Physicochemical Characterisation of KEIF—The Intrinsically Disordered N-Terminal Region of Magnesium Transporter A
Abstract
:1. Introduction
M F KE I F T R L I R H L P S R L V H R D P L P G A Q Q T V N T V. |
2. Materials and Methods
2.1. Sample Preparation
2.1.1. Samples for CD Spectroscopy
2.1.2. SAXS Samples
2.1.3. LUV Samples
2.1.4. LUV–KEIF Samples
2.2. Experiment Methods
2.2.1. CD Spectroscopy
2.2.2. SAXS Experiments
2.2.3. DLS Measurements
2.2.4. LDV Measurements
2.2.5. Cryo-TEM Imaging
2.3. Calculations
2.3.1. Isoelectric-Point Calculation
2.3.2. Partitioning-Free-Energy Calculation
2.4. Simulations
2.4.1. Atomistic MD Simulations
2.4.2. Simulation Analyses
3. Results and Discussion
3.1. Primary-Structure Analysis
3.1.1. Charge-Distribution, Isoelectric-Point, and Das–Pappu Analysis
3.1.2. Disorder Propensity and Probability
3.1.3. Distribution of Hydrophobic and Hydrophilic Amino Acids
3.1.4. Sequence and Motif Alignment
3.2. Single Chain
3.2.1. CD Spectroscopy
3.2.2. SAXS Measurements
3.2.3. Atomistic Simulations
3.3. Interactions with Vesicles
3.3.1. Partitioning Free Energies
3.3.2. DLS and LDV
3.3.3. Cryo-TEM
3.3.4. CD Spectroscopy
3.4. Summary of, and Correlations between, Main Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Reinhart, R.A. Magnesium metabolism: A review with special reference to the relationship between intracellular content and serum levels. Arch. Intern. Med. 1988, 148, 2415–2420. [Google Scholar] [CrossRef]
- Maguire, M.E. Magnesium transporters: Properties, regulation and structure. Front. Biosci. 2006, 11, 3149–3163. [Google Scholar] [CrossRef] [PubMed]
- Subramani, S.; Perdreau-Dahl, H.; Morth, J.P. The magnesium transporter A is activated by cardiolipin and is highly sensitive to free magnesium in vitro. eLife 2016, 5, e11407. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.T.; Cozzetto, D. DISOPRED3: Precise disordered region predictions with annotated protein-binding activity. Bioinformatics 2015, 31, 857–863. [Google Scholar] [CrossRef] [PubMed]
- Micsonai, A.; Wien, F.; Kernya, L.; Lee, Y.H.; Goto, Y.; Réfrégiers, M.; Kardos, J. Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy. Proc. Natl. Acad. Sci. USA 2015, 112, E3095–E3103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Micsonai, A.; Wien, F.; Bulyáki, É.; Kun, J.; Moussong, É.; Lee, Y.H.; Goto, Y.; Réfrégiers, M.; Kardos, J. BeStSel: A web server for accurate protein secondary structure prediction and fold recognition from the circular dichroism spectra. Nucleic Acids Res. 2018, 46, W315–W322. [Google Scholar] [CrossRef]
- Franke, D.; Petoukhov, M.; Konarev, P.; Panjkovich, A.; Tuukkanen, A.; Mertens, H.; Kikhney, A.; Hajizadeh, N.; Franklin, J.; Jeffries, C.; et al. ATSAS 2.8: A comprehensive data analysis suite for small-angle scattering from macromolecular solutions. J. Appl. Cryst. 2017, 50, 1212–1225. [Google Scholar] [CrossRef] [Green Version]
- Bernadó, P.; Mylonas, E.; Petoukhov, M.V.; Blackledge, M.; Svergun, D.I. Structural characterization of flexible proteins using small-angle X-ray scattering. J. Am. Chem. Soc. 2007, 129, 5656–5664. [Google Scholar] [CrossRef]
- Tria, G.; Mertens, H.D.; Kachala, M.; Svergun, D.I. Advanced ensemble modelling of flexible macromolecules using X-ray solution scattering. IUCrJ 2015, 2, 207–217. [Google Scholar] [CrossRef] [Green Version]
