Mercury Exposure Assessment in Mother–Infant Pairs from Continental and Coastal Croatia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Recruitment of the Study Participants
2.2. Collection and Preparation of the Samples and Element Analysis
2.3. Genotyping of MT2A-5A/G Polymorphism
- forward: 5´- CGC CTG GAG CCG CAA GTG AC;
- reverse: 5´- TGG GCA TCC CCA GCC TCT TA.
2.4. Metallothionein (MT2) Analysis in Maternal Serum
2.5. Statistical Analysis
3. Results
4. Discussion
4.1. Hg in Maternal Hair and Blood, Cord Blood and the Placenta
4.2. Hg and Dental Amalgams
4.3. Metallothionein Polymorphisms and Hg Biomarkers
4.4. Risk of Prenatal and Postnatal Hg Exposure
4.5. Hg, Se, and Fish Consumption
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile of Mercury; U.S. Department of Health and Human Services, Public Health Service: Atlanta, GA, USA, 1999. Available online: https://www.atsdr.cdc.gov/ToxProfiles/tp46.pdf (accessed on 7 April 2020).
- Agency for Toxic Substances and Disease Registry (ATSDR). Addendum for Organic Mercury Compounds (Alkyl and Dialkyl Mercury Compounds); Supplement to the 1999 Toxicological Profile for Mercury; Division of Toxicology and Human Health Sciences: Atlanta, GA, USA, 2013. Available online: https://www.atsdr.cdc.gov/toxprofiles/mercury_organic_addendum.pdf (accessed on 7 April 2020).
- Clarkson, T.W. The three modern faces of mercury. Environ. Health Perspect. 2002, 110, 11–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clarkson, T.W.; Magos, L.; Myers, G.J. The toxicology of mercury—Current exposures and clinical manifestations. N. Engl. J. Med. 2003, 349, 1731–1737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clarkson, T.W.; Magos, L. The toxicology of mercury and its chemical compounds. Crit. Rev. Toxicol. 2006, 36, 609–662. [Google Scholar] [CrossRef] [PubMed]
- Grandjean, P.; Landrigan, P.J. Developmental neurotoxicity of industrial chemicals. Lancet 2006, 368, 2167–2178. [Google Scholar] [CrossRef]
- Grandjean, P.; Satoh, H.; Murata, K.; Eto, K. Adverse effects of methylmercury: Environmental health research implications. Environ. Health Perspect. 2010, 118, 1137–1145. [Google Scholar] [CrossRef] [Green Version]
- Ceccatelli, S.; Cottrill, B.; DiNovi, M.; Dogliotti, E.; Edler, L.; Farmer, P.; Fürst, P.; Hoogenboom, L.; Knutsen, H.K.; Lundebye, A.-K.; et al. Scientific Opinion on the risk for public health related to the presence of mercury and methylmercury in food 1 EFSA Panel on Contaminants in the Food Chain (CONTAM). EFSA J. 2012, 10, 1–241. [Google Scholar] [CrossRef]
- United Nations Environment Programme (UNEP). Global Mercury Assessment 2013: Sources, Emissions, Releases and Environmental Transport; UNEP Chemicals Branch: Geneva, Switzerland, 2013; Available online: http://wedocs.unep.org/bitstream/handle/20.500.11822/7984/-Global%20Mercury%20Assessment-201367.pdf?sequence=3&isAllowed=y (accessed on 7 April 2020).
- Driscoll, C.T.; Mason, R.P.; Chan, H.M.; Jacob, D.J.; Pirrone, N. Mercury as a global pollutant: Sources, pathways, and effects. Environ. Sci. Technol. 2013, 47, 4967–4983. [Google Scholar] [CrossRef]
- Bjørklund, G.; Dadar, M.; Mutter, J.; Aaseth, J. The toxicology of mercury: Current research and emerging trends. Environ. Res. 2017, 159, 545–554. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Environmental Health Criteria 101: Methylmercury; WHO: Geneva, Switzerland, 1990; Available online: http://www.inchem.org/documents/ehc/ehc/ehc101.htm (accessed on 7 April 2020).
- World Health Organization (WHO). Environmental Health Criteria 118: Inorganic Mercury; WHO: Geneva, Switzerland, 1991; Available online: http://www.inchem.org/documents/ehc/ehc/ehc118.htm (accessed on 7 April 2020).
- WHO/UNEP DTIE Chemicals Branch. Guidance for Identifying Populations at Risk from Mercury Exposure; WHO: Geneva, Switzerland, 2008; Available online: https://www.who.int/foodsafety/publications/risk-mercury-exposure/en/ (accessed on 7 April 2020).
- Cooke, G.M. Biomonitoring of human fetal exposure to environmental chemicals in early pregnancy. J. Toxicol. Environ. Health B Crit. Rev. 2014, 17, 205–224. [Google Scholar] [CrossRef]
- Branco, V.; Caito, S.; Farina, M.; Teixeira da Rocha, J.; Aschner, M.; Carvalho, C. Biomarkers of mercury toxicity: Past, present, and future trends. J. Toxicol. Environ. Health B Crit. Rev. 2017, 20, 119–154. [Google Scholar] [CrossRef]
- Basu, N.; Horvat, M.; Evers, D.C.; Zastenskaya, I.; Weihe, P.; Tempowski, J. A state-of-the-science review of mercury biomarkers in human populations worldwide between 2000 and 2018. Environ. Health Perspect. 2019, 126, 106001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berlin, M.; Zalups, R.K.; Fowler, B.A. Mercury. In Handbook on the Toxicology of Metals; Specific Metals; Nordberg, G.F., Fowler, B.A., Nordberg, M., Eds.; Academic Press: London, UK, 2015; Volume II, pp. 1013–1075. [Google Scholar]
- Rayman, M.P. The importance of selenium to human health. Lancet 2000, 356, 233–241. [Google Scholar] [CrossRef] [Green Version]
- Ralston, N.V.; Raymond, L.J. Dietary selenium’s protective effects against methylmercury toxicity. Toxicology 2010, 278, 112–123. [Google Scholar] [CrossRef] [PubMed]
- Choi, A.L.; Cordier, S.; Weihe, P.; Grandjean, P. Negative confounding in the evaluation of toxicity: The case of methylmercury in fish and seafood. Crit. Rev. Toxicol. 2008, 38, 877–893. [Google Scholar] [CrossRef] [Green Version]
- Choi, A.L.; Budtz-Jørgensen, E.; Jørgensen, P.J.; Steuerwald, U.; Debes, F.; Weihe, P.; Grandjean, P. Selenium as a potential protective factor against mercury developmental neurotoxicity. Environ. Res. 2008, 107, 45–52. [Google Scholar] [CrossRef] [Green Version]
- Tribilustova, E. Consumer perception of farmed fish in Croatia: Consumer survey in cooperation with Eurofish International Organisation and the Ministry of Agriculture of Croatia. In Proceedings of the 4th International Carp Conference, Zagreb, Croatia, 21–22 September 2017; Available online: http://carpconference.hgk.hr/wp-content/uploads/2017/07/Tribilustova_Consumer-perception-of-farmed-fish-in-Croatia.pdf (accessed on 7 April 2020).
