall’Acqua, S.; Uysal, A.; Diuzheva, A.; Gunes, E.; Jekő, J.; Cziáky, Z.; Picot-Allain, C.M.N.; Mahomoodally, M.F. Characterization of phytochemical components of Ferula halophila extracts using HPLC-MS/MS and their pharmacological potentials: A multi-functional insight. J. Pharm. Biomed. Anal. 2018, 160, 374–382. [Google Scholar]
- Ferrante, C.; Recinella, L.; Ronci, M.; Menghini, L.; Brunetti, L.; Chiavaroli, A.; Leone, S.; Di Iorio, L.; Carradori, S.; Tirillini, B.; et al. Multiple pharmacognostic characterization on hemp commercial cultivars: Focus on inflorescence water extract activity. Food Chem. Toxicol. 2019, 125, 452–461. [Google Scholar] [CrossRef] [PubMed]
- Chiavaroli, A.; Recinella, L.; Ferrante, C.; Locatelli, M.; Macchione, N.; Zengin, G.; Leporini, L.; Leone, S.; Martinotti, S.; Brunetti, L.; et al. Crocus sativus, Serenoa repens and Pinus massoniana extracts modulate inflammatory response in isolated rat prostate challenged with LPS. J. Boil. Regul. Homeost. Agents 2017, 31, 531–541. [Google Scholar]
- Florio, R.; De Lellis, L.; Veschi, S.; Verginelli, F.; Di Giacomo, V.; Gallorini, M.; Perconti, S.; Sanna, M.; Mariani-Costantini, R.; Natale, A.; et al. Effects of dichloroacetate as single agent or in combination with GW6471 and metformin in paraganglioma cells. Sci. Rep. 2018, 8, 13610. [Google Scholar] [CrossRef]
- Veschi, S.; De Lellis, L.; Florio, R.; Lanuti, P.; Massucci, A.; Tinari, N.; De Tursi, M.; Di Sebastiano, P.; Marchisio, M.; Natoli, C.; et al. Effects of repurposed drug candidates nitroxoline and nelfinavir as single agents or in combination with erlotinib in pancreatic cancer cells. J. Exp. Clin. Cancer Res. 2018, 37, 236. [Google Scholar] [CrossRef]
- Brunetti, L.; Leone, S.; Orlando, G.; Ferrante, C.; Recinella, L.; Chiavaroli, A.; Di Nisio, C.; Shohreh, R.; Manippa, F.; Ricciuti, A.; et al. Hypotensive effects of omentin-1 related to increased adiponectin and decreased interleukin-6 in intra-thoracic pericardial adipose tissue. Pharmacol. Rep. 2014, 66, 991–995. [Google Scholar] [CrossRef]
- Di Giacomo, V.; Chiavaroli, A.; Orlando, G.; Cataldi, A.; Rapino, M.; Di Valerio, V.; Leone, S.; Brunetti, L.; Menghini, L.; Recinella, L.; et al. Neuroprotective and Neuromodulatory Effects Induced by Cannabidiol and Cannabigerol in Rat Hypo-E22 cells and Isolated Hypothalamus. Antioxidants 2020, 9, 71. [Google Scholar] [CrossRef] [Green Version]
- Heberle, H.; Meirelles, G.V.; Da Silva, F.R.; Telles, G.P.; Minghim, R. InteractiVenn: A web-based tool for the analysis of sets through Venn diagrams. BMC Bioinform. 2015, 16, 169. [Google Scholar] [CrossRef]
- Dawé, A.; Mbiantcha, M.; Fongang, Y.; Nana, W.Y.; Yakai, F.; Ateufack, G.; Shaiq, M.A.; Lubna, I.; Lateef, M.; Ngadjui, B.T. Piptadenin, a Novel 3,4-Secooleanane Triterpene and Piptadenamide, a New Ceramide from the Stem Bark ofPiptadeniastrum africanum(Hook.f.)Brenan. Chem. Biodivers. 2017, 14, e1600215. [Google Scholar] [CrossRef]