- Mastronarde, D.N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 2005, 152, 36–51. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Gasteiger, E.; Gattiker, A.; Hoogland, C.; Ivanyi, I.; Appel, R.D.; Bairoch, A. ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 2003, 31, 3784–3788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Snider, C.; Jayasinghe, S.; Hristova, K.; White, S.H. MPEx: A tool for exploring membrane proteins. Protein Sci. 2009, 18, 2624–2628. [Google Scholar] [CrossRef] [Green Version]
- Wimley, W.C.; Creamer, T.P.; White, S.H. Solvation energies of amino acid side chains and backbone in a family of host- guest pentapeptides. Biochemistry 1996, 35, 5109–5124. [Google Scholar] [CrossRef]
- White, S.H.; Wimley, W.C. Membrane protein folding and stability: Physical principles. Annu. Rev. Biophys. Biomol. Struct. 1999, 28, 319–365. [Google Scholar] [CrossRef]
- Berendsen, H.; van der Spoel, D.; van Drunen, R. GROMACS: A message-passing parallel molecular dynamics implementation. Comput. Phys. Commun. 1995, 91, 43–56. [Google Scholar] [CrossRef]
- Van der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.; Berendsen, H. GROMACS: Fast, flexible, and free. J. Comput. Chem. 2005, 26, 1701–1718. [Google Scholar] [CrossRef]
- Hess, B.; Kutzner, C.; Van Der Spoel, D.; Lindahl, E. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 2008, 4, 435–447. [Google Scholar] [CrossRef] [Green Version]
- Lindorff-Larsen, K.; Piana, S.; Palmo, K.; Maragakis, P.; Klepeis, J.L.; Dror, R.O.; Shaw, D.E. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins Struct. Funct. Bioinf. 2010, 78, 1950–1958. [Google Scholar] [CrossRef] [Green Version]
- Piana, S.; Donchev, A.G.; Robustelli, P.; Shaw, D.E. Water dispersion interactions strongly influence simulated structural properties of disordered protein states. J. Phys. Chem. B 2015, 119, 5113–5123. [Google Scholar] [CrossRef]
- Schrödinger LLC. The PyMOL Molecular Graphics System. Version 1.2r1. 2009. Available online: https://pymol.org/2/support.html?#citing (accessed on 16 April 2020).
- Berendsen, H.; Van Gunsteren, W. Practical algorithms for dynamic simulations. In Molecular-Dynamics Simulation of Statistical-Mechanical Systems; North-Holland: Amsterdam, The Netherlands, 1986; pp. 43–65. [Google Scholar]
- Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N·log (N) method for Ewald sums in large systems. J. Chem. Phys. 1993, 98, 10089. [Google Scholar] [CrossRef] [Green Version]
- Hess, B.; Bekker, H.; Berendsen, H.; Fraaije, J. LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem. 1997, 18, 1463–1472. [Google Scholar] [CrossRef]
- Bussi, G.; Donadio, D.; Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007, 126, 014101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parrinello, M.; Rahman, A. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 1981, 52, 7182. [Google Scholar] [CrossRef]
- Campos, S.R.; Baptista, A.M. Conformational analysis in a multidimensional energy landscape: Study of an arginylglutamate repeat. J. Phys. Chem. B 2009, 113, 15989–16001. [Google Scholar] [CrossRef] [PubMed]
- Daura, X.; Gademann, K.; Jaun, B.; Seebach, D.; Van Gunsteren, W.F.; Mark, A.E. Peptide folding: When simulation meets experiment. Angew. Chem. Int. Ed. 1999, 38, 236–240. [Google Scholar] [CrossRef]
