Challenges and Advances in Genome Editing Technologies in Streptomyces
Abstract
:1. Introduction
2. PCR-Targeting System
3. Cre-loxP Recombination System
4. I-SceI Meganuclease-Promoted Recombination System
5. CRISPR/Cas-Based Genome Editing
5.1. Cas9-Based Genome Editing
5.2. Cpf1-Assisted Genome Editing
5.3. dCas-Based Transcriptional Repression (CRISPRi)
5.4. Base Editors Based on the Cas9 Variants (dCas9 or Cas9n)
6. Conclusions and Perspectives
Funding
Conflicts of Interest
References
- Mast, Y.; Weber, T.; Gölz, M.; Ort-Winklbauer, R.; Gondran, A.; Wohlleben, W.; Schinko, E. Characterization of the ‘pristinamycin supercluster’of Streptomyces pristinaespiralis. Microb. Biotechnol. 2011, 4, 192–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baltz, R.H. Daptomycin: mechanisms of action and resistance, and biosynthetic engineering. Curr. Opin. Chem. Biol. 2009, 13, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Yoo, Y.J.; Kim, H.; Park, S.R.; Yoon, Y.J. An overview of rapamycin: From discovery to future perspectives. J. Ind. Microbiol. Biotechnol. 2017, 44, 537–553. [Google Scholar] [CrossRef] [PubMed]
- Barreiro, C.; Martínez-Castro, M. Trends in the biosynthesis and production of the immunosuppressant tacrolimus (FK506). Appl. Microbiol. Biotechnol. 2014, 98, 497–507. [Google Scholar] [CrossRef] [PubMed]
- Yoon, Y.; Kim, E.-S.; Hwang, Y.-S.; Choi, C.-Y. Avermectin: biochemical and molecular basis of its biosynthesis and regulation. Appl. Microbiol. Biotechnol. 2004, 63, 626–634. [Google Scholar] [CrossRef]
- Li, J.-S.; Du, M.-N.; Zhang, H.; Zhang, J.; Zhang, S.-Y.; Wang, H.-Y.; Chen, A.-L.; Wang, J.-D.; Xiang, W.-S. New milbemycin metabolites from the genetically engineered strain Streptomyces bingchenggensis BCJ60. Nat. Prod. Res. 2017, 31, 780–784. [Google Scholar] [CrossRef]
- Vasanthakumar, A.; Kattusamy, K.; Prasad, R. Regulation of daunorubicin biosynthesis in Streptomyces peucetius-feed forward and feedback transcriptional control. J. Basic Microbiol. 2013, 53, 636–644. [Google Scholar] [CrossRef]
- Shen, B.; Du, L.; Sanchez, C.; Edwards, D.; Chen, M.; Murrell, J. The biosynthetic gene cluster for the anticancer drug bleomycin from Streptomyces verticillus ATCC15003 as a model for hybrid peptide-polyketide natural product biosynthesis. J. Ind. Microbiol. Biotechnol. 2001, 27, 378–385. [Google Scholar] [CrossRef]
- Tulp, M.; Bohlin, L. Rediscovery of known natural compounds: nuisance or goldmine? Bioorg. Med. Chem. 2005, 13, 5274–5282. [Google Scholar] [CrossRef]
- Baltz, R.H. Gifted microbes for genome mining and natural product discovery. J. Ind. Microbiol. Biotechnol. 2017, 44, 573–588. [Google Scholar] [CrossRef]
- Onaka, H. Novel antibiotic screening methods to awaken silent or cryptic secondary metabolic pathways in actinomycetes. J. Antibiot. 2017, 70, 865–870. [Google Scholar] [CrossRef] [PubMed]
- Rutledge, P.J.; Challis, G.L. Discovery of microbial natural products by activation of silent biosynthetic gene clusters. Nat. Rev. Microbiol. 2015, 13, 509–523. [Google Scholar] [CrossRef] [PubMed]
