Effect of Musts Oxygenation at Various Stages of Cider Production on Oenological Parameters, Antioxidant Activity, and Profile of Volatile Cider Compounds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ciders Preparation
2.2. Determination of Total Acidity, Volatile Acidity, Total Extract Content, and Ethyl Alcohol Content
2.3. Free Amino Nitrogen (FAN) Content
2.4. Antioxidant Activity
2.5. Total Polyphenol Content
2.6. Analysis of Polyphenolic Compound Profiles
2.7. Analysis of Volatile Compounds
2.8. Analysis of Terpenoids
2.9. Statistical Analysis
3. Results and Discussion
3.1. The Effect of Oxygenation on Oenological Parameters of Ciders
3.2. The Effect of Oxygenation on Polyphenol Content and Cider Antioxidant Activity
3.3. The Effect of Oxygenation on the Profile of Volatile Cider Compounds
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Du Toit, W.; Marais, J.; Pretorius, I.S.; Du Toit, M. Oxygen in must and wine: A review. S. Afr. J. Enol. Vitic. 2006, 57, 76–94. [Google Scholar] [CrossRef] [Green Version]
- Tarko, T.; Kostrz, M.; Duda-Chodak, A.; Semik-Szczurak, D.; Sroka, P.; Senczyszyn, T. The effect of apple cultivars and yeast strains on selected quality parameters and antioxidant activity of fermented apple beverages. CyTA–J. Food 2018, 16, 892–900. [Google Scholar] [CrossRef]
- Li, H.; Guo, A.; Wang, H. Mechanisms of oxidative browning of wine. Food Chem. 2008, 108, 1–13. [Google Scholar] [CrossRef]
- Valero, E.; Millan, C.; Ortega, J.M. Influence of oxygen addition during growth phase on the biosynthesis of lipids in Saccahromyces cerevisiae (M330-9) in enological fermentations. J. Biosc. Bioeng. 2001, 92, 33–38. [Google Scholar] [CrossRef]
- Varela, C.; Torrea, D.; Schmidt, S.A.; Ancin-Azpilicueta, C.; Henschke, P.A. Effect of oxygen and lipid supplementation on the volatile composition of chemically defined medium and Chardonnay wine fermented with Saccharomyces cerevisiae. Food Chem. 2020, 135, 2863–2871. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Marco, A.; Jimenez-Moreno, N.; Ancin-Azpilicueta, C. Concentration of volatile compounds in Chardonnay wine fermented in stainless steel tanks and oak barrels. Food Chem. 2008, 108, 213–219. [Google Scholar] [CrossRef]
- Varela, C.; Barker, A.; Tran, T.; Borneman, A.; Curtin, C. Sensory profile and volatile aroma composition of reduced alcohol Merlot wines fermented with Metschnikowia pulcherrima and Saccharomyces uvarum. Int. J. Food Microb. 2017, 252, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Rudnitskaya, A.; Schmidtke, L.M.; Delgadillo, I.; Legin, A.; Scollary, G. Study of the influence of micro-oxygenation and oak chip maceration on wine composition using an electronic tongue and chemical analysis. Anal. Chim. Acta. 2009, 642, 235–245. [Google Scholar] [CrossRef] [PubMed]