- Heo, H.J.; Kim, M.-J.; Lee, J.-M.; Choi, S.J.; Cho, H.-Y.; Hong, B.; Kim, H.-K.; Kim, E.; Shin, D.-H. Naringenin from Citrus junos Has an Inhibitory Effect on Acetylcholinesterase and a Mitigating Effect on Amnesia. Dement. Geriatr. Cogn. Disord. 2004, 17, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Orhan, I.E.; Jedrejek, D.; Deniz, F.S.S.; Salmas, R.E.; Durdagi, S.; Kowalska, I.; Pecio, L.; Oleszek, W. Molecular modeling and in vitro approaches towards cholinesterase inhibitory effect of some natural xanthohumol, naringenin, and acyl phloroglucinol derivatives. Phytomedicine 2018, 42, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Satheeshkumar, N.; Mukherjee, P.K.; Bhadra, S.; Saha, B. Acetylcholinesterase enzyme inhibitory potential of standardized extract of Trigonella foenum graecum L and its constituents. Phytomedicine 2010, 17, 292–295. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, A.A.; Gawali, N.B.; Bulani, V.D.; Kothavade, P.; Mestry, S.N.; Deshpande, P.S.; Juvekar, A.R. In vitro antiglycating effect and in vivo neuroprotective activity of Trigonelline in d -galactose induced cognitive impairment. Pharmacol. Rep. 2018, 70, 372–377. [Google Scholar] [CrossRef] [PubMed]
- Hamden, K.; Bengara, A.; Amri, Z.; Elfeki, A. Experimental diabetes treated with trigonelline: Effect on key enzymes related to diabetes and hypertension, β-cell and liver function. Mol. Cell. Biochem. 2013, 381, 85–944. [Google Scholar] [CrossRef] [PubMed]
- Proença, C.; Freitas, M.; Ribeiro, D.; Oliveira, E.F.T.; Sousa, J.; Tomé, S.; Ramos, M.J.; Silva, A.M.S.; Fernandes, P.A.; Fernandes, E. α-Glucosidase inhibition by flavonoids: An in vitro and in silico structure–activity relationship study. J. Enzym. Inhib. Med. Chem. 2017, 32, 1216–1228. [Google Scholar] [CrossRef] [Green Version]
- Imen, M.-B.; Chaabane, F.; Nadia, M.; Soumaya, K.-J.; Kamel, G.; Chekir-Ghedira, L. Anti-melanogenesis and antigenotoxic activities of eriodictyol in murine melanoma (B16-F10) and primary human keratinocyte cells. Life Sci. 2015, 135, 173–178. [Google Scholar] [CrossRef]
- Bouzaiene, N.N.; Chaabane, F.; Sassi, A.; Chekir-Ghedira, L.; Ghedira, K. Effect of apigenin-7-glucoside, genkwanin and naringenin on tyrosinase activity and melanin synthesis in B16F10 melanoma cells. Life Sci. 2016, 144, 80–85. [Google Scholar] [CrossRef]
- Jayaraj, R.L.; Azimullah, S.; Beiram, R. Diabetes as a risk factor for Alzheimer’s disease in the Middle East and its shared pathological mediators. Saudi J. Boil. Sci. 2020, 27, 736–750. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, X. Antioxidant therapies for Alzheimer’s disease. Oxid. Med. Cell. Longev. 2012, 2012, 472932. [Google Scholar] [CrossRef] [Green Version]
- Hajhashemi, V.; Vaseghi, G.; Pourfarzam, M.; Abdollahi, A. Are antioxidants helpful for disease prevention? Res. Pharm. Sci. 2010, 5, 1–8. [Google Scholar] [PubMed]