- Culp, E.J.; Yim, G.; Waglechner, N.; Wang, W.; Pawlowski, A.C.; Wright, G.D. Hidden antibiotics in actinomycetes can be identified by inactivation of gene clusters for common antibiotics. Nat. Biotechnol. 2019, 37, 1149–1154. [Google Scholar] [CrossRef] [PubMed]
- Sidda, J.D.; Song, L.; Poon, V.; Al-Bassam, M.; Lazos, O.; Buttner, M.J.; Challis, G.L.; Corre, C. Discovery of a family of γ-aminobutyrate ureas via rational derepression of a silent bacterial gene cluster. Chem. Sci. 2014, 5, 86–89. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.M.; Wong, F.T.; Wang, Y.; Luo, S.; Lim, Y.H.; Heng, E.; Yeo, W.L.; Cobb, R.E.; Enghiad, B.; Ang, E.L. CRISPR-Cas9 strategy for activation of silent Streptomyces biosynthetic gene clusters. Nat. Chem. Biol. 2017, 13, 607–609. [Google Scholar] [CrossRef]
- Laureti, L.; Song, L.; Huang, S.; Corre, C.; Leblond, P.; Challis, G.L.; Aigle, B. Identification of a bioactive 51-membered macrolide complex by activation of a silent polyketide synthase in Streptomyces ambofaciens. Proc. Natl. Acad. Sci. USA 2011, 108, 6258–6263. [Google Scholar] [CrossRef] [Green Version]
- Nepal, K.K.; Wang, G. Streptomycetes: surrogate hosts for the genetic manipulation of biosynthetic gene clusters and production of natural products. Biotechnol. Adv. 2019, 37, 1–20. [Google Scholar] [CrossRef]
- Kieser, T.; Bibb, M.J.; Buttner, M.J.; Chater, K.F.; Hopwood, D.A. Practical Streptomyces Genetics; The John Innes Foundation: Norwich, UK, 2000. [Google Scholar]
- Tao, W.; Yang, A.; Deng, Z.; Sun, Y. CRISPR/Cas9-based editing of Streptomyces for discovery, characterization, and production of natural products. Front. Microbiol. 2018, 9, 1660. [Google Scholar] [CrossRef] [Green Version]
- Datsenko, K.A.; Wanner, B.L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 2000, 97, 6640–6645. [Google Scholar] [CrossRef] [Green Version]
- Murphy, K.C. Phage recombinases and their applications. Adv. Virus Res. 2012, 83, 367–414. [Google Scholar]
- Gust, B.; Challis, G.L.; Fowler, K.; Kieser, T.; Chater, K.F. PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc. Natl. Acad. Sci. USA 2003, 100, 1541–1546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Komatsu, M.; Uchiyama, T.; Ōmura, S.; Cane, D.E.; Ikeda, H. Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism. Proc. Natl. Acad. Sci. USA 2010, 107, 2646–2651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bierman, M.; Logan, R.; O’brien, K.; Seno, E.; Rao, R.N.; Schoner, B. Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 1992, 116, 43–49. [Google Scholar] [CrossRef]
- He, Y.; Wang, Z.; Bai, L.; Liang, J.; Zhou, X.; Deng, Z. Two pHZ1358-derivative vectors for efficient gene knockout in Streptomyces. J. Microbiol. Biotechnol. 2010, 20, 678–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monteilhet, C.; Perrin, A.; Thierry, A.; Colleaux, L.; Dujon, B. Purification and characterization of the in vitro activity of I-Sce I, a novel and highly specific endonuclease encoded by a group I intron. Nucleic Acids Res. 1990, 18, 1407–1413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choulika, A.; Perrin, A.; Dujon, B.; Nicolas, J.-F. Induction of homologous recombination in mammalian chromosomes by using the I-SceI system of Saccharomyces cerevisiae. Mol. Cell. Biol. 1995, 15, 1968–1973. [Google Scholar] [CrossRef] [Green Version]
