Ceramides Profile Identifies Patients with More Advanced Stages of Colorectal Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Sphingolipid Content in Tissues and Plasma
2.3. Western Blot
2.4. Statistical Analysis
3. Results
3.1. Patient Demographics
3.2. Pathologic Overview
3.3. Content of Sphingolipids in Tissues
3.4. Concentration of Sphingolipids in the Plasma
3.5. Western Blot
3.6. Sphingolipids in Advanced Colorectal Cancer
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Araghi, M.; Soerjomataram, I.; Jenkins, M.; Brierley, J.; Morris, E.; Bray, F.; Arnold, M. Global trends in colorectal cancer mortality: Projections to the year 2035. Int. J. Cancer 2019, 144, 2992–3000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arnold, M.; Sierra, M.S.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global patterns and trends in colorectal cancer incidence and mortality. Gut 2017, 66, 683–691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Solar, V.; Lizardo, D.Y.; Li, N.; Hurst, J.J.; Brais, C.J.; Atilla-Gokcumen, G.E. Differential Regulation of Specific Sphingolipids in Colon Cancer Cells during Staurosporine-Induced Apoptosis. Chem. Biol. 2015, 22, 1662–1670. [Google Scholar] [CrossRef] [PubMed]
- Blachnio-Zabielska, A.U.; Hady, H.R.; Markowski, A.R.; Kurianiuk, A.; Karwowska, A.; Gorski, J.; Zabielski, P. Inhibition of ceramide de novo synthesis affects adipocytokines secretion and improves systemic and adipose tissue insulin sensitivity. Int. J. Mol. Sci. 2018, 19, 3995. [Google Scholar] [CrossRef] [Green Version]
- Trayssac, M.; Hannun, Y.A.; Obeid, L.M. Role of sphingolipids in senescence: Implication in aging and age-related diseases. J. Clin. Investig. 2018, 128, 2702–2712. [Google Scholar] [CrossRef]
- MacRae, V.E.; Burdon, T.; Ahmed, S.F.; Farquharson, C. Ceramide inhibition of chondrocyte proliferation and bone growth is IGF-I independent. J. Endocrinol. 2006, 191, 369–377. [Google Scholar] [CrossRef] [Green Version]
- Oh, H.L.; Seok, J.Y.; Kwon, C.H.; Kang, S.K.; Kim, Y.K. Role of MAPK in ceramide-induced cell death in primary cultured astrocytes from mouse embryonic brain. Neurotoxicology 2006, 27, 31–38. [Google Scholar] [CrossRef]
- Schubert, K.M.; Scheid, M.P.; Duronio, V. Ceramide inhibits protein kinase B/Akt by promoting dephosphorylation of serine 473. J. Biol. Chem. 2000, 275, 13330–13335. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Boise, L.H.; Shanmugam, M. Cancer Metabolism and the Evasion of Apoptotic Cell Death. Cancers 2019, 11, 1144. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Cheng, J.C.; Turner, L.S.; Elojeimy, S.; Beckham, T.H.; Bielawska, A.; Keane, T.E.; Hannun, Y.A.; Norris, J.S. Acid ceramidase upregulation in prostate cancer: Role in tumor development and implications for therapy. Expert Opin. Ther. Targets 2009, 13, 1449–1458. [Google Scholar] [CrossRef] [Green Version]