- Schmidtke, L.M.; Clark, A.C.; Geoff, R.S. Micro-Oxygenation of Red Wine: Techniques, applications, and outcomes. Crit. Rev. Food Sci. Nutr. 2011, 51, 115–131. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Plaza, E.; Bautista-Ortín, A.B. Emerging Technologies for Aging Wines: Use of Chips and Micro-Oxigenation. In Red Wine Technology; Morata, A., Ed.; Academic Press: Madrid, Spain, 2019; pp. 150–152. [Google Scholar]
- Organisation Internationale de la Vigne et du Vin (O.I.V.). Compendium of International Methods of Wine and Must Analysis; Organisation Internationale de la Vigne et du Vin: Paris, France, 2019; pp. 154–196. [Google Scholar]
- Spedding, G.; Harrison, N.R.; Ganske, F.; Dell, E.J. A new way to test the free amino nitrogen content in alcoholic beverages with the SPECTROstarNano. BMG Labtech. 2012, 5, 1–2. [Google Scholar]
- Tarko, T.; Duda-Chodak, A.; Sroka, P.; Satora, P.; Tuszynski, T. Production of flavored apple chips of high antioxidant activity. J. Food Process. Preserv. 2010, 34, 728–742. [Google Scholar] [CrossRef]
- Tarko, T.; Duda-Chodak, A.; Sroka, P.; Satora, P.; Semik-Szczurak, D.; Wajda, Ł. Diversity and bioavailability of fruit polyphenols. J. Food Nutr. Res. 2017, 56, 167–178. [Google Scholar]
- Grützman, S.; Caliari, A.V.; Sganzerla, M.; Godoy, H.T. Volatile composition of Merlot red wine and its contribution to the aroma: Optimization and validation of analytical method. Talanta 2017, 174, 752–766. [Google Scholar]
- Sirén, K.; Sirén, K.; Sirén, J. Evaluation of organic and inorganic compounds levels of red wines processed from Pinot Noir grapes. Anal. Chem. Res. 2015, 3, 26–36. [Google Scholar] [CrossRef] [Green Version]
- Fell, A.; Dykes, S.; Nicolau, L.; Kilmartin, P. Electrochemical microoxidation of red wine. Am. J. Enol. Vitic. 2007, 58, 443–450. [Google Scholar]
- Anli, R.E.; Cavuldak, Ö.A. A review of microoxigenation application in wine. J. Inst. Brew. 2013, 118, 368–385. [Google Scholar] [CrossRef]
- Sáenz-Navajas, M.P.; Henschen, C.; Cantu, A.; Watrelot, A.A.; Waterhouse, A.L. Understanding microoxygenation: Effect of viable yeasts and sulfur dioxide levels on the sensory properties of a Merlot red wine. Food Res. Int. 2018, 108, 505–515. [Google Scholar] [CrossRef] [PubMed]
- Petrozziello, M.; Torchio, F.; Piano, F.; Giacosa, S.; Ugliano, M.; Bosso, A.; Rolle, L. Impact of Increasing Levels of Oxygen Consumption on the Evolution of Color, Phenolic, and Volatile Compounds of Nebbiolo Wines. Front. Chem. 2018, 6, 137. [Google Scholar] [CrossRef] [PubMed]
- Satora, P.; Semik-Szczurak, D.; Tarko, T.; Bułdys, A. Influence of selected Saccharomyces and Schizosaccharomyces strains and their mixed cultures on chemical composition of apple wines. J. Food Sci. 2018, 83, 424–431. [Google Scholar] [CrossRef] [PubMed]
