Targeting the Endocannabinoid CB1 Receptor to Treat Body Weight Disorders: A Preclinical and Clinical Review of the Therapeutic Potential of Past and Present CB1 Drugs
Abstract
:1. Introduction
1.1. The Growing Concern of Obesity
1.2. The Endocannabinoid System and Body Weight
2. The Relationship between Cannabis Use and Body Weight
2.1. Preclinical Research on the Effects of Cannabis Use on Body Weight
2.2. Clinical Research on the Effects of Cannabis Use on Body Weight
3. Exploring the Direct Effects of Cannabinoid Drugs on Body Weight
3.1. CB1 Inverse Agonists
3.1.1. Rimonabant: Preclinical Research
3.1.2. Rimonabant: Clinical Research
3.1.3. Taranabant: Preclinical Research
3.1.4. Taranabant: Clinical Research
3.1.5. AM 251
3.1.6. Promising CB1 Inverse Agonists of Recent Years with a Focus on Peripherally Restricted CB1 Blockers
3.2. CB1 Agonists
3.2.1. WIN 55,212-2
3.2.2. Other CB1 Agonists
3.3. CB1 Partial Agonists
3.3.1. Tetrahydrocannabinol (THC)
3.3.2. Dronabinol
3.3.3. Nabilone
3.3.4. AM11101
3.4. CB1 Neutral Antagonists
3.4.1. LH-21
3.4.2. AM6545
3.4.3. AM4113
3.4.4. THCV
3.4.5. Other CB1 Neutral Antagonists
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 15 January 2020).
- Collaboration, N.C.D.R.F. Trends in adult body-mass index in 200 countries from 1975 to 2014: A pooled analysis of 1698 population-based measurement studies with 19.2 million participants. Lancet 2016, 387, 1377–1396. [Google Scholar] [CrossRef] [Green Version]
- Spieker, E.A.; Pyzocha, N. Economic Impact of Obesity. Prim. Care 2016, 43, 83–95. [Google Scholar] [CrossRef] [PubMed]
- Gamage, T.F.; Lichtman, A.H. The endocannabinoid system: Role in energy regulation. Pediatric Blood Cancer 2012, 58, 144–148. [Google Scholar] [CrossRef] [Green Version]
- Di Marzo, V.; De Petrocellis, L.; Bisogno, T. Endocannabinoids Part I: Molecular basis of endocannabinoid formation, action and inactivation and development of selective inhibitors. Expert Opin. Ther. Targets 2001, 5, 241–265. [Google Scholar] [CrossRef] [PubMed]
- Piomelli, D. The molecular logic of endocannabinoid signalling. Nat. Rev. Neurosci. 2003, 4, 873–884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugiura, T.; Waku, K. Cannabinoid receptors and their endogenous ligands. J. Biochem. 2002, 132, 7–12. [Google Scholar] [CrossRef]
- Gonzalez-Mariscal, I.; Krzysik-Walker, S.M.; Doyle, M.E.; Liu, Q.R.; Cimbro, R.; Santa-Cruz Calvo, S.; Ghosh, S.; Ciesla, L.; Moaddel, R.; Carlson, O.D.; et al. Human CB1 Receptor Isoforms, present in Hepatocytes and beta-cells, are Involved in Regulating Metabolism. Sci. Rep. 2016, 6, 33302. [Google Scholar] [CrossRef] [Green Version]
- Howlett, A.C.; Barth, F.; Bonner, T.I.; Cabral, G.; Casellas, P.; Devane, W.A.; Felder, C.C.; Herkenham, M.; Mackie, K.; Martin, B.R.; et al. International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol. Rev. 2002, 54, 161–202. [Google Scholar] [CrossRef]
- Gong, J.P.; Onaivi, E.S.; Ishiguro, H.; Liu, Q.R.; Tagliaferro, P.A.; Brusco, A.; Uhl, G.R. Cannabinoid CB2 receptors: Immunohistochemical localization in rat brain. Brain Res. 2006, 1071, 10–23. [Google Scholar] [CrossRef]
- Hua, T.; Vemuri, K.; Nikas, S.P.; Laprairie, R.B.; Wu, Y.; Qu, L.; Pu, M.; Korde, A.; Jiang, S.; Ho, J.H.; et al. Crystal structures of agonist-bound human cannabinoid receptor CB1. Nature 2017, 547, 468–471. [Google Scholar] [CrossRef]
- Pertwee, R.G.; Howlett, A.C.; Abood, M.E.; Alexander, S.P.; Di Marzo, V.; Elphick, M.R.; Greasley, P.J.; Hansen, H.S.; Kunos, G.; Mackie, K.; et al. International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: Beyond CB(1) and CB(2). Pharmacol. Rev. 2010, 62, 588–631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silvestri, C.; Di Marzo, V. The endocannabinoid system in energy homeostasis and the etiopathology of metabolic disorders. Cell Metab. 2013, 17, 475–490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Marzo, V.; Cote, M.; Matias, I.; Lemieux, I.; Arsenault, B.J.; Cartier, A.; Piscitelli, F.; Petrosino, S.; Almeras, N.; Despres, J.P. Changes in plasma endocannabinoid levels in viscerally obese men following a 1 year lifestyle modification programme and waist circumference reduction: Associations with changes in metabolic risk factors. Diabetologia 2009, 52, 213–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cote, M.; Matias, I.; Lemieux, I.; Petrosino, S.; Almeras, N.; Despres, J.P.; Di Marzo, V. Circulating endocannabinoid levels, abdominal adiposity and related cardiometabolic risk factors in obese men. Int. J. Obes. (Lond.) 2007, 31, 692–699. [Google Scholar] [CrossRef] [Green Version]
- Horn, H.; Bohme, B.; Dietrich, L.; Koch, M. Endocannabinoids in Body Weight Control. Pharmaceuticals 2018, 11, 55. [Google Scholar] [CrossRef] [Green Version]
- Izzo, A.A.; Sharkey, K.A. Cannabinoids and the gut: New developments and emerging concepts. Pharm. Ther. 2010, 126, 21–38. [Google Scholar] [CrossRef]
- Jourdan, T.; Godlewski, G.; Kunos, G. Endocannabinoid regulation of beta-cell functions: Implications for glycaemic control and diabetes. Diabetes Obes. Metab. 2016, 18, 549–557. [Google Scholar] [CrossRef] [Green Version]
- Perwitz, N.; Wenzel, J.; Wagner, I.; Buning, J.; Drenckhan, M.; Zarse, K.; Ristow, M.; Lilienthal, W.; Lehnert, H.; Klein, J. Cannabinoid type 1 receptor blockade induces transdifferentiation towards a brown fat phenotype in white adipocytes. Diabetes Obes. Metab. 2010, 12, 158–166. [Google Scholar] [CrossRef]
- Rossi, F.; Punzo, F.; Umano, G.R.; Argenziano, M.; Miraglia Del Giudice, E. Role of Cannabinoids in Obesity. Int. J. Mol. Sci. 2018, 19, 2690. [Google Scholar] [CrossRef] [Green Version]
- Foltin, R.W.; Brady, J.V.; Fischman, M.W. Behavioral analysis of marijuana effects on food intake in humans. Pharmacol. Biochem. Behav. 1986, 25, 577–582. [Google Scholar] [CrossRef]
- Bedi, G.; Foltin, R.W.; Gunderson, E.W.; Rabkin, J.; Hart, C.L.; Comer, S.D.; Vosburg, S.K.; Haney, M. Efficacy and tolerability of high-dose dronabinol maintenance in HIV-positive marijuana smokers: A controlled laboratory study. Psychopharmacology 2010, 212, 675–686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haney, M.; Rabkin, J.; Gunderson, E.; Foltin, R.W. Dronabinol and marijuana in HIV(+) marijuana smokers: Acute effects on caloric intake and mood. Psychopharmacology 2005, 181, 170–178. [Google Scholar] [CrossRef] [PubMed]
- Jarbe, T.U.; DiPatrizio, N.V. Delta9-THC induced hyperphagia and tolerance assessment: Interactions between the CB1 receptor agonist delta9-THC and the CB1 receptor antagonist SR-141716 (rimonabant) in rats. Behav. Pharmacol. 2005, 16, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Colombo, G.; Agabio, R.; Diaz, G.; Lobina, C.; Reali, R.; Gessa, G.L. Appetite suppression and weight loss after the cannabinoid antagonist SR 141716. Life Sci. 1998, 63, PL113–PL117. [Google Scholar] [CrossRef]
- McLaughlin, P.J.; Winston, K.M.; Limebeer, C.L.; Parker, L.A.; Makriyannis, A.; Salamone, J.D. The cannabinoid CB1 antagonist AM 251 produces food avoidance and behaviors associated with nausea but does not impair feeding efficiency in rats. Psychopharmacology 2005, 180, 286–293. [Google Scholar] [CrossRef]
- Le Strat, Y.; Le Foll, B. Obesity and cannabis use: Results from 2 representative national surveys. Am. J. Epidemiol. 2011, 174, 929–933. [Google Scholar] [CrossRef] [Green Version]
- Hayatbakhsh, M.R.; O’Callaghan, M.J.; Mamun, A.A.; Williams, G.M.; Clavarino, A.; Najman, J.M. Cannabis use and obesity and young adults. Am. J. Drug Alcohol Abus. 2010, 36, 350–356. [Google Scholar] [CrossRef]
- Smit, E.; Crespo, C.J. Dietary intake and nutritional status of US adult marijuana users: Results from the Third National Health and Nutrition Examination Survey. Public Health Nutr. 2001, 4, 781–786. [Google Scholar] [CrossRef] [Green Version]
- Racine, C.; Vincent, M.; Rogers, A.; Donat, M.; Ojike, N.I.; Necola, O.; Yousef, E.; Masters-Israilov, A.; Jean-Louis, G.; McFarlane, S.I. Metabolic Effects of Marijuana Use among Blacks. J. Dis. Glob. Health 2015, 4, 9–16. [Google Scholar]
- Le Foll, B.; Trigo, J.M.; Sharkey, K.A.; Le Strat, Y. Cannabis and Delta9-tetrahydrocannabinol (THC) for weight loss? Med. Hypotheses 2013, 80, 564–567. [Google Scholar] [CrossRef]
- Moreira, F.A.; Crippa, J.A. The psychiatric side-effects of rimonabant. Rev. Bras. De Psiquiatr. 2009, 31, 145–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rusznak, K.; Cseko, K.; Varga, Z.; Csabai, D.; Bona, A.; Mayer, M.; Kozma, Z.; Helyes, Z.; Czeh, B. Long-Term Stress and Concomitant Marijuana Smoke Exposure Affect Physiology, Behavior and Adult Hippocampal Neurogenesis. Front. Pharmacol. 2018, 9, 786. [Google Scholar] [CrossRef] [PubMed]
- Kunz, I.; Meier, M.K.; Bourson, A.; Fisseha, M.; Schilling, W. Effects of rimonabant, a cannabinoid CB1 receptor ligand, on energy expenditure in lean rats. Int. J. Obes. (Lond.) 2008, 32, 863–870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richey, J.M.; Woolcott, O.O.; Stefanovski, D.; Harrison, L.N.; Zheng, D.; Lottati, M.; Hsu, I.R.; Kim, S.P.; Kabir, M.; Catalano, K.J.; et al. Rimonabant prevents additional accumulation of visceral and subcutaneous fat during high-fat feeding in dogs. Am. J. Physiol. Endocrinol. Metab. 2009, 296, E1311–E1318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herling, A.W.; Kilp, S.; Juretschke, H.P.; Neumann-Haefelin, C.; Gerl, M.; Kramer, W. Reversal of visceral adiposity in candy-diet fed female Wistar rats by the CB1 receptor antagonist rimonabant. Int. J. Obes. (Lond.) 2008, 32, 1363–1372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gobshtis, N.; Ben-Shabat, S.; Fride, E. Antidepressant-induced undesirable weight gain: Prevention with rimonabant without interference with behavioral effectiveness. Eur. J. Pharm. 2007, 554, 155–163. [Google Scholar] [CrossRef]