- Mahaffey, K.R.; Clickner, R.P.; Jeffries, R.A. Adult women’s blood mercury concentrations vary regionally in the United States: Associations with patterns of fish consumption. Environ. Health Perspect. 2009, 117, 47–53. [Google Scholar] [CrossRef] [Green Version]
- Zalups, R.K. Mercury: Molecular interactions and mimicry in the kidney. In Molecular Biology and Toxicology of Metals; Zalups, R.K., Koropatnick, J., Eds.; Taylor & Francis: London, UK; New York, NY, USA, 2000; pp. 234–275. [Google Scholar]
- Ha, E.; Basu, N.; Bose-O’Reilly, S.; Dórea, J.G.; McSorley, E.; Sakamoto, M.; Chan, H.M. Current progress on understanding the impact of mercury on human health. Environ. Res. 2017, 52, 419–433. [Google Scholar] [CrossRef] [Green Version]
- Bjørklund, G.; Skalny, A.V.; Rahman, M.M.; Dadar, M.; Yassa, H.A.; Aaseth, J.; Chirumbolo, S.; Skalnaya, M.G.; Tinkov, A.A. Toxic metal(loid)-based pollutants and their possible role in autism spectrum disorder. Environ. Res. 2018, 166, 234–250. [Google Scholar] [CrossRef]
- National Research Council (NRC). Toxicological Effects of Methylmercury; The National Academies Press: Washington, DC, USA, 2000. [Google Scholar] [CrossRef]
- Vahter, M.; Akesson, A.; Lind, B.; Bjors, U.; Schutz, A.; Berglund, M. Longitudinal study of methylmercury and inorganic mercury in blood and urine of pregnant and lactating women, as well as in umbilical cord blood. Environ. Res. 2000, 84, 186–194. [Google Scholar] [CrossRef] [Green Version]
- Iyengar, G.V.; Rapp, A. Human placenta as a ‘dual’ biomarker for monitoring fetal and maternal environment with special reference to potentially toxic trace elements. Part 3: Toxic trace elements in placenta and placenta as a biomarker for these elements. Sci. Total Environ. 2001, 280, 221–238. [Google Scholar] [CrossRef]
- Esteban-Vasallo, M.D.; Aragonés, N.; Pollan, M.; López-Abente, G.; Perez-Gomez, B. Mercury, cadmium, and lead levels in human placenta: A systematic review. Environ. Health Perspect. 2012, 120, 1369–1377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dorea, J.G.; Donangelo, C.M. Early (in uterus and infant) exposure to mercury and lead. Clin. Nutr. 2006, 25, 369–376. [Google Scholar] [CrossRef] [PubMed]
- Gundacker, C.; Hengstschläger, M. The role of the placenta in fetal exposure to heavy metals. Wien. Med. Wochenschr. 2012, 162, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Julvez, J.; Grandjean, P. Genetic susceptibility to methylmercury developmental neurotoxicity matters. Front. Genet. 2013, 4, 278. [Google Scholar] [CrossRef] [Green Version]
- Basu, N.; Goodrich, J.M.; Head, J. Ecogenetics of mercury: From genetic polymorphisms and epigenetics to risk assessment and decision-making. Environ. Toxicol. Chem. 2014, 33, 1248–1258. [Google Scholar] [CrossRef]
- Andreoli, V.; Sprovieri, F. Genetic aspects of susceptibility to mercury toxicity: And overview. Int. J. Environ. Res. Public Health 2017, 14, 93. [Google Scholar] [CrossRef] [Green Version]
- Piasek, M.; Blanuša, M.; Kostial, K.; Laskey, J.W. Placental cadmium and progesterone concentrations in cigarette smokers. Reprod. Toxicol. 2001, 15, 673–681. [Google Scholar] [CrossRef]
- Piasek, M.; Henson, M.C.; Blanuša, M.; Kostial, K. Assessment of steroid disruption and metal concentrations in human placenta: Effects of cigarette smoking. In Handbook of Smoking and Health; Public Health in the 21st Century; Koskinen, C.J., Ed.; Nova Science Publishers, Inc.: New York, NY, USA, 2011; pp. 325–365. [Google Scholar]
- Živković, T.; Tariba, B.; Pizent, A. Multielement analysis of human seminal plasma by octopole reaction cell ICP-MS. J. Anal. At. Spectrom. 2014, 29, 2114–2126. [Google Scholar] [CrossRef]
- Piasek, M.; Jurasović, J.; Sekovanić, A.; Brajenović, N.; Brčić Karačonji, I.; Mikolić, A.; Sulimanec Grgec, A.; Stasenko, S. Placental cadmium as an additional noninvasive bioindicator of active maternal tobacco smoking. J. Toxicol. Environ. Health Part A 2016, 79, 443–446. [Google Scholar] [CrossRef]
- Muckle, G.; Ayotte, P.; Dewailly, E.E.; Jacobson, S.W.; Jacobson, J.L. Prenatal exposure of the northern Québec Inuit infants to environmental contaminants. Environ. Health Perspect. 2001, 109, 1291–1299. [Google Scholar] [CrossRef] [Green Version]
- Ask Björnberg, K.; Vahter, M.; Petersson-Grawé, K.; Glynn, A.; Cnattingius, S.; Darnerud, P.O.; Atuma, S.; Aune, M.; Becker, W.; Berglund, M. Methyl mercury and inorganic mercury in Swedish pregnant women and in cord blood: Influence of fish consumption. Environ. Health Perspect. 2003, 111, 637–641. [Google Scholar] [CrossRef] [Green Version]
- Ryabukhin, Y.S. Activation Analysis of Hair as an Indicator of Contamination of Man by Environmental Trace Element Pollutants; Report Number IAEA-RL—50; International Atomic Energy Agency, Agency’s Laboratories, Analytical Quality Control Services: Seibersdorf, Austria, 1978; Available online: https://inis.iaea.org/collection/NCLCollectionStore/_Public/35/066/35066075.pdf?r=1&r=1 (accessed on 7 April 2020).