- Riekstina-Dolge, R.; Kruma, Z.; Dimins, F.; Straumite, E.; Karklina, D. Phenolic composition and sensory properties of ciders produced from Latvian apples. Proc. Latv. Univ. Agr. 2014, 31, 39–45. [Google Scholar] [CrossRef] [Green Version]
- Minister Rolnictwa i Rozwoju Wsi, Dziennik Ustaw. Rozporządzenie Ministra Rolnictwa i Rozwoju Wsi z Dnia 22 Maja 2013 r. w Sprawie Rodzajów Fermentowanych Napojów Winiarskich oraz Szczegółowych Wymagań Organoleptycznych, Fizycznych i Chemicznych, jakie Powinny Spełniać te Napoje; Rządowe Centrum Legislacji: Warsaw, Poland, 2013. [Google Scholar]
- Kwaśniewska, D.; Wieczorek, D. Ocena właściwości przeciwutleniających cydrów. Food Sci. Technol. Q. 2016, 6, 80–89. [Google Scholar] [CrossRef]
- Gómez-Plaza, E.; Cano-López, M. A review on microoxygenation of red wines: Claims, benefits and the underlying chemistry. Food Chem. 2011, 125, 1131–1140. [Google Scholar] [CrossRef]
- Oliviera, C.M.; Ferreira, A.C.S.; De Freitas, V.; Silva, A.M.S. Oxidation mechanisms occurring in wines. Food Res. Int. 2011, 44, 1115–1126. [Google Scholar] [CrossRef]
- Arapitsas, A.; Scholz, M.; Vrhovsek, U.; Di Blasi, S.; Biondi, A.; Masuero, D.; Perenzoni, D.; Rigo, A.; Mattivi, F. A metabolomic approach to the study of wine micro-oxygenation. PLoS ONE 2012, 7. [Google Scholar] [CrossRef] [PubMed]
- Cano-Lo´pez, M.; Pardo-Minguez, F.; Schmauch, G.; Saucier, C.; Teissedre, P.L.; Lopez-Roca, J.M.; Gomez-Plaza, E. Effect of micro-oxygenation on color and anthocyanin-related compounds of wines with different phenolic contents. J. Agric. Food. Chem. 2008, 56, 5932–5941. [Google Scholar] [CrossRef] [PubMed]
- Laaksonen, O.; Kuldjärv, R.; Paalme, T.; Virkki, M.; Yang, B. Impact of apple cultivar, ripening stage, fermentation type and yeast strain on phenolic composition of apple ciders. Food Chem. 2017, 233, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Lili, X.; Qianyu, Y.; Feng’e, B.; Heng, Z.; Yuxin, Y. Melatonin treatment enhances the polyphenol content and antioxidant capacity of red wine. Hort. Plant. J. 2018, 4, 144–150. [Google Scholar] [CrossRef]
- Parpinello, G.; Plumejeau, F.; Maury, C.; Versari, A. Effect of micro-oxygenation on sensory characteristics and consumer preference of Cabernet Sauvignon wine. J. Sci. Food Agric. 2011, 92, 1238–1244. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Orte, P.; Lapena, A.C.; Escudero, A.; Astrain, J.; Baron, J.; Pardo, I.; Polo, L.; Ferrer, S.; Cacho, J.; Ferreira, V. Effect of micro-oxygenation on the evolution of aromatic compounds in wines: Malolactic fermentation and ageing in wood. LWT-Food Sci. Technol. 2009, 42, 391–401. [Google Scholar] [CrossRef]
- Perez-Magarino, S.; Ortage-Heras, M.; Cano-Mozo, E.; Gonzalez-Sanjose, M.L. The influence of oak wood chips, micro-oxygenation treatment and grape variety on colour andanthocyanin and phenolic composition of red wines. J. Food Comp. Anal. 2009, 22, 204–211. [Google Scholar] [CrossRef]