- Dore, R.; Valenza, M.; Wang, X.; Rice, K.C.; Sabino, V.; Cottone, P. The inverse agonist of CB1 receptor SR141716 blocks compulsive eating of palatable food. Addict. Biol. 2014, 19, 849–861. [Google Scholar] [CrossRef] [Green Version]
- Bajzer, M.; Olivieri, M.; Haas, M.K.; Pfluger, P.T.; Magrisso, I.J.; Foster, M.T.; Tschop, M.H.; Krawczewski-Carhuatanta, K.A.; Cota, D.; Obici, S. Cannabinoid receptor 1 (CB1) antagonism enhances glucose utilisation and activates brown adipose tissue in diet-induced obese mice. Diabetologia 2011, 54, 3121–3131. [Google Scholar] [CrossRef] [Green Version]
- Boon, M.R.; Kooijman, S.; van Dam, A.D.; Pelgrom, L.R.; Berbee, J.F.; Visseren, C.A.; van Aggele, R.C.; van den Hoek, A.M.; Sips, H.C.; Lombes, M.; et al. Peripheral cannabinoid 1 receptor blockade activates brown adipose tissue and diminishes dyslipidemia and obesity. FASEB J. 2014, 28, 5361–5375. [Google Scholar] [CrossRef] [Green Version]
- Karlsson, C.; Hjorth, S.; Karpefors, M.; Hansson, G.I.; Carlsson, B. Baseline anandamide levels and body weight impact the weight loss effect of CB1 receptor antagonism in male rats. Endocrinology 2015, 156, 1237–1241. [Google Scholar] [CrossRef] [Green Version]
- Lazzari, P.; Serra, V.; Marcello, S.; Pira, M.; Mastinu, A. Metabolic side effects induced by olanzapine treatment are neutralized by CB1 receptor antagonist compounds co-administration in female rats. Eur. Neuropsychopharmacol. 2017, 27, 667–678. [Google Scholar] [CrossRef] [PubMed]
- Muller, G.A.; Herling, A.W.; Wied, S.; Muller, T.D. CB1 Receptor-Dependent and Independent Induction of Lipolysis in Primary Rat Adipocytes by the Inverse Agonist Rimonabant (SR141716A). Molecules 2020, 25, 896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, E.; Kim, D.H.; Yang, H.; Lee, D.H.; Bae, S.H.; Park, C.Y. CB1 receptor blockade ameliorates hepatic fat infiltration and inflammation and increases Nrf2-AMPK pathway in a rat model of severely uncontrolled diabetes. PLoS ONE 2018, 13, e0206152. [Google Scholar] [CrossRef] [PubMed]
- Mehrpouya-Bahrami, P.; Chitrala, K.N.; Ganewatta, M.S.; Tang, C.; Murphy, E.A.; Enos, R.T.; Velazquez, K.T.; McCellan, J.; Nagarkatti, M.; Nagarkatti, P. Blockade of CB1 cannabinoid receptor alters gut microbiota and attenuates inflammation and diet-induced obesity. Sci. Rep. 2017, 7, 15645. [Google Scholar] [CrossRef]
- Zhang, L.N.; Gamo, Y.; Sinclair, R.; Mitchell, S.E.; Morgan, D.G.; Clapham, J.C.; Speakman, J.R. Effects of chronic oral rimonabant administration on energy budgets of diet-induced obese C57BL/6 mice. Obesity 2012, 20, 954–962. [Google Scholar] [CrossRef]
- Wei, L.W.; Yuan, Z.Q.; Zhao, M.D.; Gu, C.W.; Han, J.H.; Fu, L. Inhibition of Cannabinoid Receptor 1 Can Influence the Lipid Metabolism in Mice with Diet-Induced Obesity. Biochem. (Mosc) 2018, 83, 1279–1287. [Google Scholar] [CrossRef]
- Mehrpouya-Bahrami, P.; Miranda, K.; Singh, N.P.; Zumbrun, E.E.; Nagarkatti, M.; Nagarkatti, P.S. Role of microRNA in CB1 antagonist-mediated regulation of adipose tissue macrophage polarization and chemotaxis during diet-induced obesity. J. Biol. Chem. 2019, 294, 7669–7681. [Google Scholar] [CrossRef]
- Chen, B.; Hu, N. Rimonabant improves metabolic parameters partially attributed to restoration of high voltage-activated Ca2+ channels in skeletal muscle in HFD-fed mice. Braz. J. Med. Biol. Res. 2017, 50, e6141. [Google Scholar] [CrossRef] [Green Version]
- Fong, T.M.; Guan, X.M.; Marsh, D.J.; Shen, C.P.; Stribling, D.S.; Rosko, K.M.; Lao, J.; Yu, H.; Feng, Y.; Xiao, J.C.; et al. Antiobesity efficacy of a novel cannabinoid-1 receptor inverse agonist, N-[(1S,2S)-3-(4-chlorophenyl)-2-(3-cyanophenyl)-1-methylpropyl]-2-methyl-2-[[5-(trifluoromethyl)pyridin-2-yl]oxy]propanamide (MK-0364), in rodents. J. Pharm. Exp. 2007, 321, 1013–1022. [Google Scholar] [CrossRef]
- Martin-Garcia, E.; Burokas, A.; Martin, M.; Berrendero, F.; Rubi, B.; Kiesselbach, C.; Heyne, A.; Gispert, J.D.; Millan, O.; Maldonado, R. Central and peripheral consequences of the chronic blockade of CB1 cannabinoid receptor with rimonabant or taranabant. J. Neurochem. 2010, 112, 1338–13351. [Google Scholar] [CrossRef]
- Hildebrandt, A.L.; Kelly-Sullivan, D.M.; Black, S.C. Antiobesity effects of chronic cannabinoid CB1 receptor antagonist treatment in diet-induced obese mice. Eur. J. Pharm. 2003, 462, 125–132. [Google Scholar] [CrossRef]
- Chambers, A.P.; Sharkey, K.A.; Koopmans, H.S. Cannabinoid (CB)1 receptor antagonist, AM 251, causes a sustained reduction of daily food intake in the rat. Physiol. Behav. 2004, 82, 863–869. [Google Scholar] [CrossRef]
- Riedel, G.; Fadda, P.; McKillop-Smith, S.; Pertwee, R.G.; Platt, B.; Robinson, L. Synthetic and plant-derived cannabinoid receptor antagonists show hypophagic properties in fasted and non-fasted mice. Br. J. Pharm. 2009, 156, 1154–1166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Judge, M.K.; Zhang, Y.; Scarpace, P.J. Responses to the cannabinoid receptor-1 antagonist, AM251, are more robust with age and with high-fat feeding. J. Endocrinol. 2009, 203, 281–290. [Google Scholar] [CrossRef] [Green Version]
- Merroun, I.; Sanchez-Gonzalez, C.; Martinez, R.; Lopez-Chaves, C.; Porres, J.M.; Aranda, P.; Llopis, J.; Galisteo, M.; Zarzuelo, A.; Errami, M.; et al. Novel effects of the cannabinoid inverse agonist AM 251 on parameters related to metabolic syndrome in obese Zucker rats. Metabolism 2013, 62, 1641–1650. [Google Scholar] [CrossRef]
- Wierucka-Rybak, M.; Wolak, M.; Bojanowska, E. The effects of leptin in combination with a cannabinoid receptor 1 antagonist, AM 251, or cannabidiol on food intake and body weight in rats fed a high-fat or a free-choice high sugar diet. J. Physiol. Pharm. 2014, 65, 487–496. [Google Scholar]
- Wierucka-Rybak, M.; Wolak, M.; Juszczak, M.; Drobnik, J.; Bojanowska, E. The inhibitory effect of combination treatment with leptin and cannabinoid CB1 receptor agonist on food intake and body weight gain is mediated by serotonin 1B and 2C receptors. J. Physiol. Pharm. 2016, 67, 457–463. [Google Scholar]
- Bowles, N.P.; Karatsoreos, I.N.; Li, X.; Vemuri, V.K.; Wood, J.A.; Li, Z.; Tamashiro, K.L.; Schwartz, G.J.; Makriyannis, A.M.; Kunos, G.; et al. A peripheral endocannabinoid mechanism contributes to glucocorticoid-mediated metabolic syndrome. Proc. Natl. Acad. Sci. USA 2015, 112, 285–290. [Google Scholar] [CrossRef] [Green Version]
- Merroun, I.; El Mlili, N.; Martinez, R.; Porres, J.M.; Llopis, J.; Ahabrach, H.; Aranda, P.; Sanchez Gonzalez, C.; Errami, M.; Lopez-Jurado, M. Interaction between orexin A and cannabinoid system in the lateral hypothalamus of rats and effects of subchronic intraperitoneal administration of cannabinoid receptor inverse agonist on food intake and the nutritive utilization of protein. J. Physiol. Pharm. 2015, 66, 181–190. [Google Scholar]
- Jenkin, K.A.; O’Keefe, L.; Simcocks, A.C.; Grinfeld, E.; Mathai, M.L.; McAinch, A.J.; Hryciw, D.H. Chronic administration of AM251 improves albuminuria and renal tubular structure in obese rats. J. Endocrinol. 2015, 225, 113–124. [Google Scholar] [CrossRef] [Green Version]
- Miranda, K.; Mehrpouya-Bahrami, P.; Nagarkatti, P.S.; Nagarkatti, M. Cannabinoid Receptor 1 Blockade Attenuates Obesity and Adipose Tissue Type 1 Inflammation Through miR-30e-5p Regulation of Delta-Like-4 in Macrophages and Consequently Downregulation of Th1 Cells. Front. Immunol 2019, 10, 1049. [Google Scholar] [CrossRef] [PubMed]
- Takano, A.; Gulyas, B.; Varnas, K.; Little, P.B.; Noerregaard, P.K.; Jensen, N.O.; Elling, C.E.; Halldin, C. Low brain CB1 receptor occupancy by a second generation CB1 receptor antagonist TM38837 in comparison with rimonabant in nonhuman primates: A PET study. Synapse 2014, 68, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Micale, V.; Drago, F.; Noerregaard, P.K.; Elling, C.E.; Wotjak, C.T. The Cannabinoid CB1 Antagonist TM38837 With Limited Penetrance to the Brain Shows Reduced Fear-Promoting Effects in Mice. Front. Pharmacol. 2019, 10, 207. [Google Scholar] [CrossRef] [PubMed]
- Han, J.H.; Shin, H.; Park, J.Y.; Rho, J.G.; Son, D.H.; Kim, K.W.; Seong, J.K.; Yoon, S.H.; Kim, W. A novel peripheral cannabinoid 1 receptor antagonist, AJ5012, improves metabolic outcomes and suppresses adipose tissue inflammation in obese mice. FASEB J. 2019, 33, 4314–4326. [Google Scholar] [CrossRef] [PubMed]
- Han, J.H.; Shin, H.; Rho, J.G.; Kim, J.E.; Son, D.H.; Yoon, J.; Lee, Y.J.; Park, J.H.; Song, B.J.; Choi, C.S.; et al. Peripheral cannabinoid 1 receptor blockade mitigates adipose tissue inflammation via NLRP3 inflammasome in mouse models of obesity. Diabetes Obes. Metab. 2018, 20, 2179–2189. [Google Scholar] [CrossRef] [PubMed]
- Tam, J.; Cinar, R.; Liu, J.; Godlewski, G.; Wesley, D.; Jourdan, T.; Szanda, G.; Mukhopadhyay, B.; Chedester, L.; Liow, J.S.; et al. Peripheral cannabinoid-1 receptor inverse agonism reduces obesity by reversing leptin resistance. Cell Metab. 2012, 16, 167–179. [Google Scholar] [CrossRef] [Green Version]
- Udi, S.; Hinden, L.; Ahmad, M.; Drori, A.; Iyer, M.R.; Cinar, R.; Herman-Edelstein, M.; Tam, J. Dual inhibition of cannabinoid CB1 receptor and inducible NOS attenuates obesity-induced chronic kidney disease. Br. J. Pharm. 2020, 177, 110–127. [Google Scholar] [CrossRef] [Green Version]
- Kale, V.P.; Gibbs, S.; Taylor, J.A.; Zmarowski, A.; Novak, J.; Patton, K.; Sparrow, B.; Gorospe, J.; Anand, S.; Cinar, R.; et al. Preclinical toxicity evaluation of JD5037, a peripherally restricted CB1 receptor inverse agonist, in rats and dogs for treatment of nonalcoholic steatohepatitis. Regul. Toxicol. Pharm. 2019, 109, 104483. [Google Scholar] [CrossRef]