- Lu, Z.; Xie, P.; Qin, Z. Promotion of markerless deletion of the actinorhodin biosynthetic gene cluster in Streptomyces coelicolor. Acta Biochim. Biophys. Sin. 2010, 42, 717–721. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Martínez, L.T.; Bibb, M.J. Use of the Meganuclease I-SceI of Saccharomyces cerevisiae to select for gene deletions in actinomycetes. Sci. Rep. 2014, 4, 7100. [Google Scholar] [CrossRef] [Green Version]
- Makarova, K.S.; Wolf, Y.I.; Alkhnbashi, O.S.; Costa, F.; Shah, S.A.; Saunders, S.J.; Barrangou, R.; Brouns, S.J.; Charpentier, E.; Haft, D.H. An updated evolutionary classification of CRISPR-Cas systems. Nat. Rev. Microbiol. 2015, 13, 722–736. [Google Scholar] [CrossRef] [Green Version]
- Wright, A.V.; Nuñez, J.K.; Doudna, J.A. Biology and applications of CRISPR systems: Harnessing nature’s toolbox for genome engineering. Cell 2016, 164, 29–44. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Qi, L.S. Applications of CRISPR genome engineering in cell biology. Trends Cell Biol. 2016, 26, 875–888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puchta, H. Applying CRISPR/Cas for genome engineering in plants: the best is yet to come. Curr. Opin. Plant. Biol. 2017, 36, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.R.; Lee, S.Y. CRISPR technologies for bacterial systems: current achievements and future directions. Biotechnol. Adv. 2016, 34, 1180–1209. [Google Scholar] [CrossRef] [PubMed]
- Knott, G.J.; Doudna, J.A. CRISPR-Cas guides the future of genetic engineering. Science 2018, 361, 866–869. [Google Scholar] [CrossRef] [Green Version]
- Alberti, F.; Corre, C. Editing streptomycete genomes in the CRISPR/Cas9 age. Nat. Prod. Rep. 2019, 36, 1237–1248. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Wei, K.; Zheng, G.; Liu, X.; Chen, S.; Jiang, W.; Lu, Y. CRISPR-Cpf1-assisted multiplex genome editing and transcriptional repression in Streptomyces. Appl. Environ. Microbiol. 2018, 84, e00827-18. [Google Scholar] [CrossRef] [Green Version]
- Yeo, W.L.; Heng, E.; Tan, L.L.; Lim, Y.W.; Lim, Y.H.; Hoon, S.; Zhao, H.; Zhang, M.M.; Wong, F.T. Characterization of Cas proteins for CRISPR-Cas editing in streptomycetes. Biotechnol. Bioeng. 2019, 116, 2330–2338. [Google Scholar] [CrossRef]
- Kormanec, J.; Rezuchova, B.; Homerova, D.; Csolleiova, D.; Sevcikova, B.; Novakova, R.; Feckova, L. Recent achievements in the generation of stable genome alterations/mutations in species of the genus Streptomyces. Appl. Microbiol. Biotechnol. 2019, 103, 5463–5482. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, L.; Zheng, G.; Jiang, W.; Deng, Z.; Wang, Z.; Lu, Y. CRISPR/dCas9-mediated multiplex gene repression in Streptomyces. Biotechnol. J. 2018, 13, 1800121. [Google Scholar] [CrossRef]