- McGibbon, R.T.; Beauchamp, K.A.; Harrigan, M.P.; Klein, C.; Swails, J.M.; Hernández, C.X.; Schwantes, C.R.; Wang, L.P.; Lane, T.J.; Pande, V.S. MDTraj: A Modern Open Library for the Analysis of Molecular Dynamics Trajectories. Biophys. J. 2015, 109, 1528–1532. [Google Scholar] [CrossRef] [Green Version]
- Kabsch, W.; Sander, C. Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 1983, 22, 2577–2637. [Google Scholar] [CrossRef]
- Chebrek, R.; Leonard, S.; de Brevern, A.G.; Gelly, J.C. PolyprOnline: Polyproline helix II and secondary structure assignment database. Database 2014, 2014. [Google Scholar] [CrossRef] [Green Version]
- Svergun, D.; Barberato, C.; Koch, M.H. CRYSOL—A program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates. J. Appl. Cryst. 1995, 28, 768–773. [Google Scholar] [CrossRef]
- Das, R.K.; Pappu, R.V. Conformations of intrinsically disordered proteins are influenced by linear sequence distributions of oppositely charged residues. Proc. Natl. Acad. Sci. USA 2013, 110, 13392–13397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, R.K.; Ruff, K.M.; Pappu, R.V. Relating sequence encoded information to form and function of intrinsically disordered proteins. Curr. Opin. Struct. Biol. 2015, 32, 102–112. [Google Scholar] [CrossRef] [PubMed]
- Uversky, V.N. The alphabet of intrinsic disorder: II. Various roles of glutamic acid in ordered and intrinsically disordered proteins. Intrinsically Disord. Proteins 2013, 1, e24684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishida, T.; Kinoshita, K. PrDOS: Prediction of disordered protein regions from amino acid sequence. Nucleic Acids Res. 2007, 35, W460–W464. [Google Scholar] [CrossRef] [PubMed]
- Mészáros, B.; Erdős, G.; Dosztányi, Z. IUPred2A: Context-dependent prediction of protein disorder as a function of redox state and protein binding. Nucleic Acids Res. 2018, 46, W329–W337. [Google Scholar] [CrossRef]
- Kyte, J.; Doolittle, R.F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 1982, 157, 105–132. [Google Scholar] [CrossRef] [Green Version]
- Consortium, U. UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res. 2019, 47, D506–D515. [Google Scholar] [CrossRef] [Green Version]
- Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef] [Green Version]
- Schäffer, A.A.; Aravind, L.; Madden, T.L.; Shavirin, S.; Spouge, J.L.; Wolf, Y.I.; Koonin, E.V.; Altschul, S.F. Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements. Nucleic Acids Res. 2001, 29, 2994–3005. [Google Scholar] [CrossRef] [Green Version]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and applications. BMC Bioinf. 2009, 10, 421. [Google Scholar] [CrossRef] [Green Version]
- Madeira, F.; Park, Y.M.; Lee, J.; Buso, N.; Gur, T.; Madhusoodanan, N.; Basutkar, P.; Tivey, A.R.; Potter, S.C.; Finn, R.D.; et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 2019, 47, W636–W641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Castro, E.; Sigrist, C.J.; Gattiker, A.; Bulliard, V.; Langendijk-Genevaux, P.S.; Gasteiger, E.; Bairoch, A.; Hulo, N. ScanProsite: Detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic Acids Res. 2006, 34, W362–W365. [Google Scholar] [CrossRef]