- Sekovanić, A.; Jurasović, J.; Piasek, M.; Pašalić, D.; Orct, T.; Sulimanec Grgec, A.; Stasenko, S.; Branović Čakanić, K.; Jazbec, A. Metallothionein 2A gene polymorphism and trace elements in mother–newborn pairs in the Croatian population. J. Trace Elem. Med. Biol. 2018, 45, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Mikuš, O. Agriculture and agricultural policy in Croatia. In Agricultural Policy and European Integration in Southeastern Europe; Volk, T., Erjavec, E., Mortensen, K., Eds.; Food and Agriculture Organization of the United Nations: Budapest, Hungary, 2014; pp. 95–103. Available online: http://www.fao.org/family-farming/detail/en/c/337282/ (accessed on 7 April 2020).
- Directorate-General for Maritime Affairs and Fisheries (European Commission); European Market Observatory for Fisheries and Aquaculture Products (EUMOFA). EU Consumer Habits Regarding Fishery and Aquaculture Products; Final Report; EU Publications: Brussels, Belgium, 2017. [Google Scholar] [CrossRef]
- Berglund, M.; Lind, B.; Ask Björnberg, K.; Palm, B.; Einarsson, O.; Vahter, M. Inter-individual variations of human mercury exposure biomarkers: A cross-sectional assessment. Environ. Health 2005, 4, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- George, G.N.; Singh, S.P.; Myers, G.J.; Watson, G.E.; Pickering, I.J. The chemical forms of mercury in human hair: A study using X-ray absorption spectroscopy. J. Biol. Inorg. Chem. 2010, 15, 709–715. [Google Scholar] [CrossRef] [Green Version]
- Lindberg, A.; Ask Bjørnberg, K.; Vahter, M.; Berglund, M. Exposure to methyl mercury in non-fish eating people in Sweden. Environ. Res. 2004, 96, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Smolders, R.; Den Hond, E.; Koppen, G.; Govarts, E.; Willems, H.; Casteleyn, L.; Kolossa-Gehring, M.; Fiddicke, U.; Castaño, A.; Koch, H.M.; et al. Interpreting biomarker data from the COPHES/DEMOCOPHES twin projects: Using external exposure data to understand biomarker differences among countries. Environ. Res. 2015, 141, 86–95. [Google Scholar] [CrossRef]
- Capak, K.; Janev Holcer, N.; Jeličić, P.; Šekerija, M.; Jurasović, J.; Bucić, L.; Benutić, A.; Trumbetić, I.; Čukelj, P. The Use of Biomonitoring for Assessment of Mercury Exposure during the Prenatal Period in Two Croatian Regions Using a Standardized WHO Methodology; Brochure in Croatian with Abstract in English; Croatian Institute for Public Health: Zagreb, Croatia, 2017; Available online: https://www.hzjz.hr/wp-content/uploads/2017/12/Biomonitoring-Hg.pdf (accessed on 7 April 2020).
- Miklavčič, A.; Casetta, A.; Snoj Tratnik, J.; Mazej, D.; Krsnik, M.; Mariuz, M.; Sofianou, K.; Špirić, Z.; Barbone, F.; Horvat, M. Mercury, arsenic and selenium exposure levels in relation to fish consumption in the Mediterranean area. Environ. Res. 2013, 120, 7–17. [Google Scholar] [CrossRef]
- Llorente Ballesteros, M.T.; García Barrado, B.; Navarro Serrano, I.; Izquierdo Álvarez, S.; Del Pueyo García Anaya, S.M.; González Muñoz, M.J. Evaluation of blood mercury and serum selenium levels in the pregnant population of the Community of Madrid, Spain. J. Trace Elem. Med. Biol. 2020, 57, 60–67. [Google Scholar] [CrossRef]
- Næss, S.; Kjellevold, M.; Dahl, L.; Nerhus, I.; Midtbø, L.K.; Bank, M.S.; Rasinger, J.D.; Markhus, M.W. Effects of seafood consumption on mercury exposure in Norwegian pregnant women: A randomized controlled trial. Environ. Int. 2020, 141, 105759. [Google Scholar] [CrossRef]
- Alves, A.C.; Monteiro, M.S.; Machado, A.L.; Oliveira, M.; Bóia, A.; Correia, A.; Oliveira, N.; Soares, A.M.V.M.; Loureiro, S. Mercury levels in parturient and newborns from Aveiro region, Portugal. J. Toxicol. Environ. Health A 2017, 80, 697–709. [Google Scholar] [CrossRef]
- Oken, E.; Wright, R.O.; Kleinman, K.P.; Bellinger, D.; Amarasiriwardena, C.J.; Hu, H.; Rich-Edwards, J.W.; Gillman, M.W. Maternal fish consumption, hair mercury, and infant cognition in a U.S. Cohort. Environ. Health Perspect. 2005, 113, 1376–1380. [Google Scholar] [CrossRef] [PubMed]
- Bilić Čače, I.; Milardović, A.; Prpić, I.; Krajina, R.; Petrović, O.; Vukelić, P.; Špirić, Z.; Horvat, M.; Mazej, D.; Snoj, J. Relationship between the prenatal exposure to low-level of mercury and the size of a newborn’s cerebellum. Med. Hypotheses 2011, 76, 514–516. [Google Scholar] [CrossRef] [PubMed]
- Mergler, D.; Anderson, H.A.; Chan, H.M.; Mahaffey, K.R.; Murray, M.; Sakamoto, M.; Stern, A.H. Methylmercury exposure and health effects in humans: A worldwide concern. Ambio 2007, 36, 3–11. [Google Scholar] [CrossRef]
- Snoj Tratnik, J.; Falnoga, I.; Trdin, A.; Mazej, D.; Fajon, V.; Miklavčič, A.; Kobal, A.B.; Osredkar, J.; Sešek Briški, A.; Krsnik, M.; et al. Prenatal mercury exposure, neurodevelopment and apolipoprotein E genetic polymorphism. Environ. Res. 2017, 152, 375–385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Llop, S.; Engström, K.; Ballester, F.; Franforte, E.; Alhamdow, A.; Pisa, F.; Snoj Tratnik, J.; Mazej, D.; Murcia, M.; Rebagliato, M.; et al. Polymorphisms in ABC Transporter Genes and Concentrations of Mercury in Newborns—Evidence from Two Mediterranean Birth Cohorts. PLoS ONE 2014, 15, e97172. [Google Scholar] [CrossRef] [PubMed]
- Višnjevec, A.M.; Kocman, D.; Horvat, M. Human mercury exposure and effects in Europe. Environ. Toxicol. Chem. 2014, 33, 1259–1270. [Google Scholar] [CrossRef]