- Tong, Y.; Whitford, C.M.; Robertsen, H.L.; Blin, K.; Jørgensen, T.S.; Klitgaard, A.K.; Gren, T.; Jiang, X.; Weber, T.; Lee, S.Y. Highly efficient DSB-free base editing for streptomycetes with CRISPR-BEST. Proc. Natl. Acad. Sci. USA 2019, 116, 20366–20375. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Tian, J.; Zheng, G.; Chen, J.; Sun, C.; Yang, Z.; Zimin, A.A.; Jiang, W.; Deng, Z.; Wang, Z. Multiplex genome editing using a dCas9-cytidine deaminase fusion in Streptomyces. Sci. China Life Sci. 2019, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Cobb, R.E.; Wang, Y.; Zhao, H. High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. ACS Synth. Biol. 2015, 4, 723–728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, H.; Zheng, G.; Jiang, W.; Hu, H.; Lu, Y. One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces. Acta Biochim. Biophys. Sin. 2015, 47, 231–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tong, Y.; Charusanti, P.; Zhang, L.; Weber, T.; Lee, S.Y. CRISPR-Cas9 based engineering of actinomycetal genomes. ACS Synth. Biol. 2015, 4, 1020–1029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, H.; Wen, S.; Xu, W.; He, Z.; Zhai, G.; Liu, Y.; Deng, Z.; Sun, Y. Highly efficient editing of the actinorhodin polyketide chain length factor gene in Streptomyces coelicolor M145 using CRISPR/Cas9-CodA (sm) combined system. Appl. Microbiol. Biotechnol. 2015, 99, 10575–10585. [Google Scholar] [CrossRef]
- Mo, J.; Wang, S.; Zhang, W.; Li, C.; Deng, Z.; Zhang, L.; Qu, X. Efficient editing DNA regions with high sequence identity in actinomycetal genomes by a CRISPR-Cas9 system. Synth. Syst. Biotechnol. 2019, 4, 86–91. [Google Scholar] [CrossRef]
- Wang, Q.; Xie, F.; Tong, Y.; Habisch, R.; Yang, B.; Zhang, L.; Müller, R.; Fu, C. Dual-function chromogenic screening-based CRISPR/Cas9 genome editing system for actinomycetes. Appl. Microbiol. Biotechnol. 2020, 104, 225–239. [Google Scholar] [CrossRef]
- Wang, K.; Zhao, Q.-W.; Liu, Y.-F.; Sun, C.-F.; Chen, X.; Burchmore, R.; Burgess, K.; Li, Y.-Q.; Mao, X.-M. Multi-layer controls of Cas9 activity coupled with ATP synthase over-expression for efficient genome editing in Streptomyces. Front. Bioeng. Biotechnol. 2019, 7, 304. [Google Scholar] [CrossRef]
- Muth, G. The pSG5-based thermosensitive vector family for genome editing and gene expression in actinomycetes. Appl. Microbiol. Biotechnol. 2018, 102, 9067–9080. [Google Scholar] [CrossRef]
- Wlodek, A.; Kendrew, S.G.; Coates, N.J.; Hold, A.; Pogwizd, J.; Rudder, S.; Sheehan, L.S.; Higginbotham, S.J.; Stanley-Smith, A.E.; Warneck, T.; et al. Diversity oriented biosynthesis via accelerated evolution of modular gene clusters. Nat. Commun. 2017, 8. [Google Scholar] [CrossRef] [Green Version]
- Najah, S.; Saulnier, C.; Pernodet, J.-L.; Bury-Moné, S. Design of a generic CRISPR-Cas9 approach using the same sgRNA to perform gene editing at distinct loci. BMC Biotechnol. 2019, 19, 18. [Google Scholar] [CrossRef] [PubMed]
- Zetsche, B.; Heidenreich, M.; Mohanraju, P.; Fedorova, I.; Kneppers, J.; DeGennaro, E.M.; Winblad, N.; Choudhury, S.R.; Abudayyeh, O.O.; Gootenberg, J.S. Multiplex gene editing by CRISPR-Cpf1 using a single crRNA array. Nat. Biotechnol. 2017, 35, 31–34. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Su, T.; Qi, Q. Microbial CRISPRi and CRISPRa Systems for Metabolic Engineering. Biotechnol. Bioprocess. Eng. 2019, 1–13. [Google Scholar] [CrossRef]