- Kanehisa, M. Linking databases and organisms: GenomeNet resources in Japan. Trends Biochem. Sci. 1997, 22, 442–444. [Google Scholar] [CrossRef]
- Kelly, S.M.; Price, N.C. The use of circular dichroism in the investigation of protein structure and function. Curr. Protein Pept. Sci. 2000, 1, 349–384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelly, S.M.; Jess, T.J.; Price, N.C. How to study proteins by circular dichroism. Biochim. Biophys. Acta Proteins Proteom. 2005, 1751, 119–139. [Google Scholar] [CrossRef]
- Greenfield, N.J. Using circular dichroism spectra to estimate protein secondary structure. Nat. Protoc. 2006, 1, 2876. [Google Scholar] [CrossRef]
- Babor, M.; Gerzon, S.; Raveh, B.; Sobolev, V.; Edelman, M. Prediction of transition metal-binding sites from apo protein structures. Proteins Struct. Funct. Bioinf. 2008, 70, 208–217. [Google Scholar] [CrossRef]
- Brewer, D.; Hunter, H.; Lajoie, G. NMR studies of the antimicrobial salivary peptides histatin 3 and histatin 5 in aqueous and nonaqueous solutions. Biochem. Cell Biol. 1998, 76, 247–256. [Google Scholar] [CrossRef]
- Melino, S.; Rufini, S.; Sette, M.; Morero, R.; Grottesi, A.; Paci, M.; Petruzzelli, R. Zn2+ ions selectively induce antimicrobial salivary peptide histatin-5 to fuse negatively charged vesicles. Identification and characterization of a zinc-binding motif present in the functional domain. Biochemistry 1999, 38, 9626–9633. [Google Scholar] [CrossRef]
- Jephthah, S.; Henriques, J.; Cragnell, C.; Puri, S.; Edgerton, M.; Skepö, M. Structural Characterization of Histatin 5–Spermidine Conjugates: A Combined Experimental and Theoretical Study. J. Chem. Inf. Model. 2017, 57, 1330–1341. [Google Scholar] [CrossRef]
- Wimley, W.C.; White, S.H. Experimentally determined hydrophobicity scale for proteins at membrane interfaces. Nat. Struct. Biol. 1996, 3, 842–848. [Google Scholar] [CrossRef] [PubMed]
- Nygren, P.; Lundqvist, M.; Liedberg, B.; Jonsson, B.H.; Ederth, T. Secondary structure in de novo designed peptides induced by electrostatic interaction with a lipid bilayer membrane. Langmuir 2010, 26, 6437–6448. [Google Scholar] [CrossRef] [PubMed]
- Patterson, J.P.; Xu, Y.; Moradi, M.A.; Sommerdijk, N.A.; Friedrich, H. CryoTEM as an advanced analytical tool for materials chemists. Acc. Chem. Res. 2017, 50, 1495–1501. [Google Scholar] [CrossRef] [PubMed]
- Ladokhin, A.S.; Fernández-Vidal, M.; White, S.H. CD spectroscopy of peptides and proteins bound to large unilamellar vesicles. J. Membr. Biol. 2010, 236, 247–253. [Google Scholar] [CrossRef] [Green Version]
Start Res. No. | Sequence | Stop Res. No. | Score (Bits) | E-Value | |
---|---|---|---|---|---|
KEIF | 1 | MFKEIFTRLIRHLPSRLVHRDPLPGAQQTVNTV | 33 | - | - |
Query | 1 | MFKEIFTRLIRHLPSRLVHRDPLPGAQQTVNTV | 33 | ||
MFKEIFTRLIRHLPSRLVHRDPLPGAQQTVNTV | 70.5 | 1 × 10 | |||
Sbjct 1 | 1 | MFKEIFTRLIRHLPSRLVHRDPLPGAQQTVNTV | 33 | ||
Query | 3 | KEIFTRLIRHLPSRLVHRDPLPGAQQTVN | 31 | ||
+++F RL RHLP RLVHRDPLPGAQ VN | 48.5 | 6 × 10−8 | |||
Sbjct 2 | 7 | RQLFARLNRHLPYRLVHRDPLPGAQTAVN | 35 | ||
Query | 2 | FKEIFTRLIRHLPSRLVHRDPLPGAQQTVNTV | 33 | ||
FKE+ +L+ L ++HR+P P Q N V | 28.5 | 0.8 | |||
Sbjct 3 | 785 | FKEVEVQLLPELEEMILHRNPFPALQTLRNRV | 816 | ||
Query | 2 | FKEIFTRLIRHLPSRLVHRD | 21 | ||
F+E+ T + RHLP L H+D | 26.9 | 3.0 | |||
Sbjct 4 | 178 | FEEVDTNVTRHLPHELQHKD | 197 | ||