- Hsiao, W.C.; Shia, K.S.; Wang, Y.T.; Yeh, Y.N.; Chang, C.P.; Lin, Y.; Chen, P.H.; Wu, C.H.; Chao, Y.S.; Hung, M.S. A novel peripheral cannabinoid receptor 1 antagonist, BPR0912, reduces weight independently of food intake and modulates thermogenesis. Diabetes Obes. Metab. 2015, 17, 495–504. [Google Scholar] [CrossRef]
- Chen, W.; Shui, F.; Liu, C.; Zhou, X.; Li, W.; Zheng, Z.; Fu, W.; Wang, L. Novel Peripherally Restricted Cannabinoid 1 Receptor Selective Antagonist TXX-522 with Prominent Weight-Loss Efficacy in Diet Induced Obese Mice. Front. Pharmacol. 2017, 8, 707. [Google Scholar] [CrossRef] [Green Version]
- Mendez-Diaz, M.; Amancio-Belmont, O.; Hernandez-Vazquez, E.; Ruiz-Contreras, A.E.; Hernandez-Luis, F.; Prospero-Garcia, O. ENP11, a potential CB1R antagonist, induces anorexia in rats. Pharmacol. Biochem. Behav. 2015, 135, 177–181. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.M.; Greco, M.N.; Macielag, M.J.; Teleha, C.A.; DesJarlais, R.L.; Tang, Y.; Ho, G.; Hou, C.; Chen, C.; Zhao, S.; et al. 6-Benzhydryl-4-amino-quinolin-2-ones as Potent Cannabinoid Type 1 (CB1) Receptor Inverse Agonists and Chemical Modifications for Peripheral Selectivity. J. Med. Chem 2018, 61, 10276–10298. [Google Scholar] [CrossRef] [PubMed]
- Aceto, M.D.; Scates, S.M.; Martin, B.B. Spontaneous and precipitated withdrawal with a synthetic cannabinoid, WIN 55212-2. Eur. J. Pharm. 2001, 416, 75–81. [Google Scholar] [CrossRef]
- Abalo, R.; Cabezos, P.A.; Lopez-Miranda, V.; Vera, G.; Gonzalez, C.; Castillo, M.; Fernandez-Pujol, R.; Martin, M.I. Selective lack of tolerance to delayed gastric emptying after daily administration of WIN 55,212-2 in the rat. Neurogastroenterol. Motil. 2009, 21, 1002–e1080. [Google Scholar] [CrossRef]
- Abalo, R.; Cabezos, P.A.; Vera, G.; Lopez-Perez, A.E.; Martin, M.I. Cannabinoids may worsen gastric dysmotility induced by chronic cisplatin in the rat. Neurogastroenterol. Motil. 2013, 25, 373–382, e292. [Google Scholar] [CrossRef]
- Radziszewska, E.; Wolak, M.; Bojanowska, E. Concurrent pharmacological modification of cannabinoid-1 and glucagon-like peptide-1 receptor activity affects feeding behavior and body weight in rats fed a free-choice, high-carbohydrate diet. Behav. Pharmacol. 2014, 25, 53–60. [Google Scholar] [CrossRef]
- Radziszewska, E.; Bojanowska, E. Effects of glucagon-like peptide-1 receptor stimulation and blockade on food consumption and body weight in rats treated with a cannabinoid CB1 receptor agonist WIN 55,212-2. Med. Sci. Monit. Basic Res. 2013, 19, 6–11. [Google Scholar] [CrossRef] [Green Version]
- Segev, A.; Rubin, A.S.; Abush, H.; Richter-Levin, G.; Akirav, I. Cannabinoid receptor activation prevents the effects of chronic mild stress on emotional learning and LTP in a rat model of depression. Neuropsychopharmacology 2014, 39, 919–933. [Google Scholar] [CrossRef]
- Jahanabadi, S.; Hadian, M.R.; Shamsaee, J.; Tavangar, S.M.; Abdollahi, A.; Dehpour, A.; Mehr, S.E. The effect of spinally administered WIN 55,212-2, a cannabinoid agonist, on thermal pain sensitivity in diabetic rats. Iran. J. Basic Med. Sci. 2016, 19, 394–401. [Google Scholar]
- Argueta, D.A.; Perez, P.A.; Makriyannis, A.; DiPatrizio, N.V. Cannabinoid CB1 Receptors Inhibit Gut-Brain Satiation Signaling in Diet-Induced Obesity. Front. Physiol. 2019, 10, 704. [Google Scholar] [CrossRef] [Green Version]
- de Sousa Cavalcante, M.L.; Silva, M.S.; Cavalcante, A.K.M.; de Oliveira Santos, R.; Nunes, D.D.T.; Busquets, S.; Argiles, J.M.; Seelander, M.; de Matos Neto, E.M.; Dos Santos, A.A.; et al. Win 55,212-2, atenolol and subdiaphragmatic vagotomy prevent acceleration of gastric emptying induced by cachexia via Yoshida-AH-130 cells in rats. Eur. J. Pharm. 2020, 877, 173087. [Google Scholar] [CrossRef] [PubMed]
- Dalton, V.S.; Wang, H.; Zavitsanou, K. HU210-induced downregulation in cannabinoid CB1 receptor binding strongly correlates with body weight loss in the adult rat. Neurochem. Res. 2009, 34, 1343–1353. [Google Scholar] [CrossRef] [PubMed]
- Giuliani, D.; Ottani, A.; Ferrari, F. Effects of the cannabinoid receptor agonist, HU 210, on ingestive behaviour and body weight of rats. Eur. J. Pharm. 2000, 391, 275–279. [Google Scholar] [CrossRef]
- del Arco, I.; Munoz, R.; Rodriguez De Fonseca, F.; Escudero, L.; Martin-Calderon, J.L.; Navarro, M.; Villanua, M.A. Maternal exposure to the synthetic cannabinoid HU-210: Effects on the endocrine and immune systems of the adult male offspring. Neuroimmunomodulation 2000, 7, 16–26. [Google Scholar] [CrossRef]
- Scherma, M.; Satta, V.; Collu, R.; Boi, M.F.; Usai, P.; Fratta, W.; Fadda, P. Cannabinoid CB1 /CB2 receptor agonists attenuate hyperactivity and body weight loss in a rat model of activity-based anorexia. Br. J. Pharm. 2017, 174, 2682–2695. [Google Scholar] [CrossRef] [Green Version]
- Takeda, S.; Hirota, R.; Teradaira, S.; Takeda-Imoto, M.; Watanabe, K.; Toda, A.; Aramaki, H. Cannabidiol-2’,6’-dimethyl ether stimulates body weight gain in apolipoprotein E-deficient BALB/c. KOR/Stm Slc-Apoe(shl) mice. J. Toxicol. Sci. 2015, 40, 739–743. [Google Scholar] [CrossRef] [Green Version]
- Lewis, D.Y.; Brett, R.R. Activity-based anorexia in C57/BL6 mice: Effects of the phytocannabinoid, Delta9-tetrahydrocannabinol (THC) and the anandamide analogue, OMDM-2. Eur. Neuropsychopharmacol. 2010, 20, 622–631. [Google Scholar] [CrossRef]
- Verty, A.N.; Evetts, M.J.; Crouch, G.J.; McGregor, I.S.; Stefanidis, A.; Oldfield, B.J. The cannabinoid receptor agonist THC attenuates weight loss in a rodent model of activity-based anorexia. Neuropsychopharmacology 2011, 36, 1349–1358. [Google Scholar] [CrossRef] [Green Version]
- Wong, A.; Gunasekaran, N.; Hancock, D.P.; Denyer, G.S.; Meng, L.; Radford, J.L.; McGregor, I.S.; Arnold, J.C. The major plant-derived cannabinoid Delta(9)-tetrahydrocannabinol promotes hypertrophy and macrophage infiltration in adipose tissue. Horm. Metab. Res. 2012, 44, 105–113. [Google Scholar] [CrossRef]
- Coskun, Z.M.; Bolkent, S. Oxidative stress and cannabinoid receptor expression in type-2 diabetic rat pancreas following treatment with Delta(9)-THC. Cell Biochem. Funct. 2014, 32, 612–619. [Google Scholar] [CrossRef]
- Keeley, R.J.; Trow, J.; McDonald, R.J. Strain and sex differences in puberty onset and the effects of THC administration on weight gain and brain volumes. Neuroscience 2015, 305, 328–342. [Google Scholar] [CrossRef] [PubMed]
- Cluny, N.L.; Keenan, C.M.; Reimer, R.A.; Le Foll, B.; Sharkey, K.A. Prevention of Diet-Induced Obesity Effects on Body Weight and Gut Microbiota in Mice Treated Chronically with Delta9-Tetrahydrocannabinol. PLoS ONE 2015, 10, e0144270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcus, D.J.; Zee, M.L.; Davis, B.J.; Haskins, C.P.; Andrews, M.J.; Amin, R.; Henderson-Redmond, A.N.; Mackie, K.; Czyzyk, T.A.; Morgan, D.J. Mice Expressing a “Hyper-Sensitive” Form of the Cannabinoid Receptor 1 (CB1) Are Neither Obese Nor Diabetic. PLoS ONE 2016, 11, e0160462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beydogan, A.B.; Coskun, Z.M.; Bolkent, S. The protective effects of Delta(9) -tetrahydrocannabinol against inflammation and oxidative stress in rat liver with fructose-induced hyperinsulinemia. J. Pharm. Pharm. 2019, 71, 408–416. [Google Scholar] [CrossRef]
- Nguyen, J.D.; Creehan, K.M.; Kerr, T.M.; Taffe, M.A. Lasting effects of repeated (9) -tetrahydrocannabinol vapour inhalation during adolescence in male and female rats. Br. J. Pharm. 2020, 177, 188–203. [Google Scholar] [CrossRef]
- Ogden, S.B.; Malamas, M.S.; Makriyannis, A.; Eckel, L.A. The novel cannabinoid CB1 receptor agonist AM11101 increases food intake in female rats. Br. J. Pharm. 2019, 176, 3972–3982. [Google Scholar] [CrossRef]
- Pavon, F.J.; Bilbao, A.; Hernandez-Folgado, L.; Cippitelli, A.; Jagerovic, N.; Abellan, G.; Rodriguez-Franco, M.A.; Serrano, A.; Macias, M.; Gomez, R.; et al. Antiobesity effects of the novel in vivo neutral cannabinoid receptor antagonist 5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-3-hexyl-1H-1,2,4-triazole--LH 21. Neuropharmacology 2006, 51, 358–366. [Google Scholar] [CrossRef]
- Alonso, M.; Serrano, A.; Vida, M.; Crespillo, A.; Hernandez-Folgado, L.; Jagerovic, N.; Goya, P.; Reyes-Cabello, C.; Perez-Valero, V.; Decara, J.; et al. Anti-obesity efficacy of LH-21, a cannabinoid CB(1) receptor antagonist with poor brain penetration, in diet-induced obese rats. Br. J. Pharm. 2012, 165, 2274–2291. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.Z.; Frassetto, A.; Lao, J.Z.; Huang, R.R.; Xiao, J.C.; Clements, M.J.; Walsh, T.F.; Hale, J.J.; Wang, J.; Tong, X.; et al. Pharmacological evaluation of LH-21, a newly discovered molecule that binds to cannabinoid CB1 receptor. Eur. J. Pharm. 2008, 584, 338–342. [Google Scholar] [CrossRef]
- Romero-Zerbo, S.Y.; Ruz-Maldonado, I.; Espinosa-Jimenez, V.; Rafacho, A.; Gomez-Conde, A.I.; Sanchez-Salido, L.; Cobo-Vuilleumier, N.; Gauthier, B.R.; Tinahones, F.J.; Persaud, S.J.; et al. The cannabinoid ligand LH-21 reduces anxiety and improves glucose handling in diet-induced obese pre-diabetic mice. Sci. Rep. 2017, 7, 3946. [Google Scholar] [CrossRef] [Green Version]
- Dong, Z.; Gong, H.; Chen, Y.; Wu, H.; Wu, J.; Deng, Y.; Song, X. LH-21, A Peripheral Cannabinoid Receptor 1 Antagonist, Exerts Favorable Metabolic Modulation Including Antihypertensive Effect in KKAy Mice by Regulating Inflammatory Cytokines and Adipokines on Adipose Tissue. Front. Endocrinol. (Lausanne) 2018, 9, 167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cluny, N.L.; Vemuri, V.K.; Chambers, A.P.; Limebeer, C.L.; Bedard, H.; Wood, J.T.; Lutz, B.; Zimmer, A.; Parker, L.A.; Makriyannis, A.; et al. A novel peripherally restricted cannabinoid receptor antagonist, AM6545, reduces food intake and body weight, but does not cause malaise, in rodents. Br. J. Pharm. 2010, 161, 629–642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tam, J.; Vemuri, V.K.; Liu, J.; Batkai, S.; Mukhopadhyay, B.; Godlewski, G.; Osei-Hyiaman, D.; Ohnuma, S.; Ambudkar, S.V.; Pickel, J.; et al. Peripheral CB1 cannabinoid receptor blockade improves cardiometabolic risk in mouse models of obesity. J. Clin. Investig. 2010, 120, 2953–2966. [Google Scholar] [CrossRef] [Green Version]