- Gundacker, C.; Fröhlich, S.; Graf-Rohrmeister, K.; Eibenberger, B.; Jessenig, V.; Gicic, D.; Prinz, S.; Wittmann, K.J.; Zeisler, H.; Vallant, B.; et al. Perinatal lead and mercury exposure in Austria. Sci. Total Environ. 2010, 408, 5744–5749. [Google Scholar] [CrossRef]
- Palkovicova, L.; Ursinyova, M.; Masanova, V.; Yu, Z.; Hertz-Picciotto, I. Maternal amalgam dental fillings as the source of mercury exposure in developing fetus and newborn. J. Expo. Sci. Environ. Epidemiol. 2008, 18, 326–331. [Google Scholar] [CrossRef] [Green Version]
- Rice, D.; Barone, S. Critical periods of vulnerability for the developing nervous system: Evidence from humans and animal models. Environ. Health Perspect. 2000, 108, 511–533. [Google Scholar] [CrossRef]
- Kajiwara, Y.; Yasutake, A.; Adachi, T.; Hirayama, K. Methylmercury transport across the placenta via neutral amino acid carrier. Arch. Toxicol. 1996, 70, 310–314. [Google Scholar] [CrossRef]
- Aschner, M.; Aschner, J.L. Mercury neurotoxicity: Mechanisms of blood-brain barrier transport. Neurosci. Biobehav. Rev. 1990, 14, 169–176. [Google Scholar] [CrossRef]
- Karagas, M.R.; Choi, A.L.; Oken, E.; Horvat, M.; Schoeny, R.; Kamai, E.; Cowell, W.; Grandjean, P.; Korrick, S. Evidence on the human health effects of low-level methylmercury exposure. Environ. Health Perspect. 2012, 120, 799–806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ou, L.; Chen, L.; Chen, C.; Yang, T.; Wang, H.; Tong, Y.; Hu, D.; Zhang, W.; Long, W.; Wang, X. Associations of methylmercury and inorganic mercury between human cord blood and maternal blood: A meta-analysis and its application. Environ. Pollut. 2014, 191, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Trdin, A.; Snoj Tratnik, J.; Mazej, D.; Fajona, V.; Krsnik, M.; Osredkar, J.; Prpić, I.; Špirić, Z.; Petrović, O.; Marc, J.; et al. Mercury speciation in prenatal exposure in Slovenian and Croatian population—PHIME study. Eviron. Res. 2019, 177, 108627. [Google Scholar] [CrossRef]
- Ramon, R.; Murcia, M.; Aguinagalde, X.; Amurrio, A.; Llop, S.; Ibarluzea, J.; Lertxundi, A.; Alvarez-Pedrerol, M.; Casas, M.; Vioque, J.; et al. Prenatal mercury exposure in a multicenter cohort study in Spain. Environ. Int. 2011, 37, 597–604. [Google Scholar] [CrossRef]
- Díez, S.; Delgado, S.; Aguilera, I.; Astray, J.; Pérez-Gómez, B.; Torrent, M.; Sunyer, J.; Bayona, J.M. Prenatal and early childhood exposure to mercury and methylmercury in Spain, a high-fish-consumer country. Arch. Environ. Contam. Toxicol. 2009, 56, 615–622. [Google Scholar] [CrossRef]
- Ask Björnberg, K.; Vahter, M.; Berglund, B.; Niklasson, B.; Blennow, M.; Sandborgh-Englund, G. Transport of methylmercury and inorganic mercury to the fetus and breast-fed infant. Environ. Health Perspect. 2005, 113, 1381–1385. [Google Scholar] [CrossRef] [Green Version]
- Batariova, A.; Spevackova, V.; Benes, B.; Cejchanova, M.; Smid, J.; Cerna, M. Blood and urine levels of Pb, Cd and Hg in the general population of the Czech Republic and proposed reference values. Int. J. Hyg. Environ. Health 2006, 209, 359–366. [Google Scholar] [CrossRef]
- Caldwell, K.L.; Mortensen, M.E.; Jones, R.L. Total blood mercury concentrations in the U.S. population 1999–2006. Int. J. Hyg. Environ. Health 2009, 212, 588–598. [Google Scholar] [CrossRef]
- Miranda, M.L.; Edwards, S.; Maxson, P.J. Mercury levels in an urban pregnant population in Durham County, North Carolina. Int. J. Environ. Res. Public Health 2011, 8, 698–712. [Google Scholar] [CrossRef]
- Rischer, J.F. Elemental Mercury and Inorganic Mercury Compounds: Human Health Aspects; Concise International Chemical Assessment Document 50; UNEP, ILO, WHO: Geneva, Switzerland, 2003; Available online: https://www.who.int/ipcs/publications/cicad/en/cicad50.pdf (accessed on 7 April 2020).
- Hujoel, P.P.; Lydon-Rochelle, M.; Bollen, A.M.; Woods, J.S.; Geurtsen, W.; del Aguila, M.A. Mercury exposure from dental filling placement during pregnancy and low birth weight risk. Am. J. Epidemiol. 2005, 161, 734–740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daniels, J.L.; Rowland, A.S.; Longnecker, M.P.; Crawford, P.; Golding, J.; ALSPAC Study Team. Maternal dental history, child’s birth outcome and early cognitive development. Paediatr. Perinat. Epidemiol. 2007, 21, 448–457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rathore, M.; Singh, A.; Pant, V.A. The dental amalgam toxicity fear: A myth or actuality. Toxicol. Int. 2012, 19, 81–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- U. S. Food and Drug Administration (FDA). White Paper: FDA Update/Review of Potential Adverse Health Risks Associated with Exposure to Mercury in Dental Amalgam; National Center for Toxicological Research; FDA: Washington, DC, USA, 2009. Available online: https://www.fda.gov/medical-devices/dental-amalgam/white-paper-fda-updatereview-potential-adverse-health-risks-associated-exposure-mercury-dental (accessed on 7 April 2020).
- Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR). Opinion on the Safety of Dental Amalgam and Alternative Dental Restoration Materials for Patients and Users; European Commission: Luxembourg, 2015; Available online: https://ec.europa.eu/health/scientific_committees/emerging/docs/scenihr_o_046.pdf (accessed on 7 April 2020).