- Moro, K.; Kawaguchi, T.; Tsuchida, J.; Gabriel, E.; Qi, Q.; Yan, L.; Wakai, T.; Takabe, K.; Nagahashi, M. Ceramide species are elevated in human breast cancer and are associated with less aggressiveness. Oncotarget 2018, 9, 19874–19890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blachnio-Zabielska, A.U.; Persson, X.M.; Koutsari, C.; Zabielski, P.; Jensen, M.D. A liquid chromatography/tandem mass spectrometry method for measuring the in vivo incorporation of plasma free fatty acids into intramyocellular ceramides in humans. Rapid Commun. Mass Spectrom. 2012, 26, 1134–1140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burla, B.; Arita, M.; Arita, M.; Bendt, A.K.; Cazenave-Gassiot, A.; Dennis, E.A.; Ekroos, K.; Han, X.; Ikeda, K.; Liebisch, G.; et al. MS-based lipidomics of human blood plasma: A community-initiated position paper to develop accepted guidelines. J. Lipid Res. 2018, 59, 2001–2017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Chen, H.; Li, Y.; Li, L.; Qiu, Y.; Ren, J. Endocannabinoid and ceramide levels are altered in patients with colorectal cancer. Oncol. Rep. 2015, 34, 447–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dubois, N.; Rio, E.; Ripoche, N.; Ferchaud-Roucher, V.; Gaugler, M.H.; Campion, L.; Krempf, M.; Carrie, C.; Mahé, M.; Mirabel, X.; et al. Plasma ceramide, a real-time predictive marker of pulmonary and hepatic metastases response to stereotactic body radiation therapy combined with irinotecan. Radiother. Oncol. 2016, 119, 229–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Vlerken, L.E.; Duan, Z.; Little, S.R.; Seiden, M.V.; Amiji, M.M. Augmentation of Therapeutic Efficacy in Drug-Resistant Tumor Models Using Ceramide Coadministration in Temporal-Controlled Polymer-Blend Nanoparticle Delivery Systems. AAPS J. 2010, 12, 171–180. [Google Scholar] [CrossRef] [Green Version]
- Grösch, S.; Schiffmann, S.; Geisslinger, G. Chain length-specific properties of ceramides. Prog. Lipid Res. 2012, 51, 50–62. [Google Scholar] [CrossRef]
- Fitzgerald, S.; Sheehan, K.M.; Espina, V.; O’Grady, A.; Cummins, R.; Kenny, D.; Liotta, L.; O’Kennedy, R.; Kay, E.W.; Kijanka, G.S. High CerS5 expression levels associate with reduced patient survival and transition from apoptotic to autophagy signalling pathways in colorectal cancer. J. Pathol. Clin. Res. 2015, 1, 54–65. [Google Scholar] [CrossRef]
- Wegner, M.S.; Schiffmann, S.; Parnham, M.J.; Geisslinger, G.; Grosch, S. The enigma of ceramide synthase regulation in mammalian cells. Prog. Lipid Res. 2016, 63, 93–119. [Google Scholar] [CrossRef]
- Schüll, S.; Günther, S.D.; Brodesser, S.; Seeger, J.M.; Tosetti, B.; Wiegmann, K.; Pongratz, C.; Diaz, F.; Witt, A.; Andree, M.; et al. Cytochrome c oxidase deficiency accelerates mitochondrial apoptosis by activating ceramide synthase 6. Cell Death Dis. 2015, 6, e1691. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Chen, Y.; Huang, X.; Qu, P.; Pan, Q.; Lü, L.; Jiang, S.; Ren, T.; Su, H. Expression and clinical significance of cytochrome c oxidase subunit IV in colorectal cancer patients. Arch. Med. Sci. 2016, 12, 68–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mullen, T.D.; Spassieva, S.; Jenkins, R.W.; Kitatani, K.; Bielawski, J.; Hannun, Y.A.; Obeid, L.M. Selective knockdown of ceramide synthases reveals complex interregulation of sphingolipid metabolism. J. Lipid Res. 2011, 52, 