- Young, I.; Woodside, J.V. Antioxidants in health and disease. J. Clin. Pathol. 2001, 54, 176–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, S.; Wan, C.; Yu, Y.; Zhou, S.; Liu, W.; Tian, S. Antioxidant activity and free radical-scavenging capacity of Gynura divaricata leaf extracts at different temperatures. Pharmacogn. Mag. 2011, 7, 40–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 2010, 4, 118–126. [Google Scholar] [CrossRef] [Green Version]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative Stress: Harms and Benefits for Human Health. Oxidative Med. Cell. Longev. 2017, 2017, 8416763. [Google Scholar] [CrossRef]
- Di Giacomo, V.; Ferrante, C.; Ronci, M.; Cataldi, A.; Di Valerio, V.; Rapino, M.; Recinella, L.; Chiavaroli, A.; Leone, S.; Vladimir-Knežević, S.; et al. Multiple pharmacological and toxicological investigations on Tanacetum parthenium and Salix alba extracts: Focus on potential application as anti-migraine agents. Food Chem. Toxicol. 2019, 133, 110783. [Google Scholar] [CrossRef]
- Line-Edwige, M.; Raymond, F.T.G.; François, E.; Edouard, N.-E. Antiproliferative Effect of Alcoholic Extracts of Some Gabonese Medicinal Plants on Human Colonic Cancer Cells. Afr. J. Tradit. Complement. Altern. Med. 2009, 6, 112–117. [Google Scholar] [CrossRef]
- Mengome, L.-E.; Akue, J.P.; Souza, A.; Tchoua, G.R.F.; Emvo, E.N. In vitro activities of plant extracts on human Loa loa isolates and cytotoxicity for eukaryotic cells. Parasitol. Res. 2010, 107, 643–650. [Google Scholar] [CrossRef]
- Walker, J.; Rohm, B.; Lang, R.; Pariza, M.; Hofmann, T.; Somoza, V. Identification of coffee components that stimulate dopamine release from pheochromocytoma cells (PC-12). Food Chem. Toxicol. 2012, 50, 390–398. [Google Scholar] [CrossRef]
Samples | Extraction Yields (%) | Total Phenolic Content (mg GAE/g Extract) | Total Flavonoid Content (mg RE/g Extract) | Total Phenolic Acid Content (mg CAE/g) | Total Flavanol Content (mg CE/g) | Total Tannin Content (mg CE/g) | Total Saponin Content (mg QE/g) |
---|---|---|---|---|---|---|---|
EA | 0.64 | 56.62 ± 0.19 b | 2.95 ± 0.05 a | 0.13 ± 0.01 c | 2.54 ± 0.04 b | 7.99 ± 0.45 c | 212.78 ± 11.08 c |
MeOH | 13.69 | 203.71 ± 1.61 a | 2.47 ± 0.23 b | 16.15 ± 1.17 b | 8.70 ± 0.15 a | 33.81 ± 2.22 a | 867.42 ± 5.78 a |
Water | 16.19 | 205.33 ± 1.11 a | 2.31 ± 0.03 c | 40.03 ± 0.74 a | 1.93 ± 0.07 c | 23.84 ± 2.23 b | 675.81 ± 34.88 b |
No. | Name | Formula | Ethyl Acetate | Methanol | Water | Literature |
---|---|---|---|---|---|---|
1 | Trigonelline | C7H8NO2 | + | + | + | |
2 | Gallocatechin (Casuarin, Gallocatechol) | C15H14O7 | − | + | + | |
3 1 | Catechin | C15H14O6 | + | + | + | |
4 1 | Epigallocatechin (Epigallocatechol) | C15H14O7 | − | + | + | |
5 1 | Vanillin | C8H8O3 | + | + | + | |
6 | Naringenin-6,8-di-C-glucoside | C27H32O15 | − | + | + | |
7 | Quercetin-O-hexoside | C21H20O12 | − | + | + | |