- Ma, H.; Zhang, G.; Mou, C.; Fu, X.; Chen, Y. Peripheral CB1 Receptor Neutral Antagonist, AM6545, Ameliorates Hypometabolic Obesity and Improves Adipokine Secretion in Monosodium Glutamate Induced Obese Mice. Front. Pharmacol. 2018, 9, 156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chambers, A.P.; Vemuri, V.K.; Peng, Y.; Wood, J.T.; Olszewska, T.; Pittman, Q.J.; Makriyannis, A.; Sharkey, K.A. A neutral CB1 receptor antagonist reduces weight gain in rat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007, 293, R2185–R2193. [Google Scholar] [CrossRef]
- Sink, K.S.; McLaughlin, P.J.; Wood, J.A.; Brown, C.; Fan, P.; Vemuri, V.K.; Peng, Y.; Olszewska, T.; Thakur, G.A.; Makriyannis, A.; et al. The novel cannabinoid CB1 receptor neutral antagonist AM4113 suppresses food intake and food-reinforced behavior but does not induce signs of nausea in rats. Neuropsychopharmacology 2008, 33, 946–955. [Google Scholar] [CrossRef] [Green Version]
- Cluny, N.L.; Chambers, A.P.; Vemuri, V.K.; Wood, J.T.; Eller, L.K.; Freni, C.; Reimer, R.A.; Makriyannis, A.; Sharkey, K.A. The neutral cannabinoid CB(1) receptor antagonist AM4113 regulates body weight through changes in energy intake in the rat. Pharmacol. Biochem. Behav. 2011, 97, 537–543. [Google Scholar] [CrossRef] [Green Version]
- Gueye, A.B.; Pryslawsky, Y.; Trigo, J.M.; Poulia, N.; Delis, F.; Antoniou, K.; Loureiro, M.; Laviolette, S.R.; Vemuri, K.; Makriyannis, A.; et al. The CB1 Neutral Antagonist AM4113 Retains the Therapeutic Efficacy of the Inverse Agonist Rimonabant for Nicotine Dependence and Weight Loss with Better Psychiatric Tolerability. Int. J. Neuropsychopharmacol. 2016, 19. [Google Scholar] [CrossRef] [Green Version]
- Balla, A.; Dong, B.; Shilpa, B.M.; Vemuri, K.; Makriyannis, A.; Pandey, S.C.; Sershen, H.; Suckow, R.F.; Vinod, K.Y. Cannabinoid-1 receptor neutral antagonist reduces binge-like alcohol consumption and alcohol-induced accumbal dopaminergic signaling. Neuropharmacology 2018, 131, 200–208. [Google Scholar] [CrossRef]
- Wargent, E.T.; Zaibi, M.S.; Silvestri, C.; Hislop, D.C.; Stocker, C.J.; Stott, C.G.; Guy, G.W.; Duncan, M.; Di Marzo, V.; Cawthorne, M.A. The cannabinoid Delta(9)-tetrahydrocannabivarin (THCV) ameliorates insulin sensitivity in two mouse models of obesity. Nutr. Diabetes 2013, 3, e68. [Google Scholar] [CrossRef]
- Mastinu, A.; Pira, M.; Pinna, G.A.; Pisu, C.; Casu, M.A.; Reali, R.; Marcello, S.; Murineddu, G.; Lazzari, P. NESS06SM reduces body weight with an improved profile relative to SR141716A. Pharm. Res. 2013, 74, 94–108. [Google Scholar] [CrossRef] [PubMed]
- Fois, G.R.; Fattore, L.; Murineddu, G.; Salis, A.; Pintore, G.; Asproni, B.; Pinna, G.A.; Diana, M. The novel cannabinoid antagonist SM-11 reduces hedonic aspect of food intake through a dopamine-dependent mechanism. Pharm. Res. 2016, 113, 108–115. [Google Scholar] [CrossRef]
- Seltzman, H.H.; Maitra, R.; Bortoff, K.; Henson, J.; Reggio, P.H.; Wesley, D.; Tam, J. Metabolic Profiling of CB1 Neutral Antagonists. Methods Enzym. 2017, 593, 199–215. [Google Scholar] [CrossRef] [Green Version]
- Greenberg, I.; Kuehnle, J.; Mendelson, J.H.; Bernstein, J.G. Effects of marihuana use on body weight and caloric intake in humans. Psychopharmacology 1976, 49, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Foltin, R.W.; Fischman, M.W.; Byrne, M.F. Effects of smoked marijuana on food intake and body weight of humans living in a residential laboratory. Appetite 1988, 11, 1–14. [Google Scholar] [CrossRef]
- Warren, M.; Frost-Pineda, K.; Gold, M. Body mass index and marijuana use. J. Addict. Dis. 2005, 24, 95–100. [Google Scholar] [CrossRef]
- Rodondi, N.; Pletcher, M.J.; Liu, K.; Hulley, S.B.; Sidney, S.; Coronary Artery Risk Development in Young Adults, S. Marijuana use, diet, body mass index, and cardiovascular risk factors (from the CARDIA study). Am. J. Cardiol. 2006, 98, 478–484. [Google Scholar] [CrossRef]
- Penner, E.A.; Buettner, H.; Mittleman, M.A. The impact of marijuana use on glucose, insulin, and insulin resistance among US adults. Am. J. Med. 2013, 126, 583–589. [Google Scholar] [CrossRef]
- Huang, D.Y.; Lanza, H.I.; Anglin, M.D. Association between adolescent substance use and obesity in young adulthood: A group-based dual trajectory analysis. Addict. Behav. 2013, 38, 2653–2660. [Google Scholar] [CrossRef] [Green Version]
- Muniyappa, R.; Sable, S.; Ouwerkerk, R.; Mari, A.; Gharib, A.M.; Walter, M.; Courville, A.; Hall, G.; Chen, K.Y.; Volkow, N.D.; et al. Metabolic effects of chronic cannabis smoking. Diabetes Care 2013, 36, 2415–2422. [Google Scholar] [CrossRef] [Green Version]
- Cobb, S.; Bazargan, M.; Smith, J.; Del Pino, H.E.; Dorrah, K.; Assari, S. Marijuana Use among African American Older Adults in Economically Challenged Areas of South Los Angeles. Brain Sci. 2019, 9, 166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ngueta, G.; Belanger, R.E.; Laouan-Sidi, E.A.; Lucas, M. Cannabis use in relation to obesity and insulin resistance in the Inuit population. Obesity 2015, 23, 290–295. [Google Scholar] [CrossRef] [PubMed]
- Ross, J.M.; Graziano, P.; Pacheco-Colon, I.; Coxe, S.; Gonzalez, R. Decision-Making Does not Moderate the Association between Cannabis Use and Body Mass Index among Adolescent Cannabis Users. J. Int. Neuropsychol. Soc. Jins 2016, 22, 944–949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alshaarawy, O.; Anthony, J.C. Are cannabis users less likely to gain weight? Results from a national 3-year prospective study. Int. J. Epidemiol. 2019, 48, 1695–1700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meier, M.H.; Pardini, D.; Beardslee, J.; Matthews, K.A. Associations Between Cannabis Use and Cardiometabolic Risk Factors: A Longitudinal Study of Men. Psychosom. Med. 2019, 81, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Bancks, M.P.; Auer, R.; Carr, J.J.; Goff, D.C., Jr.; Kiefe, C.; Rana, J.S.; Reis, J.; Sidney, S.; Terry, J.G.; Schreiner, P.J. Self-reported marijuana use over 25 years and abdominal adiposity: The Coronary Artery Risk Development in Young Adults (CARDIA) Study. Addiction 2018, 113, 689–698. [Google Scholar] [CrossRef]
- Thompson, C.A.; Hay, J.W. Estimating the association between metabolic risk factors and marijuana use in U.S. adults using data from the continuous National Health and Nutrition Examination Survey. Ann. Epidemiol. 2015, 25, 486–491. [Google Scholar] [CrossRef]
- N’Goran, A.A.; Studer, J.; Deline, S.; Henchoz, Y.; Baggio, S.; Mohler-Kuo, M.; Daeppen, J.B.; Gmel, G. Bidirectional relationship between the body mass index and substance use in young men. Subst. Abus. 2016, 37, 190–196. [Google Scholar] [CrossRef]
- Jin, L.Z.; Rangan, A.; Mehlsen, J.; Andersen, L.B.; Larsen, S.C.; Heitmann, B.L. Association Between Use of Cannabis in Adolescence and Weight Change into Midlife. PLoS ONE 2017, 12, e0168897. [Google Scholar] [CrossRef]
- Vazquez-Bourgon, J.; Setien-Suero, E.; Pilar-Cuellar, F.; Romero-Jimenez, R.; Ortiz-Garcia de la Foz, V.; Castro, E.; Crespo-Facorro, B. Effect of cannabis on weight and metabolism in first-episode non-affective psychosis: Results from a three-year longitudinal study. J. Psychopharmacol. 2019, 33, 284–294. [Google Scholar] [CrossRef]
- Vazquez-Bourgon, J.; Ortiz-Garcia de la Foz, V.; Suarez-Pereira, I.; Iruzubieta, P.; Arias-Loste, M.T.; Setien-Suero, E.; Ayesa-Arriola, R.; Gomez-Revuelta, M.; Crespo, J.; Crespo Facorro, B. Cannabis consumption and non-alcoholic fatty liver disease. A three years longitudinal study in first episode non-affective psychosis patients. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2019, 95, 109677. [Google Scholar] [CrossRef] [PubMed]
- Scheffler, F.; Kilian, S.; Chiliza, B.; Asmal, L.; Phahladira, L.; du Plessis, S.; Kidd, M.; Murray, R.M.; Di Forti, M.; Seedat, S.; et al. Effects of cannabis use on body mass, fasting glucose and lipids during the first 12months of treatment in schizophrenia spectrum disorders. Schizophr. Res. 2018, 199, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Bruins, J.; Pijnenborg, M.G.; Bartels-Velthuis, A.A.; Visser, E.; van den Heuvel, E.R.; Bruggeman, R.; Jorg, F. Cannabis use in people with severe mental illness: The association with physical and mental health--a cohort study. A Pharmacotherapy Monitoring and Outcome Survey study. J. Psychopharmacol. 2016, 30, 354–362. [Google Scholar] [CrossRef] [PubMed]
- Kindred, J.H.; Li, K.; Ketelhut, N.B.; Proessl, F.; Fling, B.W.; Honce, J.M.; Shaffer, W.R.; Rudroff, T. Cannabis use in people with Parkinson’s disease and Multiple Sclerosis: A web-based investigation. Complement. Ther. Med. 2017, 33, 99–104. [Google Scholar] [CrossRef]
- Ngueta, G.; Ndjaboue, R. Lifetime marijuana use in relation to insulin resistance in lean, overweight, and obese US adults. J. Diabetes 2020, 12, 38–47. [Google Scholar] [CrossRef]
- Danielsson, A.K.; Lundin, A.; Yaregal, A.; Ostenson, C.G.; Allebeck, P.; Agardh, E.E. Cannabis Use as Risk or Protection for Type 2 Diabetes: A Longitudinal Study of 18 000 Swedish Men and Women. J. Diabetes Res. 2016, 2016, 6278709. [Google Scholar] [CrossRef] [Green Version]
- Van Gaal, L.F.; Rissanen, A.M.; Scheen, A.J.; Ziegler, O.; Rossner, S.; Group, R.I.-E.S. Effects of the cannabinoid-1 receptor blocker rimonabant on weight reduction and cardiovascular risk factors in overweight patients: 1-year experience from the RIO-Europe study. Lancet 2005, 365, 1389–1397. [Google Scholar] [CrossRef]