68–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schiffmann, S.; Sandner, J.; Birod, K.; Wobst, I.; Angioni, C.; Ruckhaberle, E.; Kaufmann, M.; Ackermann, H.; Lotsch, J.; Schmidt, H.; et al. Ceramide synthases and ceramide levels are increased in breast cancer tissue. Carcinogenesis 2009, 30, 745–752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knapp, P.; Bodnar, L.; Błachnio-Zabielska, A.; Świderska, M.; Chabowski, A. Plasma and ovarian tissue sphingolipids profiling in patients with advanced ovarian cancer. Gynecol. Oncol. 2017, 147, 139–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tylichová, Z.; Slavík, J.; Ciganek, M.; Ovesná, P.; Krčmář, P.; Straková, N.; Machala, M.; Kozubík, A.; Hofmanová, J.; Vondráček, J. Butyrate and docosahexaenoic acid interact in alterations of specific lipid classes in differentiating colon cancer cells. J. Cell. Biochem. 2018, 119, 4664–4679. [Google Scholar] [CrossRef]
- Senkal, C.E.; Ponnusamy, S.; Manevich, Y.; Meyers-Needham, M.; Saddoughi, S.A.; Mukhopadyay, A.; Dent, P.; Bielawski, J.; Ogretmen, B. Alteration of ceramide synthase 6/C16-ceramide induces activating transcription factor 6-mediated endoplasmic reticulum (ER) stress and apoptosis via perturbation of cellular Ca2+ and ER/Golgi membrane network. J. Biol. Chem. 2011, 286, 42446–42458. [Google Scholar] [CrossRef] [Green Version]
- Sassa, T.; Suto, S.; Okayasu, Y.; Kihara, A. A shift in sphingolipid composition from C24 to C16 increases susceptibility to apoptosis in HeLa cells. Biochim. Biophys. Acta 2012, 1821, 1031–1037. [Google Scholar] [CrossRef] [Green Version]
- Hartmann, D.; Lucks, J.; Fuchs, S.; Schiffmann, S.; Schreiber, Y.; Ferreirós, N.; Merkens, J.; Marschalek, R.; Geisslinger, G.; Grösch, S. Long chain ceramides and very long chain ceramides have opposite effects on human breast and colon cancer cell growth. Int. J. Biochem. Cell Biol. 2012, 44, 620–628. [Google Scholar] [CrossRef]
- Karahatay, S.; Thomas, K.; Koybasi, S.; Senkal, C.E.; ElOjeimy, S.; Liu, X.; Bielawski, J.; Day, T.A.; Gillespie, M.B.; Sinha, D.; et al. Clinical Relevance of Ceramide Metabolism in the Pathogenesis of Human Head and Neck Squamous Cell Carcinoma (HNSCC): Attenuation of C18-ceramide in HNSCC Tumors Correlates with Lymphovascular Invasion and Nodal Metastasis. Cancer Lett. 2007, 256, 101–111. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; DiVittore, N.A.; Young, M.M.; Jia, Z.; Xie, K.; Ritty, T.M.; Kester, M.; Fox, T.E. Altered Sphingolipid Metabolism in Patients with Metastatic Pancreatic Cancer. Biomolecules 2013, 3, 435–448. [Google Scholar] [CrossRef] [Green Version]
- Kitatani, K.; Idkowiak-Baldys, J.; Hannun, Y.A. The sphingolipid salvage pathway in ceramide metabolism and signaling. Cell Signal. 