- Bjørklund, G.; Bengtsson, U.; Chirumbolo, S.; Kern, J.K. Concerns about environmental mercury toxicity: Do we forget something else? Environ. Res. 2017, 152, 514–516. [Google Scholar] [CrossRef] [PubMed]
- Ask, K.; Akesson, A.; Berglund, M.; Vahter, M. Inorganic mercury and methylmercury in placentas of Swedish women. Environ. Health Perspect. 2002, 110, 523–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dye, B.A.; Schober, S.E.; Dillon, C.F.; Jones, R.L.; Fryar, C.; McDowell, M.; Sinks, T.H. Urinary mercury concentrations associated with dental restorations in adult women aged 16–49 years: United States, 1999–2000. Occup. Environ. Med. 2005, 62, 368–375. [Google Scholar] [CrossRef] [Green Version]
- Richardson, G.M.; Wilson, R.; Allard, D.; Purtill, C.; Douma, S.; Gravière, J. Mercury exposure and risks from dental amalgam in the US population, post-2000. Sci. Total Environ. 2011, 409, 4257–4268. [Google Scholar] [CrossRef]
- Bárány, E.; Bergdahl, I.A.; Bratteby, L.E.; Lundh, T.; Samuelson, G.; Skerfving, S.; Oskarsson, A. Mercury and selenium in whole blood and serum in relation to fish consumption and amalgam fillings in adolescents. J. Trace Elem. Med. Biol. 2003, 17, 165–170. [Google Scholar] [CrossRef]
- Lygre, G.B.; Haug, K.; Skjaerven, R.; Björkman, L. Prenatal exposure to dental amalgam and pregnancy outcome. Community Dent. Oral Epidemiol. 2016, 44, 442–449. [Google Scholar] [CrossRef]
- Golding, J.; Steer, C.D.; Gregory, S.; Lowery, T.; Hibbeln, J.R.; Taylor, C.M. Dental associations with blood mercury in pregnant women. Community Dent. Oral Epidemiol. 2016, 44, 216–222. [Google Scholar] [CrossRef] [Green Version]
- Mahaffey, K.R. Mercury exposure: Medical and public health issues. Trans. Am. Clin. Climatol. Assoc. 2005, 116, 127–153. [Google Scholar] [PubMed]
- Chapman, L.; Chan, H.M. The Influence of nutrition on methyl mercury intoxication. Environ. Health Perspect. 2000, 108, 29–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gundacker, C.; Wittmann, K.J.; Kukuckova, M.; Komarnicki, G.; Hikkel, I.; Gencik, M. Genetic background of lead and mercury metabolism in a group of medical students in Austria. Environ. Res. 2009, 109, 786–796. [Google Scholar] [CrossRef] [PubMed]
- Woods, J.S.; Heyer, N.J.; Echeverria, D.; Russo, J.E.; Martin, M.D.; Bernardo, M.F.; Luis, H.S.; Vaz, L.; Farin, F.M. Modification of neurobehavioral effects of mercury by a genetic polymorphism of coproporphyrinogen oxidase in children. Neurotoxicol. Teratol. 2012, 34, 513–521. [Google Scholar] [CrossRef]
- Wang, Y.; Goodrich, J.M.; Gillespie, B.; Werner, R.; Basu, N.; Franzblau, A. An investigation of modifying effects of metallothionein single-nucleotide polymorphisms on the association between mercury exposure and biomarker levels. Environ. Health Perspect. 2012, 120, 530–534. [Google Scholar] [CrossRef]
- Markhus, M.W.; Rasinger, J.D.; Malde, M.K.; Frøyland, L.; Skotheim, S.; Braarud, H.C.; Stormark, K.M.; Graff, I.E. Docosahexaenoic acid status in pregnancy determines the maternal docosahexaenoic acid status 3-, 6- and 12 months postpartum. Results from a longitudinal observational study. PLoS ONE 2015, 10, e0136409. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration (FDA). Mercury and Methylmercury. 2018. Available online: https://www.fda.gov/food/metals/mercury-and-methylmercury (accessed on 7 April 2020).
- Myers, G.J.; Davidson, P.W. Does methylmercury have a role in causing developmental disabilities in children? Environ. Health Perspect. 2000, 108, 413–420. [Google Scholar] [CrossRef]
- Castoldi, A.F.; Johansson, C.; Onishchenko, N.; Coccini, T.; Roda, E.; Vahter, M.; Ceccatelli, S.; Manzo, L. Human developmental neurotoxicity of methylmercury: Impact of variables and risk modifiers. Regul. Toxicol. Pharmacol. 2008, 51, 201–214. [Google Scholar] [CrossRef]
- Golding, J.; Steer, C.D.; Hibbeln, J.R.; Emmett, P.M.; Lowery, T.; Jones, R. Dietary predictors of maternal prenatal blood mercury levels in the ALSPAC birth cohort study. Environ. Health Perspect. 2013, 121, 1214–1218. [Google Scholar] [CrossRef] [Green Version]
- Guldner, L.; Monfort, C.; Rouget, F.; Garlantezec, R.; Cordier, S. Maternal fish and shellfish intake and pregnancy outcomes: A prospective cohort study in Brittany, France. Environ. Health 2007, 6, 33. [Google Scholar] [CrossRef] [Green Version]