- Van Gaal, L.F.; Scheen, A.J.; Rissanen, A.M.; Rossner, S.; Hanotin, C.; Ziegler, O.; Group, R.I.-E.S. Long-term effect of CB1 blockade with rimonabant on cardiometabolic risk factors: Two year results from the RIO-Europe Study. Eur. Heart J. 2008, 29, 1761–1771. [Google Scholar] [CrossRef]
- Pi-Sunyer, F.X.; Aronne, L.J.; Heshmati, H.M.; Devin, J.; Rosenstock, J.; Group, R.I.-N.A.S. Effect of rimonabant, a cannabinoid-1 receptor blocker, on weight and cardiometabolic risk factors in overweight or obese patients: RIO-North America: A randomized controlled trial. JAMA 2006, 295, 761–775. [Google Scholar] [CrossRef] [Green Version]
- Van Gaal, L.; Pi-Sunyer, X.; Despres, J.P.; McCarthy, C.; Scheen, A. Efficacy and safety of rimonabant for improvement of multiple cardiometabolic risk factors in overweight/obese patients: Pooled 1-year data from the Rimonabant in Obesity (RIO) program. Diabetes Care 2008, 31 (Suppl. 2), S229–S240. [Google Scholar] [CrossRef] [Green Version]
- Bergholm, R.; Sevastianova, K.; Santos, A.; Kotronen, A.; Urjansson, M.; Hakkarainen, A.; Lundbom, J.; Tiikkainen, M.; Rissanen, A.; Lundbom, N.; et al. CB(1) blockade-induced weight loss over 48 weeks decreases liver fat in proportion to weight loss in humans. Int. J. Obes. (Lond.) 2013, 37, 699–703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Topol, E.J.; Bousser, M.G.; Fox, K.A.; Creager, M.A.; Despres, J.P.; Easton, J.D.; Hamm, C.W.; Montalescot, G.; Steg, P.G.; Pearson, T.A.; et al. Rimonabant for prevention of cardiovascular events (CRESCENDO): A randomised, multicentre, placebo-controlled trial. Lancet 2010, 376, 517–523. [Google Scholar] [CrossRef]
- Heppenstall, C.; Bunce, S.; Smith, J.C. Relationships between glucose, energy intake and dietary composition in obese adults with type 2 diabetes receiving the cannabinoid 1 (CB1) receptor antagonist, rimonabant. Nutr. J. 2012, 11, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hollander, P.A.; Amod, A.; Litwak, L.E.; Chaudhari, U.; Group, A.S. Effect of rimonabant on glycemic control in insulin-treated type 2 diabetes: The ARPEGGIO trial. Diabetes Care 2010, 33, 605–607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scheen, A.J.; Finer, N.; Hollander, P.; Jensen, M.D.; Van Gaal, L.F.; Group, R.I.-D.S. Efficacy and tolerability of rimonabant in overweight or obese patients with type 2 diabetes: A randomised controlled study. Lancet 2006, 368, 1660–1672. [Google Scholar] [CrossRef]
- Proietto, J.; Rissanen, A.; Harp, J.B.; Erondu, N.; Yu, Q.; Suryawanshi, S.; Jones, M.E.; Johnson-Levonas, A.O.; Heymsfield, S.B.; Kaufman, K.D.; et al. A clinical trial assessing the safety and efficacy of the CB1R inverse agonist taranabant in obese and overweight patients: Low-dose study. Int. J. Obes. (Lond.) 2010, 34, 1243–1254. [Google Scholar] [CrossRef] [Green Version]
- Aronne, L.J.; Tonstad, S.; Moreno, M.; Gantz, I.; Erondu, N.; Suryawanshi, S.; Molony, C.; Sieberts, S.; Nayee, J.; Meehan, A.G.; et al. A clinical trial assessing the safety and efficacy of taranabant, a CB1R inverse agonist, in obese and overweight patients: A high-dose study. Int. J. Obes. (Lond.) 2010, 34, 919–935. [Google Scholar] [CrossRef] [Green Version]
- Wadden, T.A.; Fujioka, K.; Toubro, S.; Gantz, I.; Erondu, N.E.; Chen, M.; Suryawanshi, S.; Carofano, W.; Johnson-Levonas, A.O.; Shapiro, D.R.; et al. A randomized trial of lifestyle modification and taranabant for maintaining weight loss achieved with a low-calorie diet. Obesity 2010, 18, 2301–2310. [Google Scholar] [CrossRef] [Green Version]
- Addy, C.; Wright, H.; Van Laere, K.; Gantz, I.; Erondu, N.; Musser, B.J.; Lu, K.; Yuan, J.; Sanabria-Bohorquez, S.M.; Stoch, A.; et al. The acyclic CB1R inverse agonist taranabant mediates weight loss by increasing energy expenditure and decreasing caloric intake. Cell Metab. 2008, 7, 68–78. [Google Scholar] [CrossRef] [Green Version]
- Addy, C.; Li, S.; Agrawal, N.; Stone, J.; Majumdar, A.; Zhong, L.; Li, H.; Yuan, J.; Maes, A.; Rothenberg, P.; et al. Safety, tolerability, pharmacokinetics, and pharmacodynamic properties of taranabant, a novel selective cannabinoid-1 receptor inverse agonist, for the treatment of obesity: Results from a double-blind, placebo-controlled, single oral dose study in healthy volunteers. J. Clin. Pharm. 2008, 48, 418–427. [Google Scholar] [CrossRef]
- Addy, C.; Rothenberg, P.; Li, S.; Majumdar, A.; Agrawal, N.; Li, H.; Zhong, L.; Yuan, J.; Maes, A.; Dunbar, S.; et al. Multiple-dose pharmacokinetics, pharmacodynamics, and safety of taranabant, a novel selective cannabinoid-1 receptor inverse agonist, in healthy male volunteers. J. Clin. Pharm. 2008, 48, 734–744. [Google Scholar] [CrossRef] [PubMed]
- Kipnes, M.S.; Hollander, P.; Fujioka, K.; Gantz, I.; Seck, T.; Erondu, N.; Shentu, Y.; Lu, K.; Suryawanshi, S.; Chou, M.; et al. A one-year study to assess the safety and efficacy of the CB1R inverse agonist taranabant in overweight and obese patients with type 2 diabetes. Diabetes Obes. Metab. 2010, 12, 517–531. [Google Scholar] [CrossRef] [PubMed]
- Klumpers, L.E.; Fridberg, M.; de Kam, M.L.; Little, P.B.; Jensen, N.O.; Kleinloog, H.D.; Elling, C.E.; van Gerven, J.M. Peripheral selectivity of the novel cannabinoid receptor antagonist TM38837 in healthy subjects. Br. J. Clin. Pharm. 2013, 76, 846–857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeJesus, E.; Rodwick, B.M.; Bowers, D.; Cohen, C.J.; Pearce, D. Use of Dronabinol Improves Appetite and Reverses Weight Loss in HIV/AIDS-Infected Patients. J. Int. Assoc. Physicians Aids Care (Chic.) 2007, 6, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Haney, M.; Gunderson, E.W.; Rabkin, J.; Hart, C.L.; Vosburg, S.K.; Comer, S.D.; Foltin, R.W. Dronabinol and marijuana in HIV-positive marijuana smokers. Caloric intake, mood, and sleep. J. Acquir. Immune Defic. Syndr. 2007, 45, 545–554. [Google Scholar] [CrossRef] [Green Version]
- Andries, A.; Frystyk, J.; Flyvbjerg, A.; Stoving, R.K. Dronabinol in severe, enduring anorexia nervosa: A randomized controlled trial. Int. J. Eat. Disord. 2014, 47, 18–23. [Google Scholar] [CrossRef]
- Reichenbach, Z.W.; Sloan, J.; Rizvi-Toner, A.; Bayman, L.; Valestin, J.; Schey, R. A 4-week pilot study with the cannabinoid receptor agonist dronabinol and its effect on metabolic parameters in a randomized trial. Clin. Ther. 2015, 37, 2267–2274. [Google Scholar] [CrossRef]
- Howard, M.L.; Hossaini, R.; Tolar, C.; Gaviola, M.L. Efficacy and Safety of Appetite-Stimulating Medications in the Inpatient Setting. Ann. Pharm. 2019, 53, 261–267. [Google Scholar] [CrossRef]
- Cote, M.; Trudel, M.; Wang, C.; Fortin, A. Improving Quality of Life With Nabilone During Radiotherapy Treatments for Head and Neck Cancers: A Randomized Double-Blind Placebo-Controlled Trial. Ann. Otol. Rhinol. Laryngol. 2016, 125, 317–324. [Google Scholar] [CrossRef]
- Levin, D.N.; Dulberg, Z.; Chan, A.W.; Hare, G.M.; Mazer, C.D.; Hong, A. A randomized-controlled trial of nabilone for the prevention of acute postoperative nausea and vomiting in elective surgery. Can. J. Anaesth. 2017, 64, 385–395. [Google Scholar] [CrossRef] [Green Version]
- Rzepa, E.; Tudge, L.; McCabe, C. The CB1 Neutral Antagonist Tetrahydrocannabivarin Reduces Default Mode Network and Increases Executive Control Network Resting State Functional Connectivity in Healthy Volunteers. Int. J. Neuropsychopharmacol. 2015, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fataar, F.; Hammond, D. The Prevalence of Vaping and Smoking as Modes of Delivery for Nicotine and Cannabis among Youth in Canada, England and the United States. Int. J. Environ. Res. Public Health 2019, 16, 4111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akre, C.; Michaud, P.A.; Berchtold, A.; Suris, J.C. Cannabis and tobacco use: Where are the boundaries? A qualitative study on cannabis consumption modes among adolescents. Health Educ. Res. 2010, 25, 74–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chandra, S.; Radwan, M.M.; Majumdar, C.G.; Church, J.C.; Freeman, T.P.; ElSohly, M.A. New trends in cannabis potency in USA and Europe during the last decade (2008-2017). Eur. Arch. Psychiatry Clin. Neurosci. 2019, 269, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Pacher, P.; Batkai, S.; Kunos, G. The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol. Rev. 2006, 58, 389–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Marzo, V.; Despres, J.P. CB1 antagonists for obesity--what lessons have we learned from rimonabant? Nat. Reviews Endocrinol. 2009, 5, 633–638. [Google Scholar] [CrossRef] [PubMed]
- Hagmann, W.K. The discovery of taranabant, a selective cannabinoid-1 receptor inverse agonist for the treatment of obesity. Arch. Pharm. (Weinh.) 2008, 341, 405–411. [Google Scholar] [CrossRef]
- Chorvat, R.J.; Berbaum, J.; Seriacki, K.; McElroy, J.F. JD-5006 and JD-5037: Peripherally restricted (PR) cannabinoid-1 receptor blockers related to SLV-319 (Ibipinabant) as metabolic disorder therapeutics devoid of CNS liabilities. Bioorg. Med. Chem. Lett. 2012, 22, 6173–6180. [Google Scholar] [CrossRef]
- Cinar, R.; Iyer, M.R.; Liu, Z.; Cao, Z.; Jourdan, T.; Erdelyi, K.; Godlewski, G.; Szanda, G.; Liu, J.; Park, J.K.; et al. Hybrid inhibitor of peripheral cannabinoid-1 receptors and inducible nitric oxide synthase mitigates liver fibrosis. Jci Insight 2016, 1. [Google Scholar] [CrossRef] [Green Version]
- Tran, S.B.; Maxwell, B.D.; Burrell, R.; Bonacorsi, S.J., Jr. The syntheses of isotopically labelled CB-1 antagonists for the treatment of obesity. J. Label. Comp. Radiopharm. 2016, 59, 665–672. [Google Scholar] [CrossRef]
- Pertwee, R.G. The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: Delta9-tetrahydrocannabinol, cannabidiol and delta9-tetrahydrocannabivarin. Br. J. Pharm. 2008, 153, 199–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palomares, B.; Ruiz-Pino, F.; Garrido-Rodriguez, M.; Eugenia Prados, M.; Sanchez-Garrido, M.A.; Velasco, I.; Vazquez, M.J.; Nadal, X.; Ferreiro-Vera, C.; Morrugares, R.; et al. Tetrahydrocannabinolic acid A (THCA-A) reduces adiposity and prevents metabolic disease caused by diet-induced obesity. Biochem. Pharm. 2020, 171, 113693. [Google Scholar] [CrossRef] [PubMed]