- Baltz, R.H. Streptomyces temperate bacteriophage integration systems for stable genetic engineering of actinomycetes (and other organisms). J. Ind. Microbiol. Biotechnol. 2012, 39, 661–672. [Google Scholar] [CrossRef]
- Katayama, K.; Mitsunobu, H.; Nishida, K. Mammalian synthetic biology by CRISPRs engineering and applications. Curr. Opin. Chem. Biol. 2019, 52, 79–84. [Google Scholar] [CrossRef]
- Rees, H.A.; Liu, D.R. Base editing: precision chemistry on the genome and transcriptome of living cells. Nat. Rev. Genet. 2018, 19, 770–788. [Google Scholar] [CrossRef]
- Mishra, R.; Joshi, R.K.; Zhao, K. Base editing in crops: Current advances, limitations and future implications. Plant. Biotechnol. J. 2020, 18, 20–31. [Google Scholar] [CrossRef]
- Arazoe, T.; Kondo, A.; Nishida, K. Targeted nucleotide editing technologies for microbial metabolic engineering. Biotechnol. J. 2018, 13, 1700596. [Google Scholar] [CrossRef]
- Kim, J.-S. Precision genome engineering through adenine and cytosine base editing. Nat. Plants 2018, 4, 148–151. [Google Scholar] [CrossRef]
- Komor, A.C.; Badran, A.H.; Liu, D.R. Editing the genome without double-stranded DNA breaks. ACS Chem. Biol. 2018, 13, 383–388. [Google Scholar] [CrossRef]
- Molla, K.A.; Yang, Y. CRISPR/Cas-mediated base editing: Technical considerations and practical applications. Trends Biotechnol. 2019, 37, 1121–1142. [Google Scholar] [CrossRef]
- Banno, S.; Nishida, K.; Arazoe, T.; Mitsunobu, H.; Kondo, A. Deaminase-mediated multiplex genome editing in Escherichia coli. Nat. Microbiol. 2018, 3, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Billon, P.; Bryant, E.E.; Joseph, S.A.; Nambiar, T.S.; Hayward, S.B.; Rothstein, R.; Ciccia, A. CRISPR-mediated base editing enables efficient disruption of eukaryotic genes through induction of STOP codons. Mol. Cell 2017, 67, 1068–1079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, T.; Li, Y.; Shi, Z.; Hemme, C.L.; Li, Y.; Zhu, Y.; Van Nostrand, J.D.; He, Z.; Zhou, J. Efficient genome editing in Clostridium cellulolyticum via CRISPR-Cas9 nickase. Appl. Environ. Microbiol. 2015, 81, 4423–4431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Lin, L.; Wang, H.; Zhang, Z.; Zhou, J.; Jiao, N. Development of a CRISPR/Cas9n-based tool for metabolic engineering of Pseudomonas putida for ferulic acid-to-polyhydroxyalkanoate bioconversion. Commun. Biol. 2020, 3, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Standage-Beier, K.; Zhang, Q.; Wang, X. Targeted large-scale deletion of bacterial genomes using CRISPR-nickases. ACS Synth. Biol. 2015, 4, 1217–1225. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Huang, H.; Xiong, Z.; Ai, L.; Yang, S. CRISPR-Cas9D10A nickase-assisted genome editing in Lactobacillus casei. Appl. Environ. Microbiol. 2017, 83, e01259-17. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Cai, D.; Wang, Z.; He, Z.; Chen, S. Development of an efficient genome editing tool in Bacillus licheniformis using CRISPR-Cas9 nickase. Appl. Environ. Microbiol. 2018, 84, e02608–e02617. [Google Scholar] [CrossRef] [Green Version]