2008, 20, 1010–1018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bazarganipour, S.; Hausmann, J.; Oertel, S.; El-Hindi, K.; Brachtendorf, S.; Blumenstein, I.; Kubesch, A.; Sprinzl, K.; Birod, K.; Hahnefeld, L.; et al. The Lipid Status in Patients with Ulcerative Colitis: Sphingolipids are Disease-Dependent Regulated. J. Clin. Med. 2019, 8, 971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haus, J.M.; Kashyap, S.R.; Kasumov, T.; Zhang, R.; Kelly, K.R.; Defronzo, R.A.; Kirwan, J.P. Plasma ceramides are elevated in obese subjects with type 2 diabetes and correlate with the severity of insulin resistance. Diabetes 2009, 58, 337343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meeusen, J.W.; Donato, L.J.; Bryant, S.C.; Baudhuin, L.M.; Berger, P.B.; Jaffe, A.S. Plasma Ceramides A Novel Predictor of Major Adverse Cardiovascular Events After Coronary Angiography. Arterioscler. Thromb. Vasc. Biol. 2018, 38, 1933–1939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sokolowska, E.; Blachnio-Zabielska, A.U. The Role of Ceramides in Insulin Resistance. Front. Endocrinol. (Lausanne) 2019, 10, 577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Separovic, D.; Shields, A.F.; Philip, P.A.; Bielawski, J.; Bielawska, A.; Pierce, J.S.; Tarca, A.L. Altered Levels of Serum Ceramide, Sphingosine and Sphingomyelin Are Associated with Colorectal Cancer: A Retrospective Pilot Study. Anticancer Res. 2017, 37, 1213–1218. [Google Scholar]
Characteristics | No. of Patients |
---|---|
Age at diagnosis [y] | |
<60 | 9 |
60–69 | 19 |
70–79 | 9 |
80v90 | 8 |
Sex | |
Males | 33 |
Females | 12 |
Tumor localization | |
Sigmoid colon | 10 |
Rectum | 14 |
Cecum | 6 |
Other parts of colon | 15 |
Tumor size [mm] | |
<30 | 12 |
31–60 | 20 |
61–90 | 11 |
>90 | 2 |
Tumor grading | |
G1 | 2 |
G2 | 37 |
G3 | 6 |
Tumor staging | |
TNM I | 14 |
TNM II | 10 |
TNM III | 15 |
TNM IV | 6 |
Compound | Normal Tissue [pmol/mg] | Tumor [pmol/mg] | ||
---|---|---|---|---|
M ± SE | Min–Max | M ± SE | Min–Max | |
Sph | 2.37 ± 0.19 | 0.35–5.79 | 6.38 ± 0.67 * | 0.57–18.64 |
S1P | 0.02 ± 0.00 | 0.00–0.08 | 0.05 ± 0.01 * | 0.01–0.17 |
SPA | 0.72 ± 0.09 | 0.10–3.10 | 1.48 ± 0.15 * | 0.27–4.15 |
C14:0-Cer | 1.15 ± 0.09 | 0.14–2.75 | 1.60 ± 0.11 * | 0.28–2.99 |
C16:0-Cer | 104.05 ± 7.42 | 7.57–195.65 | 120.81 ± 8.79 | 18.24–248.21 |
C18:1-Cer | 0.30 ± 0.02 | 0.04–0.66 | 0.31 ± 0.02 | 0.09–0.74 |
C18:0-Cer | 4.07 ± 0.27 | 0.39–8.97 | 3.09 ± 0.19 * | 1.07–5.50 |
C20:0-Cer | 1.33 ± 0.09 | 0.51–2.38 | 0.88 ± 0.07 * | 0.32–1.92 |
C22:0-Cer | 3.17 ± 0.15 | 1.27–4.75 | 3.08 ± 0.20 | 1.16–5.43 |
C24:1-Cer | 14.06 ± 0.79 | 4.66–25.86 | 14.00 ± 0.84 | 6.51–26.12 |
C24:0-Cer | 4.77 ± 0.25 | 1.21–8.09 | 6.55 ± 0.47 * | 1.27–14.16 |
Totoal Cer | 132.90 ± 8.42 | 18.01–231.51 | 150.34 ± 9.72 | 34.14–286.37 |
Tumor | TNM I | TNM II | TNM III | TNM IV | TNM I+II | TNM III+IV |
---|---|---|---|---|---|---|
Sph | 7.17 ± 1.34 | 6.69 ± 1.11 | 5.23 ± 1.05 | 4.25 ± 0.79 | 6.93 ± 0.85 | 4.92 ± 0.75 |
S1P | 0.04 ± 0.01 | 0.06 ± 0.01 | 0.05 ± 0.01 | 0.04 ± 0.01 | 0.05 ± 0.01 | 0.04 ± 0.01 |
SPA | 1.56 ± 0.37 | 1.45 ± 0.23 | 1.40 ± 0.27 | 1.21 ± 0.25 | 1.51 ± 0.21 | 1.34 ± 0.20 |
C14:0 | 1.71 ± 0.16 | 1.51 ± 0.22 | 1.55 ± 0.26 | 1.72 ± 0.34 | 1.61 ± 0.13 | 1.61 ± 0.20 |
C16:0 | 128.98 ± 16.15 | 111.58 ± 17.73 | 126.78 ± 19.28 | 108.44 ± 19.33 | 120.28 ± 11.84 | 121.05 ± 14.37 |
C18:1 | 0.37 ± 0.06 | 0.28 ± 0.05 | 0.29 ± 0.04 | 0.29 ± 0.05 | 0.33 ± 0.04 | 0.29 ± 0.03 |
C18:0 | 2.87 ± 0.35 | 2.70 ± 0.31 | 3.61 ± 0.34 | 3.32 ± 0.70 | 2.79 ± 0.23 | 3.52 ± 0.31 |