8 | Loliolide | C11H16O3 | + | + | + | |
9 | Trihydroxystilbene | C14H12O3 | − | + | − | |
10 | Tetrahydroxyxanthone | C13H8O6 | − | + | + | |
11 | Isoliquiritigenin | C15H12O4 | + | + | + | |
12 1 | Eriodictyol (3′,4′,5,7-Tetrahydroxyflavanone) | C15H12O6 | + | + | + | |
13 | Abscisic acid | C15H20O4 | − | + | + | |
14 | Methoxy-pentahydroxy(iso)flavone | C16H12O8 | + | + | + | |
15 | Dihydroxy-methoxy(iso)flavone isomer 1 | C16H12O5 | − | + | + | |
16 | Dihydroxyflavone | C15H10O4 | + | + | + | |
17 | Dihydroxy-dimethoxy(iso)flavone isomer 1 | C17H14O6 | + | + | + | |
18 1 | Quercetin (3,3′,4′,5,7-Pentahydroxyflavone) | C15H10O7 | − | + | + | |
19 | Methoxy-tetrahydroxy(iso)flavone-O-hexoside | C22H22O12 | − | + | + | |
20 1 | Naringenin (4′,5,7-Trihydroxyflavanone) | C15H12O5 | + | + | + | |
21 | Homoeriodictyol (3′-Methoxy-4′,5,7-trihydroxyflavanone) | C16H14O6 | − | + | + | |
22 | Dihydroxy-dimethoxy(iso)flavone isomer 2 | C17H14O6 | + | + | + | |
23 1 | Luteolin (3′,4′,5,7-Tetrahydroxyflavone) | C15H10O6 | + | + | + | |
24 | Methoxy-tetrahydroxy(iso)flavone | C16H12O7 | + | + | + | |
25 | Dimethoxy-tetrahydroxy(iso)flavone | C17H14O8 | + | + | − | |
26 | Dihydroxy-dimethoxy(iso)flavone isomer 3 | C17H14O6 | + | + | − | |
27 | Dimethoxy-trihydroxy(iso)flavone-O-hexoside | C23H24O12 | − | + | + | |
28 1 | Apigenin (4′,5,7-Trihydroxyflavone) | C15H10O5 | + | + | − | |
29 | Chrysoeriol (Scoparol, 3′-Methoxy-4′,5,7-trihydroxyflavone) | C16H12O6 | + | + | + | |
30 | Liquiritigenin (4′,7-Dihydroxyflavanone) | C15H12O4 | + | + | + | |
31 | Methoxy-trihydroxy(iso)flavone isomer 1 | C16H12O6 | + | + | + | |
32 | Dimethoxy-trihydroxy(iso)flavone isomer 1 | C17H14O7 | + | + | + | |
33 | Dihydroxy-dimethoxy(iso)flavone isomer 4 | C17H14O6 | + | + | − | |
34 | Dihydroxy-trimethoxy(iso)flavone isomer 1 | C18H16O7 | + | + | − | |
35 | Dihydroxy-tetramethoxy(iso)flavone | C19H18O8 | − | + | − | |
36 | Methoxy-trihydroxy(iso)flavone isomer 2 | C16H12O6 | + | + | + | |
37 | Dihydroxy-trimethoxy(iso)flavone isomer 2 | C18H16O7 | + | + | − | |
38 | Dimethoxy-trihydroxy(iso)flavone isomer 2 | C17H14O7 | + | + | + | |
39 | Dihydroxy-trimethoxy(iso)flavone isomer 3 | C18H16O7 | + | + | − | |
40 | Dihydroxy-dimethoxy(iso)flavone isomer 5 | C17H14O6 | + | + | − | |
41 | Dihydroxy-methoxy(iso)flavone isomer 2 | C16H12O5 | − | + | + | |
42 | Dihydroxy-trimethoxy(iso)flavone isomer 4 | C18H16O7 | + | + | − | |
43 | Dihydroxy-dimethoxy(iso)flavone isomer 6 | C17H14O6 | + | + | − | |
44 | Dihydroxy-trimethoxy(iso)flavone isomer 5 | C18H16O7 | + | + | − | |
45 | Bruguierol A | C12H14O2 | + | + | − | |
46 | Dihydropiptadenin or isomer | C30H48O5 | + | + | + | |
47 | Hexadecanedioic acid | C16H30O4 | + | + | + | |
48 | Piptadenin | C30H46O5 | + | + | − | [20] |
49 | Tetrahydropiptadenin or isomer | C30H50O5 | + | + | + | |
50 | Hydroxyhexadecanoic acid | C16H32O3 | + | + | + | |
51 | 22β-Hydroxyoleanic acid | C30H48O4 | + | + | − | [20] |