- Drouillet-Pinard, P.; Huel, G.; Slama, R.; Forhan, A.; Sahuquillo, J.; Goua, V.; Thiébaugeorges, O.; Foliguet, B.; Magnin, G.; Kaminski, M.; et al. Prenatal mercury contamination: Relationship with maternal seafood consumption during pregnancy and fetal growth in the ‘EDEN mother–child’ cohort. Br. J. Nutr. 2010, 104, 1096–1100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heppe, D.H.; Steegers, E.A.; Timmermans, S.; Breeijen, H.; Tiemeier, H.; Hofman, A.; Jaddoe, V.W. Maternal fish consumption, fetal growth and the risks of neonatal complications: The Generation R Study. Br. J. Nutr. 2011, 105, 938–949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marques, R.C.; Bernardi, J.V.E.; Dórea, J.G.; Brandão, K.G.; Bueno, L.; Leão, R.S.; Malm, O. Fish consumption during pregnancy, mercury transfer, and birth weight along the Madeira River Basin in Amazonia. Int. J. Environ. Res. Public Health 2013, 10, 2150–2163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watson, G.E.; Lynch, M.; Myers, G.J.; Shamlaye, C.F.; Thurston, S.W.; Zareba, G.; Clarkson, T.W.; Davidson, P.W. Prenatal exposure to dental amalgam: Evidence from the Seychelles child development main cohort. J. Am. Dent. Assoc. 2011, 142, 1283–1294. [Google Scholar] [CrossRef]
- Bellinger, D.C.; Trachtenberg, F.; Barregard, L.; Tavares, M.; Cernichiari, E.; Daniel, D.; McKinlay, S. Neuropsychological and renal effects of dental amalgam in children. JAMA 2006, 295, 1775–1783. [Google Scholar] [CrossRef] [Green Version]
- DeRouen, T.A.; Martin, M.D.; Leroux, B.G.; Townes, B.D.; Woods, J.S.; Leitão, J.; Castro-Caldas, A.; Luis, H.; Bernardo, M.; Rosenbaum, G.; et al. Neurobehavioral effects of dental amalgam in children: A randomized clinical trial. J. Am. Med. Assoc. 2006, 295, 1784–1792. [Google Scholar] [CrossRef] [Green Version]
- Martin, M.D.; Woods, J.S. The safety of dental amalgam in children. Expert Opin. Drug Saf. 2006, 5, 773–781. [Google Scholar] [CrossRef]
- Bilandžić, N.; Sedak, M.; Čalopek, B.; Varenina, I.; Solomun Kolanović, B.; Božić Luburić, Đ.; Varga, I.; Benić, M.; Roncarati, A. Element contents in commercial fish species from the Croatian market. J. Food Compos. Anal. 2018, 71, 77–86. [Google Scholar] [CrossRef]
- Brambilla, G.; Abete, M.C.; Binato, G.; Chiaravalle, E.; Cossu, M.; Dellatte, E.; Miniero, R.; Orletti, R.; Piras, P.; Roncarati, A.; et al. Mercury occurrence in Italian seafood from the Mediterranean Sea and possible intake scenarios of the Italian coastal population. Regul. Toxicol. Pharmacol. 2013, 65, 269–277. [Google Scholar] [CrossRef]
- Sulimanec, A.; Kljaković-Gašpić, Z.; Tičina, V.; Orct, T.; Jurasović, J.; Piasek, M. Essential and toxic elements in three fish species typical for the dietary pattern in coastal Croatia. In Proceedings of the 5th Croatian Congress of Toxicology with International Participation (CROTOX 2016), Poreč, Hrvatska, 9–12 October 2016. [Google Scholar]
- Sulimanec Grgec, A.; Orct, T.; Kljaković-Gašpić, Z.; Tičina, V.; Jurasović, J.; Piasek, M. Levels of essential macro- and trace elements in oily and lean fish species from the eastern Adriatic Sea. In Proceedings of the Joint 16th International Symposium on Trace Elements in Man and Animals (TEMA-16), 12th Conference of the International Society for Trace Element Research in Humans (ISTERH 2017) and 13th Conference of the Nordic Trace Element Society (NTES 2017), Saint-Petersburg, Russia, 26–29 June 2017. [Google Scholar]
- Copat, C.; Vinceti, M.; D’Agati, M.G.; Arena, G.; Maucer, V.; Grasso, A.; Fallico, R.; Sciacca, S.; Ferrante, M. Mercury and selenium intake by seafood from the Ionian Sea: A risk evaluation. Ecotoxicol. Environ. Saf. 2014, 100, 87–92. [Google Scholar] [CrossRef]
- Sofoulaki, K.; Kalantzi, I.; Machias, A.; Pergantis, S.A.; Tsapakis, M. Metals in sardine and anchovy from Greek coastal areas: Public health risk and nutritional benefits assessment. Food Chem. Toxicol. 2019, 123, 113–124. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority Panel on Dietetic Products, Nutrition and Allergies (EFSA NDA Panel). Scientific Opinion on Dietary Reference Values for selenium. EFSA J. 2014, 12, 3846. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA) Scientific Committee. Statement on the benefits of fish/seafood consumption compared to the risks of methylmercury in fish/seafood. EFSA J. 2015, 13, 3982. [Google Scholar] [CrossRef] [Green Version]
- Izquierdo Alvarez, S.; Castañón, S.G.; Ruata, M.L.; Aragüés, E.F.; Terraz, P.B.; Irazabal, Y.G.; González, E.G.; Rodríguez, B.G. Updating of normal levels of copper, zinc and selenium in serum of pregnant women. J. Trace Elem. Med. Biol. 2007, 21, 49–52. [Google Scholar] [CrossRef] [PubMed]
- Zachara, B.A. Selenium in pregnant women: Mini review. J. Nutr. Food Sci. 2016, 6, 1–7. [Google Scholar] [CrossRef]
- Fairweather-Tait, S.J.; Bao, Y.; Broadley, M.R.; Collings, R.; Ford, D.; Hesketh, J.E.; Hurts, R. Selenium in human health and disease. Antioxid. Redox Signal. 2011, 14, 1337–1383. [Google Scholar] [CrossRef]
- Osman, K.; Åkesson, A.; Berglund, M.; Bremme, K.; Schütz, A.; Ask, K.; Vahter, M. Toxic and essential elements in placentas of Swedish women. Clin. Biochem. 2000, 33, 131–138. [Google Scholar] [CrossRef]
- Ask Björnberg, K.; Vahter, M.; Grawé, K.P.; Berglund, M. Methyl mercury exposure in Swedish women with high fish consumption. Sci. Total Environ. 2005, 341, 45–52. [Google Scholar] [CrossRef]