- Ferreira, V.; Escudero, A.; Lopez, R.; Cacho, J. Analytical characterization of the flavour of oxygen-spoiled wines through the gas chromatography-iontrap mass spectrometry of ultratrace odourants: Optimization of conditions. J. Chrom. Sci. 1998, 36, 331–339. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, A.C.; De Pinho, P.G.; Rodrigues, P.; Hogg, T.A. Kinetics of oxidative degradation of white wines and how they are affected by selected technological parameters. J. Agric. Food Chem. 2002, 50, 5919–5924. [Google Scholar] [CrossRef] [PubMed]
Sample Type | Oxygenation | Ethanol Content [%] | Total Extract [g/L] | Total Acidity [g of malic acid/L] | Volatile Acidity [g of acetic acid/L] | Free Amino Nitrogen (FAN) [mg/L] |
---|---|---|---|---|---|---|
DY | control | 6.84 ± 0.00 a | 16.47 ± 1.33 a | 1.44 ± 0.05 a | 0.28 ± 0.03 a | 30.86 ± 4.99 a |
DY | must | 5.89 ± 0.05 c | 18.60 ± 1.04 b | 1.81 ± 0.41 b | 0.30 ± 0.06 a | 34.92 ± 5.84 a |
DY | during fermentation | 5.79 ± 0.09 c | 18.17 ± 0.99 b | 1.79 ± 0.25 b | 0.37 ± 0.10 b | 25.99 ± 1.57 b |
CY | control | 6.56 ± 0.20 b | 16.03 ± 0.76 a | 1.23 ± 0.18 c | 0.48 ± 0.13 c | 48.82 ± 0.81 c |
CY | must | 5.87 ± 0.05 c | 18.30 ± 0.00 b | 1.36 ± 0.12 c | 0.29 ± 0.02 a | 50.34 ± 2.29 c |
CY | during fermentation | 5.79 ± 0.04 c | 17.83 ± 0.57 a,b | 1.47 ± 0.10 a | 0.37 ± 0.06 b | 40.13 ± 3.34 d |
WY | control | 6.87 ± 0.05 a | 16.57 ± 0.75 a | 1.25 ± 0.22 c | 0.28 ± 0.05 a | 39.93 ± 5.56 d |
WY | must | 5.84 ± 0.08 c | 18.80 ± 1.14 b | 1.54 ± 0.05 a | 0.28 ± 0.09 a | 46.54 ± 5.60 c |
WY | during fermentation | 5.92 ± 0.00 c | 17.90 ± 0.17 a,b | 1.55 ± 0.16 a | 0.42 ± 0.06 b,c | 40.47 ± 5.68 d |
WDY | control | 6.61 ± 0.00 b | 16.43 ± 0.75 a | 1.50 ± 0.12 a | 0.47 ± 0.08 c | 42.29 ± 3.16 d |
WDY | must | 5.89 ± 0.09 c | 18.20 ± 1.45 b | 1.81 ± 0.15 b | 0.61 ± 0.25 d | 41.35 ± 3.44 d |
WDY | during fermentation | 5.89 ± 0.05 c | 18.00 ± 0.00 b | 1.63 ± 0.18 a,b | 0.49 ± 0.02 c | 33.78 ± 1.46 a |
Sample Type | Oxygenation | AOX [mg of Trolox/100 mL] | TPC [mg of Catechin/100 mL] | Chlorogenic Acid [mg/L] | Catechin [mg/L] | Phloridzin [mg/L] |
---|---|---|---|---|---|---|
DY | control | 57.23 ± 2.38 a | 12.31 ± 0.52 a | 0.24 ± 0.00 a | 0.82 ± 0.07 a | 0.23 ± 0.08 a |
DY | must | 63.09 ± 2.17 b,d | 11.90 ± 0.60 a | 0.19 ± 0.00 b | 0.18 ± 0.02 b | - |
DY | during fermentation | 56.26 ± 1.45 a | 11.89 ± 0.13 a | 0.20 ± 0.01 c | 0.60 ± 0.10 c | - |
CY | control | 70.34 ± 0.79 c | 14.25 ± 0.47 b,d | 0.15 ± 0.02 d | 0.56 ± 0.08 c | 0.24 ± 0.00 a |
CY | must | 72.27 ± 1.87 c | 15.69 ± 0.62 c | 0.14 ± 0.00 d | 0.31 ± 0.02 d | - |
CY | during fermentation | 61.53 ± 1.33 b | 13.40 ± 0.41 b | 0.12 ± 0.00 e | 0.79 ± 0.06 a | - |
WY | control | 66.54 ± 2.80 d | 13.40 ± 0.31 b | 0.12 ± 0.01 e | 0.82 ± 0.03 a | 0.15 ± 0.01 b |