- Pertwee, R.G. Pharmacology of cannabinoid CB1 and CB2 receptors. Pharm. Ther. 1997, 74, 129–180. [Google Scholar] [CrossRef]
- O’Sullivan, S.E. An update on PPAR activation by cannabinoids. Br. J. Pharm. 2016, 173, 1899–1910. [Google Scholar] [CrossRef] [Green Version]
- Muller, C.; Morales, P.; Reggio, P.H. Cannabinoid Ligands Targeting TRP Channels. Front. Mol. Neurosci. 2018, 11, 487. [Google Scholar] [CrossRef]
- Kreuz, D.S.; Axelrod, J. Delta-9-tetrahydrocannabinol: Localization in body fat. Science 1973, 179, 391–393. [Google Scholar] [CrossRef]
- Scherma, M.; Fattore, L.; Satta, V.; Businco, F.; Pigliacampo, B.; Goldberg, S.R.; Dessi, C.; Fratta, W.; Fadda, P. Pharmacological modulation of the endocannabinoid signalling alters binge-type eating behaviour in female rats. Br. J. Pharm. 2013, 169, 820–833. [Google Scholar] [CrossRef] [Green Version]
- Badowski, M.E. A review of oral cannabinoids and medical marijuana for the treatment of chemotherapy-induced nausea and vomiting: A focus on pharmacokinetic variability and pharmacodynamics. Cancer Chemother. Pharm. 2017, 80, 441–449. [Google Scholar] [CrossRef] [Green Version]
- Andries, A.; Gram, B.; Stoving, R.K. Effect of dronabinol therapy on physical activity in anorexia nervosa: A randomised, controlled trial. Eat. Weight Disord. 2015, 20, 13–21. [Google Scholar] [CrossRef]
- Ben Amar, M. Cannabinoids in medicine: A review of their therapeutic potential. J. Ethnopharmacol. 2006, 105, 1–25. [Google Scholar] [CrossRef]
- Lemberger, L.; Rubin, A.; Wolen, R.; DeSante, K.; Rowe, H.; Forney, R.; Pence, P. Pharmacokinetics, metabolism and drug-abuse potential of nabilone. Cancer Treat. Rev. 1982, 9 (Suppl. B), 17–23. [Google Scholar] [CrossRef]
- Malamas, M.S.; Raghav, J.G.; Ma, X.; Honrao, C.; Wood, J.T.; Benchama, O.; Zhou, H.; Mallipeddi, S.; Makriyannis, A. Oximes short-acting CB1 receptor agonists. Bioorg. Med. Chem. 2018, 26, 4963–4970. [Google Scholar] [CrossRef] [PubMed]
- Thomas, A.; Stevenson, L.A.; Wease, K.N.; Price, M.R.; Baillie, G.; Ross, R.A.; Pertwee, R.G. Evidence that the plant cannabinoid Delta9-tetrahydrocannabivarin is a cannabinoid CB1 and CB2 receptor antagonist. Br. J. Pharm. 2005, 146, 917–926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Study Reference | Animal Model (Species) | Cannabinoid Administered | Cannabinoid Type | Drug Administration | Population Size | Duration | Effect on Body Weight, Compared to Vehicle (If Applicable) | Other Notes |
---|---|---|---|---|---|---|---|---|
Rusznák et al., 2018 [33] | Chronic mild stress (male NMRI mice) | Cannabis | Cannabis | Whole body smoke, 30 min, twice per day | n = 36 | 8 weeks | Increase | |
Colombo et al., 1998 [25] | Lean (male Wistar rats) | Rimonabant | Inverse Agonist | IP injection, once daily (2.5, 10 mg/kg) | n = 19 | 2 weeks | Decrease | |
Kunz et al., 2008 [34] | Lean (male Sprague–Dawley rats) and CB1R deficient mice) | Rimonabant | Inverse Agonist | Oral micro-suspension, once daily (2 mL/kg, 4 mL/kg) | n = 20 | 2 weeks | Decrease | |
Richey et al., 2009 [35] | Lean (mongrel dogs) | Rimonabant | Inverse Agonist | Oral, once daily (1.25 mg/kg) | n = 20 | 16 weeks | Decrease | |
Herling et al., 2008 [36] | DIO (female Wistar rats) | Rimonabant | Inverse Agonist | Oral, once daily (10 mg/kg) | n = 16 | 6 weeks | Decrease | |
Gobshtis et al., 2007 [37] | Antidepressant-treated (female Sabra mice) | Rimonabant | Inverse Agonist | IP injection, 5 weekly (2, 5 mg/kg) | n = 16 | Acute and up to 22 weeks | Decrease | |
Dore et al., 2014 [38] | High-sucrose diet (male Wistar rats) | Rimonabant | Inverse Agonist | IP injection, once daily (0.3, 1, 3 mg/kg) | n = 44 | 24 days | Decrease | |
Bajzer et al., 2011 [39] | DIO (male C57BL/6 J mice) | Rimonabant | Inverse Agonist | IP injection, once daily (10 mg/kg) | n = 33 | 7 weeks | Decrease | |
Boon et al., 2014 [40] | DIO (E3L.CETP male mice) | Rimonabant | Inverse Agonist | IP injection, once daily (10 mg/kg) | n = 18 | 4 weeks | Decrease | |
AM6545 | Neutral Antagonist | IP injection, once daily (10 mg/kg) | Decrease | |||||
Karlsson et al., 2015 [41] | DIO and diet-resistant (male Sprague–Dawley rats) | Rimonabant | Inverse Agonist | Gavage, once daily (5 mL/kg) | n = 30 | 2 weeks | Decrease | |
Lazzari et al., 2017 [42] | Antipsychotic-treated (female Wistar rats) | Rimonabant | Inverse Agonist | Gavage, once daily (10 mg/kg) | n = 40 | 5 weeks | Decrease | |
NESS06SM | Neutral Antagonist | Gavage, once daily (10 mg/kg) | Decrease | |||||
Muller et al., 2020 [43] | Cultured adipocytes (male Wistar rats) | Rimonabant | Inverse Agonist | Bolus, single administration (30 mg/kg) | unknown | Acute | Not assessed | |
Chang et al., 2018 [44] | Severely uncontrolled diabetes (LETO rats) | Rimonabant | Inverse Agonist | Gavage, once daily (10 mg/kg) | n = 20 | 6 weeks | No change | |
Mehrpouya-Bahrami, 2017 [45] | DIO (male C57BL/6 J mice) | Rimonabant | Inverse Agonist | Gavage, once daily (10 mg/kg) | n ~ 50 | 4 weeks | Decrease | |
Zhang et al., 2012 [46] | DIO (male C57BL/6 J mice) | Rimonabant | Inverse Agonist | Gavage, once daily (10 mg/kg) | n = 23 | 30 days | Decrease | |
Wei et al., 2018 [47] | DIO (male C57BL/6 J mice) | Rimonabant | Inverse Agonist | Gavage, once daily (10 mg/kg) | n = 70 | 3 weeks | Decrease | |
Mehrpouya-Bahrami, 2018 [48] | DIO (male C57BL/6 J mice) | Rimonabant | Inverse Agonist | Gavage, once daily (10 mg/kg) | unknown | 4 weeks | Decrease | |
Chen and Hu, 2017 [49] | DIO (male C57BL/6 J mice) | Rimonabant | Inverse Agonist | Gavage, once daily (30 mg/kg) | n = 39 | 5 weeks | Decrease | |
Fong et al., 2007 [50] | Wild-type and CB1 knockout (male C57BL/6 J mice), and DIO (male Sprague–Dawley rats) | Taranabant | Inverse Agonist | Gavage, once daily (0.3, 1, 3 mg/kg) | n = 36 mice; n = 23 rats | 2 weeks | Decrease | |
Martín-García et al., 2010 [51] | DIO and lean (female Wistar rats) | Taranabant | Inverse Agonist | Sublingual, once daily (3 mg/kg) | n = 48 | 13 weeks | Decrease | Rimonabant and taranabant were more effective in obese mice |
Rimonabant | Inverse Agonist | Sublingual, once daily (10 mg/kg) | Decrease | |||||
Hildebrandt et al., 2003 [52] | DIO (male C57BL/6 J mice) | AM 251 | Inverse Agonist | Gavage, once daily (3, 30 mg/kg) | n = 30 | 6 weeks | Decrease | |
Chambers et al., 2004 [53] | DIO (Lewis rats) | AM 251 | Inverse Agonist | IP injection, once daily (1.25, 2.5, 5 mg/kg) | n = 8 | 10 days | Decrease | |
Riedel et al., 2009 [54] | Wild-type (male C57BL/6 J mice) | AM 251 | Inverse Agonist | IP injection, once daily (10 mg/kg) | n = 16 | 4 days | Decrease | |
THCV | Neutral Antagonist | IP injection, once daily (3, 10, 30 mg/kg) | n = 28 | 2 days | Decrease | |||
Judge et al., 2009 [55] | Wild-type and DIO (male Fisher 344X Brown Norway rats) | AM 251 | Inverse Agonist | IP injection, once daily (0.83, 2.78 mg/kg) | n = 61 | 6 days | Decrease | |
Merroun et al., 2013 [56] | Lean and DIO (male Zucker rats) | AM 251 | Inverse Agonist | IP injection, once daily (3 mg/kg) | n = 32 | 3 weeks | Decrease | |
Wierucka-Rybak et al., 2014 [57] | DIO (male Wistar rats) | AM 251 | Inverse Agonist | IP injection, once daily (1 mg/kg) | n = 34 | 6 days | Decrease | AM 251 and Leptin coadministration augmented weight loss |
Wierucka-Rybak et al., 2016 [58] | DIO (male Wistar rats) | AM 251 | Inverse Agonist | IP injection, once daily (1 mg/kg) | n = 40 | 6 days | Decrease | Serotonin receptor antagonism abolished anorectic effects |
Bowles et al., 2014 [59] | Wild-type and CB1R knockout (C57BL/6 J mice) | AM 251 | Inverse Agonist | IP injection, once daily (2 mg/kg) | n ~ 20 | 4 weeks | Decrease | |
AM6545 | Neutral Antagonist | IP injection, once daily (10 mg/kg) | Decrease | |||||
Merroun et al., 2015 [60] | Wild-type (male Wistar rats) | AM 251 | Inverse Agonist | Sub-chronic IP injection, once daily (1, 2, 5 mg/kg) | n = 40 | 8 days | Decrease | |
Jenkin et al., 2015 [61] | DIO (male Sprague–Dawley rats) | AM 251 | Inverse Agonist | IP injection, once daily (3 mg/kg) | n = 18 | 6 weeks | Decrease | |
Miranda et al., 2019 [62] | DIO (C57BL/6 J mice) | AM 251 | Inverse Agonist | Gavage, once daily (10 mg/kg) | n = 20 | 4 weeks | Decrease | |
Takano et al., 2014 [63] | Wild-type (cynomolgus monkeys) | TM38837 | Inverse Agonist | Intravenous (0.3–4 mg/kg) | n = 3 | Acute | Not assessed | |
Micale et al., 2019 [64] | Wild-type (male C57BL/6 J mice) | TM38837 | Inverse Agonist | Oral, once daily (10, 30, 100 mg/kg) | n = 45 | 10 days | Not assessed | Study of fear-promoting effects in mice |
Han et al., 2019 [65] | DIO and leptin-receptor deficient (male and female C57BL/6 J mice) | AJ5012 | Inverse Agonist | IP injection, once daily (20 mg/kg) | n = 20 | 4 weeks | Decrease | |
AJ5018 | Inverse Agonist | Not assessed | Not assessed | |||||
Han et al., 2018 [66] | DIO (C57BL/6 J mice) | AJ5018 | Inverse Agonist | IP injection, once daily (10 mg/kg) | n ~ 16 | 4 weeks | Decrease | |
Tam et al., 2012 [67] | DIO (male C57BL/6 J mice) | JD5037 | Inverse Agonist | Gavage, once daily (3 mg/kg) | n = 28 | 4 weeks | Decrease | |
Udi et al., 2020 [68] | DIO (male C57BL/6 J mice) | JD5037 | Inverse Agonist | Oral, once daily (3 mg/kg) | n = 58 | 4 weeks | Decrease | |
MRI-1867 | Inverse Agonist | Oral, once daily (3 mg/kg) | Decrease | |||||
Kale et al., 2019 [69] | Wild-type (Sprague–Dawley rats and Beagle dogs) | JD5037 | Inverse Agonist | Rats: Gavage, once daily (10, 40, 150 mg/kg); dogs: Gavage, once daily (5, 20, 75 mg/kg) | Rats: n = 140; dogs: n = 44 | 34 days | Decrease in rats; no change in dogs | |