- Jagodic, M.; Snoj Tratnik, J.; Mazej, D.; Stajnko, A.; Pavlin, M.; Krsnik, M.; Kobal, A.B.; Kononenko, L.; Odland, J.Ø.; Horvat, M. Birth weight in relation to maternal blood levels of selected elements in slovenian populations: A cross-sectional study. J. Health Sci. 2017, 5, 95–106. [Google Scholar] [CrossRef] [Green Version]
- Stajnko, A.; Falnoga, I.; Tratnik, J.S.; Mazej, D.; Jagodic, M.; Krsnik, M.; Kobal, A.B.; Prezelj, M.; Kononenko, L.; Horvat, M. Low cadmium exposure in males and lactating females–estimation of biomarkers. Environ. Res. 2017, 152, 109–119. [Google Scholar] [CrossRef]
- Butler Walker, J.; Houseman, J.; Seddon, L.; McMullen, E.; Tofflemire, K.; Mills, C.; Corriveau, A.; Weber, J.P.; LeBlanc, A.; Walker, M.; et al. Maternal and umbilical cord blood levels of mercury, lead, cadmium, and essential trace elements in Arctic Canada. Environ. Res. 2006, 100, 295–318. [Google Scholar] [CrossRef] [PubMed]
- Díez, R.; Riget, F.; Born, E.W. An assessment of selenium to mercury in Greenland marine animals. Sci. Total Environ. 2000, 245, 15–24. [Google Scholar] [CrossRef]
- Plessi, M.; Bertelli, D.; Monzani, A. Mercury and selenium content in selected seafood. J. Food Compos. Anal. 2001, 14, 461–467. [Google Scholar] [CrossRef] [Green Version]
- Grandjean, P.; Weihe, P.; Jørgensen, P.J.; Clarkson, T.; Cernichiari, E.; Viderø, T. Impact of maternal seafood diet on fetal exposure to mercury, selenium, and lead. Arch. Environ. Health 1992, 47, 185–195. [Google Scholar] [CrossRef] [PubMed]
- Farina, M.; Aschner, M.; Rocha, J.B.T. Oxidative stress in MeHg-induced neurotoxicity. Toxicol. Appl. Pharmacol. 2011, 256, 405–417. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.A.K.; Wang, F. Mercury-selenium compounds and their toxicological significance: Toward a molecular understanding of the mercury-selenium antagonism. Environ. Toxicol. Chem. 2009, 28, 1567–1577. [Google Scholar] [CrossRef]
- Rasinger, J.D.; Lundebye, A.-K.; Penglase, S.J.; Ellingsen, S.; Amlund, H. Methylmercury induced neurotoxicity and the influence of selenium in the brains of adult zebrafish (Danio rerio). Int. J. Mol. Sci. 2017, 18, 725. [Google Scholar] [CrossRef]
- Watanabe, C. Modification of mercury toxicity by selenium: Practical importance? Tohoku J. Exp. Med. 2002, 196, 71–77. [Google Scholar] [CrossRef] [Green Version]
- Berry, M.J.; Ralston, N.V. Mercury toxicity and the mitigating role of selenium. EcoHealth 2008, 5, 456–459. [Google Scholar] [CrossRef]
- Bjørklund, G. Selenium as an antidote in the treatment of mercury intoxication. Biometals 2015, 28, 605–614. [Google Scholar] [CrossRef]
- Bjørklund, G.; Aaseth, J.; Ajsuvakova, O.P.; Nikonorov, A.A.; Skalny, A.V.; Skalnaya, M.G.; Tinkov, A.A. Molecular interaction between mercury and selenium in neurotoxicity. Coord. Chem. Rev. 2017, 332, 30–37. [Google Scholar] [CrossRef]
Continental Area n = 185 | Coastal Area n = 96 | |||
---|---|---|---|---|
Maternal data | ||||
Age, years | 29.4 ± 4.64 | 29.3 ± 4.76 | ||
Education, n (%) | ||||
Primary school | 11 (6) | 6 (6) | ||
Secondary school | 124 (67) | 64 (67) | ||
University degree | 50 (27) | 26 (27) | ||
Parity | 2 (1–5) | 2 (1–5) | ||
Body weight before pregnancy, kg | 64.4 ± 11.47 | 64.3 ± 11.62 | ||
Body height, cm | 168 ± 6.1 | 169 ± 5.7 | ||
Weight gain during pregnancy, kg | 15.3 ± 4.85 | 14.9 ± 4.73 | ||
Gestation week of delivery, week | 39.4 ± 1.32 | 39.6 ± 1.30 | ||
Newborn and placental data | ||||
Boys, n (%) | 97 (52) | 39 (41) | ||
Girls, n (%) | 88 (48) | 57 (59) | ||
Birth weight, g | 3515 ± 442 | 3452 ± 433 | ||
Birth length, cm | 51.4 ± 2.15 | 51.1 ± 1.91 | ||
APGAR 1st min, score | 10 (7–10) | 10 (8–10) | ||
APGAR 5th min, score | 10 (8–10) | 10 (8–10) | ||
Trimmed placental weight, g | 296 ± 58.2 | 291 ± 57.8 | ||
Seafood (fish) consumption per week, n (%) | ||||
no consumption | 20 (11) | 4 (4) | ||
≤1 | 101 (54) | 40 (42) | ||
>1–2 | 50 (27) | 31 (32) | ||
>2 | 14 (8) | 21 (22) | ||
Frequency of MT2A-5A/G polymorphism, n (%) | ||||
Wild-type (AA genotype) | 253 (94.4) | |||
G allele carriers (AG/GG genotype) | 15 (5.6) | |||
Number of dental amalgams, n (%) | ||||
none | 38 (18) | |||
1–2 | 62 (30) | |||
3–4 | 46 (22) | |||
≥5 | 62 (30) |
n | Continental Area | n | Coastal Area | |
---|---|---|---|---|
Hg | ||||
Maternal hair (mg/kg) | 71 § | 0.20 (0.11–0.35) 0.26 ± 0.21 | 95 | 0.45 (0.22–1.06) * 0.88 ± 1.18 |
Maternal blood (μg/L) | 185 | 0.96 (0.56–1.64) 1.29 ± 1.27 | 96 | 2.39 (1.06–4.71) * 3.54 ± 4.31 |
Maternal serum (μg/L) | 185 | 0.26 (0.10–0.56) 0.44 ± 0.52 | 96 | 0.58 (0.31–0.94) * 0.78 ± 0.75 |
Placenta (μg/kg wet wt) | 184 | 2.49 (1.34–4.48) 3.44 ± 3.40 | 92 | 7.00 (2.84–11.3) * 9.49 ± 11.2 |
Cord blood (μg/L) | 184 | 1.06 (0.55–1.88) 1.64 ± 1.79 | 96 | 3.74 (1.27–7.89) * 5.85 ± 7.92 |