Query | 2 | FKEIFTRLIRHLPSRLVHRDPLPGAQQTVNTV | 33 | ||
FKE+ +L+ L ++HR+P P Q N V | 26.2 | 5.6 | |||
Sbjct 5 | 785 | FKEVEVQLLPELEEMILHRNPFPALQTLRNRV | 816 | ||
Query | 7 | TRLIRHLPSRLVHRDPLPG | 25 | ||
TR++RH +R + R+P PG | 25.8 | 7.7 | |||
Sbjct 6 | 129 | TRILRHAMTRHIFREPAPG | 147 |
10 mM NaF (aq.) | 150 mM NaF (aq.) | 1 mM ZnCl2 (aq.) | TFE (org.) | |
---|---|---|---|---|
Fitted Range (nm) | 190–250 | 190–250 | 190–250 | 180–250 |
Helix (%) | 0.0 | 0.0 | 0.0 | 30.3 |
-strand (%) | 38.5 | 38.8 | 41.5 | 10.4 |
Turn (%) | 14.9 | 14.9 | 14.8 | 15.9 |
Others * (%) | 46.6 | 46.3 | 43.7 | 43.4 |
(nm) | (nm) | |
---|---|---|
Guinier | 1.76 ± 0.11 | - |
P(r) * | 1.86 | 7.22 |
EOM * | 1.80 | 5.16 |
MD | 1.64 ± 0.05 | - |
EOM 1 (∼30%) | EOM 2 (∼30%) | EOM 3 (∼10%) | EOM 4 (∼10%) | EOM 5 (∼10%) | EOM 6 (∼10%) | |
---|---|---|---|---|---|---|
MD 1 (61.72%) | ||||||
12.84 | 10.88 | 11.32 | 12.92 | 10.58 | 10.45 | |
MD 2 (24.44%) | ||||||
7.15 | 7.80 | 5.81 | 7.95 | 16.36 | 16.33 | |
MD 3 (8.35%) | ||||||
11.56 | 12.76 | 13.45 | 15.00 | 8.74 | 9.25 | |
MD 4 (3.05%) | ||||||
15.98 | 16.62 | 16.69 | 19.10 | 10.09 | 10.28 | |
MD 5 (1.40%) | ||||||
9.19 | 7.61 | 6.44 | 7.26 | 15.96 | 16.26 | |
MD 6 (0.80%) | ||||||
16.57 | 15.78 | 17.16 | 18.21 | 5.92 | 7.28 |
# | MFKEIFTRLIRHLPSRLVHRDPLPGAQQTVNTV |
---|---|
1 | ----SS----S----TTTS-PPPTTTT-BTTB- |
2 | ---GGGTSPP--------S--SPP-S--SS--- |
3 | -----------SS---SPP-PPPTT--SS---- |
4 | ---PPPBPP----TTS-----B-TTTTPPPP-- |
5 | ------PP------SS--B-PP-TT--SB---- |
6 | ----PP-SS-EE-PPPP--SS-----SSEE--- |
D (nm) | PdI | μ (10−8m2V−1s−1) | |
---|---|---|---|
POPC vesicles | 108.0 ± 0.7 | 0.09 ± 0.02 | −0.12 ± 0.03 * |
POPC vesicles + KEIF | 111.1 ± 0.6 | 0.06 ± 0.01 | +0.16 ± 0.03 * |
3:1 POPC:POPS vesicles | 102.9 ± 0.7 | 0.06 ± 0.02 | −3.99 ± 0.61 |
3:1 POPC:POPS vesicles + KEIF | 95.7 ± 0.3 | 0.07 ± 0.02 | −2.02 ± 0.40 |
POPC (aq.) | 3:1 POPC:POPS (aq.) | 10 mM NaF (aq.) | TFE (org.) | |
---|---|---|---|---|
Fitted Range (nm) | 200–250 | 200–250 | 200–250 | 200–250 |
Helix (%) | 1.8 | 9.9 | 0 | 20.5 |
-strand (%) | 31.3 | 27.6 | 31.0 | 16.6 |
Turn (%) | 17.7 | 16.0 | 17.7 | 15.2 |
Others * (%) | 49.4 | 46.5 | 51.3 | 47.7 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jephthah, S.; Månsson, L.K.; Belić, D.; Morth, J.P.; Skepö, M. Physicochemical Characterisation of KEIF—The Intrinsically Disordered N-Terminal Region of Magnesium Transporter A. Biomolecules 2020, 10, 623. https://doi.org/10.3390/biom10040623
Jephthah S, Månsson LK, Belić D, Morth JP, Skepö M. Physicochemical Characterisation of KEIF—The Intrinsically Disordered N-Terminal Region of Magnesium Transporter A. Biomolecules. 2020; 10(4):623. https://doi.org/10.3390/biom10040623
Chicago/Turabian StyleJephthah, Stéphanie, Linda K. Månsson, Domagoj Belić, Jens Preben Morth, and Marie Skepö. 2020. "Physicochemical Characterisation of KEIF—The Intrinsically Disordered N-Terminal Region of Magnesium Transporter A" Biomolecules 10, no. 4: 623. https://doi.org/10.3390/biom10040623
APA StyleJephthah, S., Månsson, L. K., Belić, D., Morth, J. P., & Skepö, M. (2020). Physicochemical Characterisation of KEIF—The Intrinsically Disordered N-Terminal Region of Magnesium Transporter A. Biomolecules, 10(4), 623. https://doi.org/10.3390/biom10040623