Hsiao et al., 2015 [70] | DIO (male C57BL/6 J mice) | BPR0912 | Inverse Agonist | Gavage, once daily (3, 10 mg/kg) | n = 24 | 19 days | Decrease | |
Chen et al., 2017 [71] | DIO (male C57BL/6 J mice) | TXX-522 | Inverse Agonist | Gavage, once daily (5, 10 mg/kg) | n = 32 | 4 weeks | Decrease | |
Méndez-Díaz et al., 2015 [72] | Wild-type (male Wistar rats) | ENP11 | Inverse Agonist | IP injection, once daily (0.5, 1, 3 mg/kg) | n = 40 | Acute | Not assessed | |
Zhang et al., 2018 [73] | DIO (mice) | Compound 6a | Inverse Agonist | Oral, once daily (30 mg/kg) | unknown | 5 days | Decrease | |
Aceto et al., 2001 [74] | Wild-type (male Sprague–Dawley rats) | WIN 55,212-2 | Agonist | IP injection, once daily (1, 2, 4, 8, 16, mg/kg) | n = 82 | 4 days | Decrease | |
Abalo et al., 2009 [75] | Wild-type (male Wistar rats) | WIN 55,212-2 | Agonist | IP injection, once daily (0.5, 5 mg/kg) | n = 56 | 14 days | Decrease | |
Abalo et al., 2013 [76] | Wild-type (male Wistar rats) | WIN 55,212-2 | Agonist | IP injection, once weekly (0.5, 1 mg/kg) | n = 54 | 4 weeks | Decrease | Intensified weight loss from cisplatin |
Radziszewska et al., 2014 [77] | Wild-type (male Wistar rats) | WIN 55,212-2 | Agonist | IP injection, once daily (1 mg/kg) | n ~ 32 | 3 days | Decrease | |
AM 251 | Inverse Agonist | IP injection, once daily (1 mg/kg) | Decrease | |||||
Radziszewska et al., 2013 [78] | Wild-type (male Wistar rats) | WIN 55,212-2 | Agonist | IP injection, once daily (0.5, 1, 2, 4 mg/kg) | unknown | Acute | Decrease | |
Segev et al., 2014 [79] | Chronic mild stress (male Sprague–Dawley rats) | WIN 55,212-2 | Agonist | IP injection, once daily (0.5 mg/kg) | unknown | 3 days | No change | WIN 55,212-2 and AM 251 were coadministered |
AM 251 | Inverse Agonist | IP injection, once daily (0.3 mg/kg) | ||||||
Jahanabadi et al., 2016 [80] | Diabetes (male Wistar albino rats) | WIN 55,212-2 | Agonist | Intrathecal injection (1, 10, 100 µg/10 µL) | n ~ 28 | Acute | No change | |
Argueta et al., 2019 [81] | Wild-type (C57BL/6 J mice) | WIN 55,212-2 | Agonist | IP injection, once daily (3 mg/kg) | n ~ 20 | 60 days | Not assessed | Study of satiation peptide response |
AM6545 | Neutral Antagonist | IP injection, once daily (10 mg/kg) | ||||||
de Sousa Cavalcante et al., 2020 [82] | Cachexia (male Wistar rats) | WIN 55,212-2 | Agonist | Subcutaneous injection, once daily (2 mg/kg) | n ~ 64 | 1 week | Decrease | No change in body weight in cachexia induced rats |
Dalton et al., 2009 [83] | Wild-type (male Wistar rats) | HU-210 | Agonist | IP injection, once daily (25, 50, 100 µg/kg) | n = 40 | 2 weeks | Decrease | |
Giuliani et al., 2000 [84] | Wild-type (male Wistar rats) | HU-210 | Agonist | IP injection, once daily (25, 50, 100 µg/kg) | n = 32 | 4 days | Decrease | |
del Arco et al., 2000 [85] | Pregnancy (female Wistar rats) | HU-210 | Agonist | IP injection, once daily (1, 5, 25 µg/kg) | unknown | >70 days | Decrease | |
Scherma et al., 2017 [86] | Activity-based anorexia (female Sprague–Dawley rats) | CP-55,940 | Agonist | IP injection, once daily (0.03, 0.06 mg/kg) | n = 168 | 6 days | Increase | Both caused decrease in body weight loss compared to vehicle |
THC | Partial Agonist | IP injection, once daily (0.5, 0.75 mg/kg) | Increase | |||||
Takeda et al., 2015 [87] | Wild-type and Apo-E deficient (male BALB/c mice) | CBDD | Agonist | Oral, once daily (0.025, 0.25 mg/kg) | n = 12 | ~24 weeks | Increase | |
Järbe et al., 2005 [24] | Wild-type (male Sprague–Dawley rats) | THC | Partial Agonist | IP injection, once daily (0.1-1.8 mg/kg) | n = 32 | 6 days | Decrease | THC and rimonabant administered separately and together |
Rimonabant | Inverse Agonist | IP injection, once daily (0.03-0.3 mg/kg) | ||||||
Lewis et al., 2010 [88] | Activity-based anorexia (male C57BL/6 J mice) | THC | Partial Agonist | IP injection, once daily (0.5 mg/kg) | n = 32 | 8 days | Increase | |
Verty et al., 2011 [89] | Activity-based anorexia (female Sprague–Dawley rats) | THC | Partial Agonist | IP injection, once daily (0.1, 0.5, 2 mg/kg) | n = 28 | 6 days | Increase | |
Wong et al., 2012 [90] | Wild-type (Australian Albino Wistar rats) | THC | Partial Agonist | IP injection, once daily (10 mg/kg) | n = 10 | 10 days | Decrease | |
Coskun and Bolkent, 2014 [91] | Diabetes (rats) | THC | Partial Agonist | IP injection, once daily (3 mg/kg) | n = 29 | 7 days | Increase | |
Keeley et al., 2015 [92] | Puberty (male and female Long–Evans and Wistar rats) | THC | Partial Agonist | IP injection, once daily (5 mg/kg) | n = 335 | 2 weeks | Decrease | |
Cluny et al., 2015 [93] | DIO and lean (male C57BL/6N mice) | THC | Partial Agonist | IP injection, once daily (2 mg/kg for 3 weeks, 4 mg/kg for 1 week) | n = 32 | 4 weeks | Decrease in DIO mice | No effect on body weight in lean mice |
Marcus et al., 2016 [94] | Hyper-sensitive CB1 (male S426A/S430A mice) | THC | Partial Agonist | IP injection (1, 3, 10 mg/kg) | unknown | Acute | No change | |
Beydogan et al., 2019 [95] | High-fructose diet (male Sprague–Dawley rats) | THC | Partial Agonist | IP injection, once daily (1.5 mg/kg) | n = 32 | 12 weeks (THC administration for final 4 weeks) | Decrease | |
Nguyen et al., 2020 [96] | Adolescence (female and male Wistar rats) | THC | Partial Agonist | Vapour inhalation (30 mins, twice daily, 5 days/week) | n = 88 | 2 weeks | Decrease in males | |
Ogden et al., 2019 [97] | Wild-type (female Long–Evans rats) | AM11101 | Partial Agonist | IP injection, (0.1 mg/kg) | n = 21 | 1 week | No change | |
THC | Partial Agonist | IP injection, (1 mg/kg) | No change | |||||
Pavon et al., 2006 [98] | DIO (Zucker rats) and Wild-type (male Wistar rats) | LH-21 | Neutral Antagonist | IP injection, once daily (0.03, 0.3, 3 mg/kg) | unknown | 8 days | Decrease in DIO rats | |
Alonso et al., 2012 [99] | DIO (male Wistar rats) | LH-21 | Neutral Antagonist | IP injection, once daily (3 mg/kg) | n = 32 | 10 days | Decrease | |
Chen et al., 2008 [100] | Wild-type (C57BL/6 J mice) | LH-21 | Neutral Antagonist | IP injection (10, 30, 60 mg/kg) | n = 45 | Acute | Decrease | |
Romero-Zerbo et al., 2017 [101] | DIO, pre-diabetes (C57BL/6 J mice) | LH-21 | Neutral Antagonist | IP injection (3 mg/kg) | n ~ 30 | 2 weeks | No change | |
Dong et al., 2018 [102] | DIO, hypertension (female C57BL/6 J mice) | LH-21 | Neutral Antagonist | IP injection (1, 3 mg/kg) | n = 8 | 3 weeks | Decrease | |
Cluny et al., 2010 [103] | Wild-type (male Sprague–Dawley rats) | AM6545 | Neutral Antagonist | IP injection (10 mg/kg) | n = 8 | 1 week | Decrease | |
Tam et al., 2010 [104] | DIO (male C57BL/6 J mice) | AM6545 | Neutral Antagonist | IP injection (10 mg/kg) | n = 40 | 4 weeks | Decrease | |
Rimonabant | Inverse Agonist | IP injection (10 mg/kg) | Decrease | |||||
Ma et al., 2018 [105] | DIO (ICR mice) | AM6545 | Neutral Antagonist | IP injection (3, 10 mg/kg) | n = 32 | 3 weeks | Decrease | |
Chambers et al., 2007 [106] | Wild-type (male Sprague–Dawley rats) | AM4113 | Neutral Antagonist | IP injection (1, 5, 10, 20 mg/kg) | n = 39 | 5 days | Decrease | |
AM 251 | Inverse Agonist | IP injection (5 mg/kg) | Decrease | |||||
Sink et al., 2008 [107] | Wild-type (male Sprague–Dawley rats) | AM4113 | Neutral Antagonist | IP injection (2, 4, 8 mg/kg) | n = 30 | Acute | Not assessed | |
Cluny et al., 2011 [108] | Wild-type (male Sprague–Dawley rats) | AM4113 | Neutral Antagonist | IP injection (2, 10 mg/kg) | n = 17 | 2 weeks | Decrease | |
Gueye et al., 2016 [109] | Nicotine Dependence (male Long–Evans and Wistar rats) | AM4113 | Neutral Antagonist | IP injection (1, 3, 10 mg/kg) | n = 149 | 3 weeks | Decrease | |
Rimonabant | Inverse Agonist | IP injection (1, 3, 10 mg/kg) | Decrease | |||||
Balla et al., 2018 [110] | Alcoholism (male C57BL/6 J mice) | AM4113 | Neutral Antagonist | IP injection (1, 3 mg/kg) | n = 31 | 4 days | No change | |
Wargent et al., 2013 [111] | DIO (female C5BL/6 J mice) | THCV | Neutral Antagonist | Gavage, once or twice daily (0.1–12.5 mg/kg) | n = 63 | 45 days | No change | |
AM 251 | Inverse Agonist | Gavage, twice daily (10 mg/kg) | 45 days | Decrease | ||||
Mastinu et al., 2013 [112] | DIO (male C57BL/6 N mice) | NESS06SM | Neutral Antagonist | Gavage, once daily (10, 30 mg/kg) | n = 60 | 30 days | Decrease | |
Rimonabant | Inverse Agonist | Gavage, once daily (10 mg/kg) | Decrease | |||||
Fois et al., 2016 [113] | Wild-type (male Sprague–Dawley rats) | SM-11 | Neutral Antagonist | IP injection (0.05, 0.125, 0.25 mg/kg) | n = 32 | 10 days | Decrease | |
Seltzman et al., 2017 [114] | DIO (male C57BL/6 J mice) | PIMSR | Neutral Antagonist | IP injection (10 mg/kg) | n = 12 | 4 weeks | Decrease |
Study Reference | Study Design | Population Characteristics | Cannabinoid Administered | Cannabinoid Type | Drug Administration | Duration | Effect on Body Weight, Compared to Placebo (If Applicable) | Other Notes |
---|---|---|---|---|---|---|---|---|
Greenberg et al., 1976 [115] | Observational | Healthy males (n = 37) | Cannabis (1.8–2.3% THC) | Cannabis | Ad libitum | 21 days | Increase | |
Foltin et al., 1986 [21] | Double-blinded, Placebo-controlled | Healthy males (n = 9) | Cannabis (1.84% THC) | Cannabis | Uniform puff procedure | 25 days | No change | |
Foltin et al., 1988 [116] | Double-blinded, Placebo-controlled | Healthy males (n = 6) | Cannabis (2.3% THC) | Cannabis | Uniform puff procedure | 13 days | Increase | |
Le Strat and Le Foll, 2011 [27] | Cross-Sectional | Population Representative (n = 50,736) | Cannabis | Cannabis | N/A | N/A | Decrease | |
Warren et al., 2005 [117] | Retrospective Chart Review | Females referred for weight management (n = 297) | Cannabis | Cannabis | N/A | N/A | Decrease | |
Rodondi et al., 2006 [118] | Longitudinal | Black and White Adults 18–30 (n = 3617) | Cannabis | Cannabis | N/A | 15 years | Decrease | Study of coronary artery disease risk factors |