- Pyne, M.E.; Bruder, M.R.; Moo-Young, M.; Chung, D.A.; Chou, C.P. Harnessing heterologous and endogenous CRISPR-Cas machineries for efficient markerless genome editing in Clostridium. Sci. Rep. 2016, 6, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.; Su, T.; Qi, Q.; Liang, Q. Easy regulation of metabolic flux in Escherichia coli using an endogenous type I-E CRISPR-Cas system. Microb. Cell Fact. 2016, 15, 195. [Google Scholar] [CrossRef] [Green Version]
- Vercoe, R.B.; Chang, J.T.; Dy, R.L.; Taylor, C.; Gristwood, T.; Clulow, J.S.; Richter, C.; Przybilski, R.; Pitman, A.R.; Fineran, P.C. Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape bacterial genomes and expel or remodel pathogenicity islands. PLoS Genet. 2013, 9, e1003454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cañez, C.; Selle, K.; Goh, Y.J.; Barrangou, R. Outcomes and characterization of chromosomal self-targeting by native CRISPR-Cas systems in Streptococcus thermophilus. FEMS Microbiol. Lett. 2019, 366, fnz105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, T.; Tang, B.; Zhou, X.; Zeng, J.; Lu, M.; Guo, X.; Peng, X.; Lei, L.; Gong, B.; Li, Y. Genome editing in Streptococcus mutans through self-targeting CRISPR arrays. Mol. Oral Microbiol. 2018, 33, 440–449. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo-Cantabrana, C.; Goh, Y.J.; Pan, M.; Sanozky-Dawes, R.; Barrangou, R. Genome editing using the endogenous type I CRISPR-Cas system in Lactobacillus crispatus. Proc. Natl. Acad. Sci. USA 2019, 116, 15774–15783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Zong, W.; Hong, W.; Zhang, Z.-T.; Wang, Y. Exploiting endogenous CRISPR-Cas system for multiplex genome editing in Clostridium tyrobutyricum and engineer the strain for high-level butanol production. Metab. Eng. 2018, 47, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, X.; Deng, Z.; Ou, H.-Y. Comparative analysis of CRISPR loci found in Streptomyces genome sequences. Interdiscip. Sci. 2018, 10, 848–853. [Google Scholar] [CrossRef]
- Qiu, Y.; Wang, S.; Chen, Z.; Guo, Y.; Song, Y. An active type I-E CRISPR-Cas system identified in Streptomyces avermitilis. PLoS ONE 2016, 11, e0149533. [Google Scholar] [CrossRef] [Green Version]
- Biswas, A.; Gagnon, J.N.; Brouns, S.J.; Fineran, P.C.; Brown, C.M. CRISPRTarget: bioinformatic prediction and analysis of crRNA targets. RNA Biol. 2013, 10, 817–827. [Google Scholar] [CrossRef] [Green Version]
Editing Plasmids | Replicons | Cas Proteins | Origins | Promoters of Cas Proteins | Promoters of Guide RNA | Editing Efficiency | Other Features | Addgene Number or Source of Plasmid Request | Reference |
---|---|---|---|---|---|---|---|---|---|
pCRISPomyces-1 | pSG5 | Cas9 | Streptococcus pyogenes | rpsLp(XC) | rpsLp(CF)-tracrRNA gapdhp(EL)-crRNA | 21–25% | - | 61736 | [43] |
pCRISPomyces-2 | pSG5 | Cas9 | Streptococcus pyogenes | rpsLp(XC) | gapdhp(EL)-sgRNA | 67–100% | - | 61737 | [43] |
pKCcas9dO | pSG5 | Cas9 | Streptococcus pyogenes | tipAp | j23119-sgRNA | 29–100% | - | 62552 | [44] |