WY | must | 65.07 ± 2.95 b,d | 14.82 ± 0.28 d | 0.14 ± 0.02 d | 0.25 ± 0.02 e | 0.10 ± 0.01 c |
WY | during fermentation | 64.30 ± 1.46 d | 12.45 ± 0.45 a | 0.15 ± 0.01 d | 0.40 ± 0.08 d | - |
WDY | control | 57.24 ± 1.54 a | 11.82 ± 0.46 a | 0.10 ± 0.01 f | 0.62 ± 0.02 c | 0.62 ± 0.02 d |
WDY | must | 56.61 ± 0.50 a | 11.59 ± 0.15 a | 0.10 ± 0.01 f | 0.22 ± 0.09 b | - |
WDY | during fermentation | 54.20 ± 2.37 a | 10.60 ± 0.68 e | 0.10 ± 0.01 f | 0.62 ± 0.15 c | - |
Sample Type | Oxygenation | Ethyl Acetate | Isobutyl Acetate | Isopentyl Acetate | Hexyl Acetate | Ethyl Hexanoate | 3-methyl-Butanol | 2-methyl-Butanol | Isobutanol | Diethyl Acetal |
---|---|---|---|---|---|---|---|---|---|---|
mg/L | ||||||||||
DY | C | 80.87 ± 10.60 a | 1.38 ± 0.04 a | 0.48 ± 0.08 a | 0.11 ± 0.01 a | 0.27 ± 0.05 a | 245.82 ± 3.22 a | 171.27 ± 2.35 a | 169.66 ± 17.53 a | 2.31 ± 0.07 a |
DY | M | 44.27 ± 8.20 b | 1.72 ± 0.02 b | 1.09 ± 0.24 b | 0.15 ± 0.02 b,e | 0.31 ± 0.07 a,d | 231.01 ± 4.36 b | 173.58 ± 5.63 a | 159.47 ± 10.45 a | 2.83 ± 0.12 b,e |
DY | DF | 27.13 ± 1.86 c | 1.59 ± 0.02 c | 0.45 ± 0.01 a | 0.08 ± 0.01 c | 0.00 ± 0.00 b | 246.83 ± 4.06 a,b | 178.53 ± 2.60 a | 165.86 ± 9.59 a | 2.52 ± 0.05 c |
CY | C | 54.63 ± 3.38 d | 1.29 ± 0.04 d | 0.37 ± 0.26 c | 0.16 ± 0.01 b | 0.55 ± 0.04 c | 154.05 ± 2.20 c | 97.05 ± 2.25 b | 58.80 ± 3.64 b | 1.92 ± 0.05 d |
CY | M | 28.26 ± 0.20 c | 1.65 ± 0.02 e | 0.21± 0.02 d | 0.20 ± 0.01 d | 0.37 ± 0.00 d | 163.49 ± 5.12 d | 114.27 ± 4.24 c | 76.09 ± 5.36 c | 2.77 ± 0.06 b |
CY | DF | 21.92 ± 1.86 e | 1.79 ± 0.01 f | 0.11± 0.02 e | 0.14 ± 0.01 b,e | 0.13 ± 0.01 e | 155.91 ± 3.98 c | 114.01 ± 2.80 c | 73.59 ± 6.81 c | 3.00 ± 0.07 e |
WY | C | 55.86 ± 4.85 d | 1.45 ± 0.02 a | 0.16 ± 0.01 e | 0.13 ± 0.01 e | 0.30 ± 0.06 a | 154.41 ± 1.34 c | 109.49 ± 1.12 d | 61.97 ± 2.29 b | 2.60 ± 0.10 c |
WY | M | 32.45 ± 0.93 f | 1.76 ± 0.02 b | 0.29 ± 0.20 d,e | 0.17 ± 0.01 b | 0.22 ± 0.05 a | 149.60 ± 1.77 c | 109.72 ± 1.21 d | 68.74 ± 2.36 c | 3.49 ± 0.67 e,f |
WY | DF | 29.94 ± 8.44 c,e,f | 1.72 ± 0.03 b | 0.08 ± 0.03 f | 0.15 ± 0.01 b,e | 0.12 ± 0.10 e,f | 140.92 ± 3.00 e | 109.33 ± 2.73 d | 71.48 ± 1.76 c | 3.66 ± 0.25 e |
WDY | C | 41.82 ± 3.98 b | 1.52 ± 0.03 c | 0.15 ± 0.01 e | 0.11 ± 0.01 a | 0.18 ± 0.04 a,e,f | 139.23 ± 6.85 e | 91.34 ± 2.08 e | 75.12 ± 3.30 c | 2.75 ± 0.10 b |
WDY | M | 54.81 ± 12.40 d | 1.76 ± 0.04 f | 0.24 ± 0.12 d | 0.13 ± 0.03 a,b | 0.16 ± 0.0 f | 140.02 ± 1.60 e | 98.06 ± 1.19 b | 80.92 ± 9.20 c | 3.17 ± 0.08 e |
WDY | DF | 31.55 ± 1.20 f | 1.79 ± 0.04 f | 0.14 ± 0.03 e | 0.11 ± 0.01 a | 0.12 ± 0.01 e | 156.64 ± 1.68 c | 129.72 ± 3.00 f | 123.13 ± 4.34 d | 3.41 ± 0.11 f |
Sample Type | Oxygenation | Pinocarveol | Camphor | Terpen-4-ol | Geraniol | Eugenol | β-Damascenone | Isoeugenol | β-Ionone |
---|---|---|---|---|---|---|---|---|---|
mg/L | |||||||||