Penner et al., 2013 [119] | Cross-sectional | Population Representative (n = 4657) | Cannabis | Cannabis | N/A | N/A | Decrease | |
Hayatbakhsh et al., 2010 [28] | Prospective Cohort | Young adults (n = 2566) | Cannabis | Cannabis | N/A | 21 years | Decrease | Followed from birth to 21 years |
Huang et al., 2013 [120] | Longitudinal | Adolescents (n = 5141) | Cannabis | Cannabis | N/A | 12 years | Increase | Increased trajectory of adolescent cannabis use associated with obesity |
Muniyappa et al., 2013 [121] | Cross-sectional, case-control | BMI-matched cannabis smokers and non-smokers (n = 60) | Cannabis | Cannabis | N/A | N/A | No change | Greater abdominal visceral fat in cannabis smokers |
Cobb et al., 2019 [122] | Survey | African American > 55 years (n = 340) | Cannabis | Cannabis | N/A | N/A | Decrease | |
Racine et al., 2015 [30] | Cross-Sectional | African American adults (n = 100) | Cannabis | Cannabis | N/A | N/A | No change | Insignificant trend towards lower BMI in current cannabis users |
Ngueta et al., 2015 [123] | Cross-Sectional | Inuit adults (n = 786) | Cannabis | Cannabis | N/A | N/A | Decrease | |
Ross et al., 2017 [124] | Longitudinal | Adult cannabis users (n = 238) | Cannabis | Cannabis | N/A | 2 years | Increase | |
Alshaarawy and Anthony, 2019 [125] | Longitudinal | Population Representative (n = 33,000) | Cannabis | Cannabis | N/A | 3 years | Decrease | Longitudinal study of NESARC and NCS-R |
Meier et al., 2019 [126] | Longitudinal | Young males (n = 253) | Cannabis | Cannabis | N/A | 25 years | Decrease | |
Bancks et al., 2018 [127] | Longitudinal | Healthy adults 18–30 (n = 2902) | Cannabis | Cannabis | N/A | 25 years | Decrease | |
Thompson and Hay, 2015 [128] | Cross-Sectional | Population Representative (n = 6281) | Cannabis | Cannabis | N/A | 7 years | Decrease | |
N’Goran et al., 2015 [129] | Longitudinal | Young males (n = 7563) | Cannabis | Cannabis | N/A | 15 months | N/A | Greater BMI increased chances of increased cannabis use |
Jin et al., 2017 [130] | Longitudinal | Young males (n = 712) | Cannabis | Cannabis | N/A | 20–22 years | No change | |
Vázquez-Bourgon et al., 2019 [131] | Longitudinal | First-episode non-affective psychosis patients (n = 510) | Cannabis | Cannabis | N/A | 3 years | Decrease | All subjects treated with oral antipsychotic medication |
Vázquez-Bourgon et al., 2019 [132] | Longitudinal | First-episode non-affective psychosis patients (n = 390) | Cannabis | Cannabis | N/A | 3 years | Decrease | Follow-up study evaluating non-alcoholic fatty liver disease |
Scheffler et al., 2018 [133] | Longitudinal | Antipsychotic-naïve psychiatric patients (n = 109) | Cannabis | Cannabis | N/A | 1 year | Decrease | |
Bruins et al., 2016 [134] | Longitudinal | Adults with severe mental illness (n = 3169) | Cannabis | Cannabis | N/A | ~14 months | Decrease | |
Kindred, 2017 [135] | Survey | Parkinson’s and multiple sclerosis patients (n = 595) | Cannabis | Cannabis | N/A | N/A | Decrease | |
Ngueta and Ndjaboue, 2019 [136] | Cross-Sectional | Population Representative (n = 129,509) | Cannabis | Cannabis | N/A | N/A | Decrease | |
Danielsson et al., 2016 [137] | Longitudinal | Healthy adults 18–84 (n = 17,967) | Cannabis | Cannabis | N/A | 8 years | Decrease | |
Van Gaal et al., 2005 [138] | Double-blinded, Placebo-controlled, multicentre | Adults BMI ≥ 30 or ≥ 27 kg/m2 with comorbidity (n = 920) | Rimonabant | Inverse Agonist | Oral (5, 20 mg/day) | 1 year | Decrease | |
Van Gaal et al., 2008 [139] | Double-blinded, Placebo-controlled, multicentre | Adults BMI ≥ 30 or ≥ 27 kg/m2 with comorbidity (n = 1508) | Rimonabant | Inverse Agonist | Oral (5, 20 mg/day) | 2 years | Decrease | |
Pi-Sunyer et al., 2006 [140] | Double-blinded, Placebo-controlled, multicentre | Adults BMI ≥ 30 or ≥ 27 kg/m2 with comorbidity (n = 3045) | Rimonabant | Inverse Agonist | Oral (5, 20 mg/day) | 2 years | Decrease | |
Van Gaal et al., 2008 [141] | Double-blinded, Placebo-controlled, multicentre | Adults BMI ≥ 30 or ≥ 27 kg/m2 with comorbidity (n = 6627) | Rimonabant | Inverse Agonist | Oral (5, 20 mg/day) | 2 years | Decrease | Pooled from all RIO studies |
Bergholm et al., 2013 [142] | Double-blinded, Placebo-controlled | Obese adults (n = 37) | Rimonabant | Inverse Agonist | Oral (20 mg/day) | 48 weeks | Decrease | |
Topol et al., 2010 [143] | Double-blinded, Placebo-controlled, multicentre | Obese adults (n = 18,695) | Rimonabant | Inverse Agonist | Oral (20 mg/day) | 13.8 months (mean follow-up) | Not assessed | Discontinued due to adverse psychiatric side effects |
Heppenstall et al., 2012 [144] | Open label | Obese adults with type 2 diabetes (n = 20) | Rimonabant | Inverse Agonist | Oral (20 mg/day) | 6 months | Decrease | |
Hollander et al., 2010 [145] | Double-blinded, Placebo-controlled, multicentre | Type 2 diabetic adults (n = 368) | Rimonabant | Inverse Agonist | Oral (20 mg/day) | 48 weeks | Decrease | |
Scheen et al., 2006 [146] | Double-blinded, Placebo-controlled, multicentre | Type 2 diabetic adults (n = 692) | Rimonabant | Inverse Agonist | Oral (5, 20 mg/day) | 1 year | Decrease | |
Proietto et al., 2010 [147] | Double-blinded, Placebo-controlled, multicentre | Obese adults (n = 693) | Taranabant | Inverse Agonist | Oral (0.5, 1, 2 mg/day) | 1 year | Decrease | |
Aronne et al., 2010 [148] | Double-blinded, Placebo-controlled, multicentre | Obese adults (n = 2502) | Taranabant | Inverse Agonist | Oral (2, 4, 6 mg/day) | 2 years | Decrease | Weight loss did not increase significantly during second year of treatment |
Wadden et al., 2010 [149] | Double-blinded, Placebo-controlled, multicentre | Obese adults (n = 784) | Taranabant | Inverse Agonist | Oral (0.5, 1, 2 mg/day) | 1 year | Decrease | |
Addy, Wright et al., 2008 [150] | Double-blinded, Placebo-controlled | Healthy male adults (n = 15) | Taranabant | Inverse Agonist | Oral (0.5, 2, 4, 6, 7.5 mg/day) | 12 weeks | Decrease | |
Addy, Li et al., 2008 [151] | Double-blinded, Placebo-controlled | Healthy male adults (n = 24) | Taranabant | Inverse Agonist | Oral (0.5–600 mg) | Acute | No change | |
Addy, Rothenberg et al., 2008 [152] | Double-blinded, Placebo-controlled | Healthy male adults (n = 60) | Taranabant | Inverse Agonist | Oral (5, 7.5, 10, 25 mg/day) | 2 weeks | Not assessed | |
Kipnes et al., 2010 [153] | Double-blinded, Placebo-controlled, multicentre | Obese adults with type 2 diabetes (n = 623) | Taranabant | Inverse Agonist | Oral (0.5, 1, 2 mg/day) | 1 year | Decrease | |
Klumpers et al., 2013 [154] | Double-blinded, Double Dummy, Placebo-controlled | Healthy male cannabis users (n = 24) | TM38837 | Inverse Agonist | Oral (100, 500 mg) | Acute | Not assessed | |
Bedi et al., 2010 [22] | Double-blinded, Within-subject | HIV-positive cannabis users (n = 7) | Dronabinol | Partial Agonist | Oral (20 mg/day 2 days, 40 mg/day 14 days) | 16 days | No change | |
Haney et al., 2005 [23] | Double-blinded, Within-subject | HIV-positive cannabis users (n = 30) | Dronabinol | Partial Agonist | Oral (10, 20, 30 mg/day) | 3–4 weeks | Not assessed | |
Cannabis | Cannabis | Smoked (1.8, 2.8, 3.9% THC) | ||||||
DeJesus et al., 2007 [155] | Retrospective Chart Review | HIV-positive subjects (n = 155) | Dronabinol | Partial Agonist | Oral (9.6–10.8 mg/day) | 12 months | Increase | |
Haney et al., 2007 [156] | Double-blinded, Within-subject | HIV-positive cannabis users (n = 10) | Dronabinol | Partial Agonist | Oral (5, 10 mg/day) | 6 weeks | Increase | |
Cannabis | Cannabis | Smoked (2.0, 3.9% THC) | Increase | |||||
Andries et al., 2014 [157] | Double-blinded, Placebo-controlled, crossover | Anorexic women (n = 25) | Dronabinol | Partial Agonist | Oral (5 mg/day) | 12 weeks | Increase | |
Reichenbach et al., 2015 [158] | Double-blinded, Placebo-controlled | Noncardiac chest pain subjects (n = 13) | Dronabinol | Partial Agonist | Oral (5 mg/day) | 4 weeks | No change | |
Howard et al., 2019 [159] | Retrospective, Observational | Suppressed appetite patients (n = 38) | Dronabinol | Partial Agonist | Oral (mean 2.91 mg/day) | 9.5 days (mean) | No change | |
Côté et al., 2016 [160] | Double-blinded, Placebo-controlled | Chemotherapy patients (n = 65) | Nabilone | Partial Agonist | Oral (0.5–2 mg/day) | 11 weeks | No change | |
Levin et al., 2017 [161] | Double-blinded, Placebo-controlled | Postoperative nausea and vomiting patients (n = 340) | Nabilone | Partial Agonist | Oral (0.5 mg) | Acute | Not assessed | |
Rzepa et al., 2015 [162] | Double-blinded, Placebo-controlled, Within-subject | Healthy adults 20–36 (n = 19) | THCV | Neutral Antagonist | Oral (10 mg) | Acute | Not assessed |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murphy, T.; Le Foll, B. Targeting the Endocannabinoid CB1 Receptor to Treat Body Weight Disorders: A Preclinical and Clinical Review of the Therapeutic Potential of Past and Present CB1 Drugs. Biomolecules 2020, 10, 855. https://doi.org/10.3390/biom10060855
Murphy T, Le Foll B. Targeting the Endocannabinoid CB1 Receptor to Treat Body Weight Disorders: A Preclinical and Clinical Review of the Therapeutic Potential of Past and Present CB1 Drugs. Biomolecules. 2020; 10(6):855. https://doi.org/10.3390/biom10060855
Chicago/Turabian StyleMurphy, Thomas, and Bernard Le Foll. 2020. "Targeting the Endocannabinoid CB1 Receptor to Treat Body Weight Disorders: A Preclinical and Clinical Review of the Therapeutic Potential of Past and Present CB1 Drugs" Biomolecules 10, no. 6: 855. https://doi.org/10.3390/biom10060855
APA StyleMurphy, T., & Le Foll, B. (2020). Targeting the Endocannabinoid CB1 Receptor to Treat Body Weight Disorders: A Preclinical and Clinical Review of the Therapeutic Potential of Past and Present CB1 Drugs. Biomolecules, 10(6), 855. https://doi.org/10.3390/biom10060855