Cord serum (μg/L) | 183 | 0.26 (0.16–0.44) 0.35 ± 0.27 | 96 | 0.40 (0.22–0.76) * 0.61 ± 0.66 |
Se | ||||
Maternal hair (mg/kg) | 71 § | 0.33 (0.30–0.41) 0.35 ± 0.08 | 95 | 0.39 (0.33–0.47) * 0.41 ± 0.11 |
Maternal blood (μg/L) | 185 | 74.4 (68.2–84.1) 75.1 ± 15.1 | 96 | 83.8(74.7–95.5) * 85.8 ± 17.2 |
Maternal serum (μg/L) | 185 | 54.9 (46.5–62.3) 53.9 ± 13.1 | 96 | 57.0 (49.4–67.6) * 59.0 ± 11.8 |
Placenta (μg/kg wet wt) | 184 | 166 (144–191) 178 ± 54 | 92 | 192 (179–208) * 195 ± 22 |
Cord blood (μg/L) | 184 | 73.0 (66.6–80.9) 73.5 ± 13.1 | 96 | 82.4 (75.8–93.1) * 85.0 ± 13.1 |
Cord serum (μg/L) | 183 | 39.4 (35.4–43.9) 39.7 ± 6.7 | 96 | 42.4 (37.9–46.7) * 42.3 ± 6.3 |
N | Without Dental Amalgams | n | With Dental Amalgams | |
---|---|---|---|---|
Hg | ||||
Maternal hair (mg/kg) | 30 | 0.30 (0.17–0.68) 0.47 ± 0.52 | 106 | 0.35 (0.18–0.83) 0.76 ± 1.13 |
Maternal blood (μg/L) | 38 | 1.48 (0.68–2.82) 1.92 ± 1.63 | 170 | 1.43 (0.77–2.95) 2.52 ± 3.53 |
Maternal serum (μg/L) | 38 | 0.32 (0.16–0.50) 0.41 ± 0.34 | 170 | 0.44 (0.23–0.78) * 0.65 ± 0.68 |
Placenta (μg/kg wet wt) | 36 | 3.08 (1.99–6.84) 4.90 ± 4.33 | 168 | 3.99 (1.98–8.18) 6.78 ± 9.11 |
Cord blood (μg/L) | 38 | 1.76 (0.64–4.28) 2.79 ± 2.66 | 169 | 1.60 (0.82–4.75) 3.95 ± 6.41 |
Cord serum (μg/L) | 38 | 0.24 (0.125–0.39) 0.32 ± 0.25 | 169 | 0.36 (0.20–0.62) * 0.52 ± 0.55 |
Parameter | Seafood | Amalgams | MT2 | Hg-H | HgB-M | HgB-UC | Hg-PL | HgS-M | HgS-UC | Se-H | SeB-M | SeB-UC | Se-PL | SeS-M | SeS-UC |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Maternal age | 0.163 | −0.067 | 0.053 | 0.132 | 0.202 | 0.179 | 0.121 | 0.151 | 0.185 | −0.068 | 0.134 | 0.073 | 0.059 | 0.123 | 0.087 |
Seafood | −0.147 | −0.067 | 0.535 | 0.501 | 0.527 | 0.415 | 0.326 | 0.391 | 0.122 | 0.276 | 0.291 | 0.270 | 0.137 | 0.159 | |
Amalgams | −0.109 | 0.094 | 0.041 | −0.037 | 0.030 | 0.161 | 0.162 | −0.097 | −0.018 | −0.052 | −0.039 | −0.019 | −0.002 | ||
MT2 | −0.116 | 0.025 | −0.060 | −0.066 | 0.030 | −0.065 | 0.033 | −0.276 | −0.192 | −0.026 | −0.076 | −0.076 | |||
Hg-H | 0.820 | 0.853 | 0.800 | 0.625 | 0.761 | 0.270 | 0.375 | 0.425 | 0.271 | 0.221 | 0.229 | ||||
HgB-M | 0.844 | 0.856 | 0.822 | 0.783 | 0.228 | 0.485 | 0.423 | 0.277 | 0.292 | 0.289 | |||||
HgB-UC | 0.832 | 0.679 | 0.774 | 0.211 | 0.490 | 0.518 | 0.257 | 0.300 | 0.364 | ||||||
Hg-PL | 0.783 | 0.783 | 0.218 | 0.431 | 0.454 | 0.255 | 0.269 | 0.268 | |||||||
HgS-M | 0.778 | 0.121 | 0.453 | 0.385 | 0.187 | 0.313 | 0.293 | ||||||||
HgS-UC | 0.114 | 0.410 | 0.419 | 0.214 | 0.238 | 0.341 | |||||||||
Se-H | 0.276 | 0.206 | 0.288 | 0.286 | 0.051 | ||||||||||
SeB-M | 0.523 | 0.266 | 0.796 | 0.264 | |||||||||||
SeB-UC | 0.364 | 0.306 | 0.550 | ||||||||||||
Se-PL | 0.183 | 0.202 | |||||||||||||
SeS-M | 0.199 |
Dependent Variable | Equation (Respects the Sequence of Variables Entered in the Equation) | R2 | p |
---|---|---|---|
ln(Hg-H) | = 0.51 Seafood consumption + 0.83 Residence area + 0.03 Weight gain + 0.04 Age – 0.19 Parity + 2.33 | 0.45 | <0.0001 |
ln(HgB-M) | = 0.46 Seafood consumption + 0.77 Residence area + 0.40 Dental amalgams (≥5) + 0.16 Dental amalgams (3–4) – 1.5 | 0.35 | <0.0001 |
ln(HgB-UC) | = 0.61 Seafood consumption + 0.75 Residence area + 0.16 Education + 0.03 Weight gain – 1.95 | 0.39 | <0.0001 |
ln(Hg-PL) | = 0.38 Seafood consumption + 0.71 Residence area + 0.03 Weight gain + 0.15 Education – 0.86 | 0.31 | <0.0001 |
ln(HgS-M) | = 0.77 Residence area + 0.22 Seafood consumption + 0.84 Dental amalgams (≥5) + 0.42 Education + 0.56 Dental amalgams (3–4) + 0.47 Dental amalgams (1–2) – 3.04 | 0.29 | <0.0001 |
ln(HgS-UC) | = 0.37 Seafood consumption + 0.72 Dental amalgams (≥5) + 0.35 Residence area + 0.51 Dental amalgams (1–2) + 0.51 Dental amalgams (3–4) – 2.55 | 0.28 | <0.0001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sekovanić, A.; Piasek, M.; Orct, T.; Sulimanec Grgec, A.; Matek Sarić, M.; Stasenko, S.; Jurasović, J. Mercury Exposure Assessment in Mother–Infant Pairs from Continental and Coastal Croatia. Biomolecules 2020, 10, 821. https://doi.org/10.3390/biom10060821
Sekovanić A, Piasek M, Orct T, Sulimanec Grgec A, Matek Sarić M, Stasenko S, Jurasović J. Mercury Exposure Assessment in Mother–Infant Pairs from Continental and Coastal Croatia. Biomolecules. 2020; 10(6):821. https://doi.org/10.3390/biom10060821
Chicago/Turabian StyleSekovanić, Ankica, Martina Piasek, Tatjana Orct, Antonija Sulimanec Grgec, Marijana Matek Sarić, Sandra Stasenko, and Jasna Jurasović. 2020. "Mercury Exposure Assessment in Mother–Infant Pairs from Continental and Coastal Croatia" Biomolecules 10, no. 6: 821. https://doi.org/10.3390/biom10060821
APA StyleSekovanić, A., Piasek, M., Orct, T., Sulimanec Grgec, A., Matek Sarić, M., Stasenko, S., & Jurasović, J. (2020). Mercury Exposure Assessment in Mother–Infant Pairs from Continental and Coastal Croatia. Biomolecules, 10(6), 821. https://doi.org/10.3390/biom10060821