DY | C | 1.03 ± 0.11 a | 0.06 ± 0.01 a | 0.54 ± 0.04 a | 0.13 ± 0.05 a,b | 0.07 ± 0.02 a | 0.04 ± 0.00 a | 3.83 ± 0.18 a,c | 0.09 ± 0.01 a |
DY | M | 1.03 ± 0.03 a | 0.03 ± 0.00 b | 1.20 ± 0.04 b | 0.14 ± 0.02 a | 0.24 ± 0.03 b | 0.04 ± 0.00 a | 3.34 ± 0.03 b | 0.07 ± 0.01 a |
DY | DF | 0.92 ± 0.02 b | 0.03 ± 0.00 b | 0.56 ± 0.01 a | 0.11 ± 0.00 a,b | 0.07 ± 0.02 a | 0.04 ± 0.00 a | 3.67 ± 0.03 a,c | 0.08 ± 0.00 a |
CY | C | 0.58 ± 0.03 c | 0.05 ± 0.00 a | 1.95 ± 0.11 c | 0.10 ± 0.01 b,c | 0.25 ± 0.01 b | 0.05 ± 0.00 b | 3.64 ± 0.20 a,c | 0.08 ± 0.01 a |
CY | M | 0.60 ± 0.03 c | 0.03 ± 0.00 b | 1.88 ± 0.08 c | 0.09 ± 0.01 b,c | 0.33 ± 0.03 c | 0.04 ± 0.00 a | 3.88 ± 0.21 a,c | 0.09 ± 0.01 a |
CY | DF | 0.68 ± 0.01 d | 0.03 ± 0.00 b | 0.96 ± 0.06 d | 0.08 ± 0.01 c | 0.24 ± 0.02 b | 0.04 ± 0.00 a | 3.66 ± 0.14 a,c | 0.08 ± 0.00 a |
WY | C | 0.67 ± 0.06 d | 0.04 ± 0.00 b | 1.04 ± 0.03 e | 0.08 ± 0.00 c | 0.16 ± 0.01 c | 0.04 ± 0.00 a | 3.42 ± 0.31 c | 0.06 ± 0.01 b |
WY | M | 0.60 ± 0.02 c,d | 0.02 ± 0.00 c | 1.45 ± 0.05 f | 0.09 ± 0.01 b,c | 0.28 ± 0.03 b | 0.03 ± 0.00 c | 3.06 ± 0.13 d | 0.07 ± 0.00 b |
WY | DF | 0.67 ± 0.03 d | 0.03 ± 0.00 b | 0.81 ± 0.07 g | 0.09 ± 0.01 b,c | 0.14 ± 0.02 d | 0.04 ± 0.00 a | 2.39 ± 0.08 e | 0.06 ± 0.01 b |
WDY | C | 0.45 ± 0.04 e | 0.03 ± 0.00 b | 0.50 ± 0.09 a | 0.08 ± 0.00 c | 0.10 ± 0.00 e | 0.03 ± 0.00 c | 3.83 ± 0.25 a,c | 0.07 ± 0.02 b |
WDY | M | 0.55 ± 0.03 c | 0.02 ± 0.00 c | 0.52 ± 0.11 a | 0.08 ± 0.01 c | 0.19 ± 0.01 f | 0.03 ± 0.00 c | 3.74 ± 0.14 a | 0.06 ± 0.01 b |
WDY | DF | 1.04 ± 0.09 a | 0.03 ± 0.00 b | 0.19 ± 0.04 h | 0.09 ± 0.00 b,c | 0.12 ± 0.01 d | 0.03 ± 0.00 c | 4.13± 0.11 f | 0.08 ± 0.01 a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarko, T.; Duda-Chodak, A.; Sroka, P.; Januszek, M. Effect of Musts Oxygenation at Various Stages of Cider Production on Oenological Parameters, Antioxidant Activity, and Profile of Volatile Cider Compounds. Biomolecules 2020, 10, 890. https://doi.org/10.3390/biom10060890
Tarko T, Duda-Chodak A, Sroka P, Januszek M. Effect of Musts Oxygenation at Various Stages of Cider Production on Oenological Parameters, Antioxidant Activity, and Profile of Volatile Cider Compounds. Biomolecules. 2020; 10(6):890. https://doi.org/10.3390/biom10060890
Chicago/Turabian StyleTarko, Tomasz, Aleksandra Duda-Chodak, Paweł Sroka, and Magdalena Januszek. 2020. "Effect of Musts Oxygenation at Various Stages of Cider Production on Oenological Parameters, Antioxidant Activity, and Profile of Volatile Cider Compounds" Biomolecules 10, no. 6: 890. https://doi.org/10.3390/biom10060890
APA StyleTarko, T., Duda-Chodak, A., Sroka, P., & Januszek, M. (2020). Effect of Musts Oxygenation at Various Stages of Cider Production on Oenological Parameters, Antioxidant Activity, and Profile of Volatile Cider Compounds. Biomolecules, 10(6), 890. https://doi.org/10.3390/biom10060890