pCRISPR-Cas9 | pSG5 | Cas9 | Streptococcus pyogenes | tipAp | ermEp*-sgRNA | 3–100% | - | 125686 | [45] |
pCRISPR-Cas9-ScaligD | pSG5 | Cas9 | Streptococcus pyogenes | tipAp | ermEp*-sgRNA | 69–77% | LigD | 125688 | [45] |
pCRISPR-dCas9 | pSG5 | dCas9 | Streptococcus pyogenes | tipAp | ermEp*-sgRNA | ND | - | 125687 | [45] |
pWHU2653 | pIJ101 | Cas9 | Streptococcus pyogenes | aac(3)IVp | ermEp*-sgRNA | 93–99% | CodA(sm) | Yuhui Sun group | [46] |
pMWCas9 | pIJ101 | Cas9 | Streptococcus pyogenes | tipAp | ermEp*-sgRNA | ND | CodA(sm) | Xudong Qu group | [47] |
pQS-gusA | pIJ101 | Cas9 | Streptococcus pyogenes | tipAp | ermEp*-sgRNA | 100% | GusA | Chengzhang Fu group | [48] |
pQS-idgS | pIJ101 | Cas9 | Streptococcus pyogenes | tipAp | ermEp*-sgRNA | 100% | IdgS | Chengzhang Fu group | [48] |
pWHU2653-TRMA | pIJ101 | Cas9 | Streptococcus pyogenes | tipAp | ermEp*-sgRNA | 8.3–80% | AtpD | Xuming Mao group | [49] |
pKC1139-TRMA | pSG5 | Cas9 | Streptococcus pyogenes | tipAp | ermEp*-sgRNA | 8.3–80% | AtpD | Xuming Mao group | [49] |
pKCCpf1 | pSG5 | Cpf1 | Francisella novicida | ermEp* | kasOp*-crRNA | 75–95% | - | Yinhua Lu group | [37] |
pKCCpf1-MsmE | pSG5 | Cpf1 | Francisella novicida | ermEp* | kasOp*-crRNA | 10–56.7% | LigD, Ku | Yinhua Lu group | [37] |
pSETddCpf1 | - | ddCpf1 | Francisella novicida | ermEp* | kasOp*-crRNA | 11.8–95.2% | - | Yinhua Lu group | [37] |
pCRISPomyces-Sth1Cas9 | pSG5 | Cas9 | Streptococcus thermophilus | rpsLp(XC) | gapdhp(EL)-sgRNA | 100% | - | 129552 | [38] |
pCRISPomyces-SaCas9 | pSG5 | Cas9 | Staphylococcus aureus | rpsLp(XC) | gapdhp(EL)-sgRNA | 87–100% | - | 129553 | [38] |
pCRISPomyces-FnCpf1 | pSG5 | Cpf1 | Francisella novicida | rpsLp(XC) | gapdhp(EL)-crRNA | 87–100% | - | 129554 | [38] |
pSET-dCas9 | - | dCas9 | Streptococcus pyogenes | ermEp* | - | - | - | 110183 | [40] |
pSET-dCas9-actII-4-NT-S1 | - | dCas9 | Streptococcus pyogenes | ermEp* | j23119-sgRNA | 68–99% | - | 110185 | [40] |
pCRISPR-cBEST | pSG5 | Cas9n | Streptococcus pyogenes | tipAp | ermEp*-sgRNA | 0–100% | rAPOBEC1 | 125689 | [41] |
pCRISPR-aBEST | pSG5 | Cas9n | Streptococcus pyogenes | tipAp | ermEp*-sgRNA | 0–100% | ecTadA | 131464 | [41] |
pKC-dCas9-CDA-ULstr | pSG5 | dCas9 | Streptococcus pyogenes | tipAp | j23119-sgRNA | 15–100% | PmCDA1 | Yinhua Lu group | [42] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Li, G.; Chen, Y.; Lu, Y. Challenges and Advances in Genome Editing Technologies in Streptomyces. Biomolecules 2020, 10, 734. https://doi.org/10.3390/biom10050734
Zhao Y, Li G, Chen Y, Lu Y. Challenges and Advances in Genome Editing Technologies in Streptomyces. Biomolecules. 2020; 10(5):734. https://doi.org/10.3390/biom10050734
Chicago/Turabian StyleZhao, Yawei, Guoquan Li, Yunliang Chen, and Yinhua Lu. 2020. "Challenges and Advances in Genome Editing Technologies in Streptomyces" Biomolecules 10, no. 5: 734. https://doi.org/10.3390/biom10050734
APA StyleZhao, Y., Li, G., Chen, Y., & Lu, Y. (2020). Challenges and Advances in Genome Editing Technologies in Streptomyces. Biomolecules, 10(5), 734. https://doi.org/10.3390/biom10050734