52 | 5α-Stigmast-7,22-dien-3-one | C29H46O | + | + | − | [20] |
53 | β-Sitostenone | C29H48O | + | + | − | |
54 | Emodin | C15H10O5 | − | − | + | |
55 | Di-O-methylellagic acid-O-pentoside | C21H18O12 | + | − | − | |
56 | 3,3′-Di-O-methylellagic acid | C16H10O8 | + | − | − | |
57 | 3,3′,4-Tri-O-methylflavellagic acid | C17H12O9 | + | − | − |
Samples | AChE (mg GALAE/g Extract) | BChE (mg GALAE/g Extract) | α-Amylase (mmol ACAE/g Extract) | α-Glucosidase (mmol ACAE/g Extract) | Tyrosinase (mg KAE/g Extract) |
---|---|---|---|---|---|
EA | 4.37 ± 0.04 b | 3.94 ± 0.25 c | 0.89 ± 0.04 a | 15.22 ± 0.16 | 134.24 ± 0.76 b |
MeOH | 4.88 ± 0.09 a | 5.37 ± 0.10 a | 0.81 ± 0.03 b | na | 154.86 ± 0.23 a |
Water | 4.31 ± 0.02 b | 4.77 ± 0.11 b | 0.35 ± 0.02 c | na | 128.47 ± 0.75 c |
Samples | Phosphomolybdenum (mmol TE/g) | DPPH (mg TE/g Extract) | ABTS (mg TE/g Extract) | CUPRAC (mg TE/g Extract) | FRAP (mg TE/g Extract) | Metal Chelating Ability (mg EDTAE/g) |
---|---|---|---|---|---|---|
EA | 2.07 ± 0.13 b | 90.93 ± 0.05 c | 139.66 ± 1.73 c | 210.26 ± 2.56 c | 127.33 ± 0.44 c | na |
MeOH | 3.93 ± 0.20 a | 493.87 ± 1.03 a | 818.12 ± 3.68 a | 953.07 ± 9.40 a | 732.19 ± 22.95 b | 10.13 ± 0.40 b |
Water | 3.78 ± 0.09 a | 480.05 ± 0.40 b | 558.68 ± 22.89 b | 917.88 ± 6.52 b | 769.54 ± 7.58 a | 14.21 ± 0.52 a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sinan, K.I.; Chiavaroli, A.; Orlando, G.; Bene, K.; Zengin, G.; Cziáky, Z.; Jekő, J.; Fawzi Mahomoodally, M.; Picot-Allain, M.C.N.; Menghini, L.; et al. Evaluation of Pharmacological and Phytochemical Profiles of Piptadeniastrum africanum (Hook.f.) Brenan Stem Bark Extracts. Biomolecules 2020, 10, 516. https://doi.org/10.3390/biom10040516
Sinan KI, Chiavaroli A, Orlando G, Bene K, Zengin G, Cziáky Z, Jekő J, Fawzi Mahomoodally M, Picot-Allain MCN, Menghini L, et al. Evaluation of Pharmacological and Phytochemical Profiles of Piptadeniastrum africanum (Hook.f.) Brenan Stem Bark Extracts. Biomolecules. 2020; 10(4):516. https://doi.org/10.3390/biom10040516
Chicago/Turabian StyleSinan, Kouadio Ibrahime, Annalisa Chiavaroli, Giustino Orlando, Kouadio Bene, Gokhan Zengin, Zoltán Cziáky, József Jekő, Mohamad Fawzi Mahomoodally, Marie Carene Nancy Picot-Allain, Luigi Menghini, and et al. 2020. "Evaluation of Pharmacological and Phytochemical Profiles of Piptadeniastrum africanum (Hook.f.) Brenan Stem Bark Extracts" Biomolecules 10, no. 4: 516. https://doi.org/10.3390/biom10040516
APA StyleSinan, K. I., Chiavaroli, A., Orlando, G., Bene, K., Zengin, G., Cziáky, Z., Jekő, J., Fawzi Mahomoodally, M., Picot-Allain, M. C. N., Menghini, L., Recinella, L., Brunetti, L., Leone, S., Ciferri, M. C., Di Simone, S., & Ferrante, C. (2020). Evaluation of Pharmacological and Phytochemical Profiles of Piptadeniastrum africanum (Hook.f.) Brenan Stem Bark Extracts. Biomolecules, 10(4), 516. https://doi.org/10.3390/biom10040516