C20:0 | 0.73 ± 0.13 | 0.82 ± 0.14 | 1.02 ± 0.11 | 1.04 ± 0.14 | 0.78 ± 0.09 | 1.03 ± 0.09 * |
C22:0 | 2.90 ± 0.44 | 2.75 ± 0.34 | 3.36 ± 0.35 | 3.62 ± 0.56 | 2.83 ± 0.27 | 3.44 ± 0.29 |
C24:1 | 12.66 ± 1.64 | 14.28 ± 2.07 | 14.96 ± 1.29 | 15.16 ± 1.76 | 13.47 ± 1.30 | 15.02 ± 1.01 * |
C24:0 | 6.89 ± 1.02 | 6.08 ± 0.82 | 6.86 ± 1.04 | 6.27 ± 0.89 | 6.48 ± 0.64 | 6.67 ± 0.75 |
Total Cer | 157.12 ± 17.27 | 140.00 ± 20.12 | 158.44 ± 21.08 | 139.85 ± 23.32 | 148.56 ± 13.05 | 152.63 ± 15.94 |
Plasma | TNM I | TNM II | TNM III | TNM IV | TNM I+II | TNM III+IV |
---|---|---|---|---|---|---|
Sph | 11.49 ± 1.22 | 12.51 ± 1.88 | 12.66 ± 1.14 | 14.43 ± 2.83 | 11.95 ± 1.06 | 13.05 ± 1.06 |
S1P | 332.31 ± 22.30 | 365.10 ± 38.57 | 390.59 ± 31.41 | 399.46 ± 83.57 | 347.07 ± 20.97 | 392.56 ± 29.35 |
SPA | 4.53 ± 0.34 | 5.09 ± 0.60 | 5.18 ± 0.49 | 4.73 ± 0.48 | 4.78 ± 0.33 | 5.08 ± 0.39 |
C14:0 | 12.24 ± 1.12 | 11.60 ± 1.05 | 12.86 ± 1.22 | 12.17 ± 0.25 | 11.95 ± 0.76 | 12.71 ± 0.94 |
C16:0 | 398.56 ± 45.61 | 407.09 ± 36.14 | 527.46 ± 49.80 | 503.25 ± 75.97 | 402.40 ± 29.17 | 522.08 ± 41.32 * |
C18:1 | 5.61 ± 0.28 | 5.91 ± 0.43 | 7.48 ± 0.98 | 7.32 ± 1.10 | 5.74 ± 0.24 | 7.44 ± 0.79 * |
C18:0 | 47.02 ± 7.21 | 45.06 ± 4.09 | 57.15 ± 5.84 | 59.39 ± 15.94 | 46.14 ± 4.27 | 57.65 ± 5.50 |
C20:0 | 47.26 ± 4.99 | 44.25 ± 3.42 | 56.54 ± 3.48 | 56.12 ± 14.70 | 45.91 ± 3.09 | 56.45 ± 3.96 * |
C22:0 | 700.69 ± 81.36 | 694.71 ± 95.31 | 777.00 ± 75.71 | 656.47 ± 38.92 | 698.00 ± 60.31 | 750.22 ± 60.14 |
C24:1 | 1259.4 ± 92.4 | 1429.5 ± 165.5 | 1644.1 ± 164.3 | 1484.2 ± 153.7 | 1335.9 ± 89.6 | 1608.6 ± 131.3 * |
C24:0 | 2465.7 ± 226.2 | 2369.7 ± 308.7 | 2634.5 ± 274.7 | 2272.9 ± 258.5 | 2422.5 ± 181.6 | 2554.1 ± 220.9 |
Total Cer | 4936.5 ± 410.5 | 5007.8 ± 569.3 | 5717.1 ± 519.1 | 5051.9 ± 172.9 | 4968.6 ± 332.1 | 5569.2 ± 407.4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Markowski, A.R.; Błachnio-Zabielska, A.U.; Guzińska-Ustymowicz, K.; Markowska, A.; Pogodzińska, K.; Roszczyc, K.; Zińczuk, J.; Zabielski, P. Ceramides Profile Identifies Patients with More Advanced Stages of Colorectal Cancer. Biomolecules 2020, 10, 632. https://doi.org/10.3390/biom10040632
Markowski AR, Błachnio-Zabielska AU, Guzińska-Ustymowicz K, Markowska A, Pogodzińska K, Roszczyc K, Zińczuk J, Zabielski P. Ceramides Profile Identifies Patients with More Advanced Stages of Colorectal Cancer. Biomolecules. 2020; 10(4):632. https://doi.org/10.3390/biom10040632
Chicago/Turabian StyleMarkowski, Adam R., Agnieszka U. Błachnio-Zabielska, Katarzyna Guzińska-Ustymowicz, Agnieszka Markowska, Karolina Pogodzińska, Kamila Roszczyc, Justyna Zińczuk, and Piotr Zabielski. 2020. "Ceramides Profile Identifies Patients with More Advanced Stages of Colorectal Cancer" Biomolecules 10, no. 4: 632. https://doi.org/10.3390/biom10040632
APA StyleMarkowski, A. R., Błachnio-Zabielska, A. U., Guzińska-Ustymowicz, K., Markowska, A., Pogodzińska, K., Roszczyc, K., Zińczuk, J., & Zabielski, P. (2020). Ceramides Profile Identifies Patients with More Advanced Stages of Colorectal Cancer. Biomolecules, 10(4), 632. https://doi.org/10.3390/biom10040632