Development of 6′-N-Acylated Isepamicin Analogs with Improved Antibacterial Activity against Isepamicin-Resistant Pathogens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Overexpression and Purification of AAC(6′)-APH(2″)
2.3. Chemoenzymatic Synthesis of 6′-N-Acylated ISP Analogs
2.4. UPLC-qTOF-HR-MS Analysis and Structural Identification of New ISP Analogs
2.5. Antibacterial Susceptibility Test
2.6. In Vitro Cytotoxicity Assay against Mammalian Renal Cell Lines
3. Results and Discussion
3.1. 6′-N-Acylation of ISP by the AAC(6′)-APH(2″) Enzyme
3.2. Structural Characterization of New ISP Analogs
3.3. Antibacterial Activity and Cytotoxicity of 6′-N-Acylated ISP Analogs
4. Conclusions
5. Patents
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Poehlsgaard, J.; Douthwaite, S. The bacterial ribosome as a target for antibiotics. Nat. Rev. Microbiol. 2005, 3, 870–881. [Google Scholar] [CrossRef]
- Becker, B.; Cooper, M.A. Aminoglycoside antibiotics in the 21st century. ACS Chem. Biol. 2013, 8, 105–115. [Google Scholar] [CrossRef]
- Sana, T.G.; Monack, D.M. Microbiology: The dark side of antibiotics. Nature 2016, 534, 624–625. [Google Scholar] [CrossRef] [Green Version]
- Krause, K.M.; Serio, A.W.; Kane, T.R.; Connolly, L.E. Aminoglycosides: An overview. Cold Spring Harb. Perspect. Med. 2016, 6, a027029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serio, A.W.; Keepers, T.; Andrews, L.; Krause, K.M. Aminoglycoside revival: Review of a historically important class of antimicrobials undergoing rejuvenation. EcoSal. Plus 2018, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thamban Chandrika, N.; Garneau-Tsodikova, S. Comprehensive review of chemical strategies for the preparation of new aminoglycosides and their biological activities. Chem. Soc. Rev. 2018, 47, 1189–1249. [Google Scholar] [CrossRef] [PubMed]
- Ban, Y.H.; Song, M.C.; Park, J.W.; Yoon, Y.J. Minor components of aminoglycosides: Recent advances in their biosynthesis and therapeutic potential. Nat. Prod. Rep. 2020, 37, 301–311. [Google Scholar] [CrossRef]
- Shaeer, K.M.; Zmarlicka, M.T.; Chahine, E.B.; Piccicacco, N.; Cho, J.C. Plazomicin: A next-generation aminoglycoside. Pharmacotherapy 2019, 39, 77–93. [Google Scholar] [CrossRef] [Green Version]
- Llewellyn, N.M.; Li, Y.; Spencer, J.B. Biosynthesis of butirosin: Transfer and deprotection of the unique amino acid side chain. Chem. Biol. 2007, 14, 379–386. [Google Scholar] [CrossRef] [Green Version]
- Llewellyn, N.M.; Spencer, J.B. Chemoenzymatic acylation of aminoglycoside antibiotics. Chem. Commun. (Camb.) 2008, 32, 3786–3788. [Google Scholar] [CrossRef]
- Green, K.D.; Chen, W.; Houghton, J.L.; Fridman, M.; Garneau-Tsodikova, S. Exploring the substrate promiscuity of drug-modifying enzymes for the chemoenzymatic generation of N-acylated aminoglycosides. ChemBioChem 2010, 11, 119–126. [Google Scholar] [CrossRef] [Green Version]
- Tsitovich, P.B.; Pushechnikov, A.; French, J.M.; Disney, M.D. A chemoenzymatic route to diversify aminoglycosides enables a microarray-based method to probe acetyltransferase activity. ChemBioChem 2010, 11, 1656–1660. [Google Scholar] [CrossRef] [Green Version]
- Holbrook, S.Y.; Garneau-Tsodikova, S. Expanding aminoglycoside resistance enzyme regiospecificity by mutation and truncation. Biochemistry 2016, 55, 5726–5737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.; Choi, H.; Lee, J.C.; Lee, Y.C.; Woo, E.R.; Lee, D.G. Antibacterial activity of hibicuslide C on multidrug-resistant Pseudomonas aeruginosa isolates. Curr. Microbiol. 2016, 73, 519–526. [Google Scholar] [CrossRef] [PubMed]
- Gurung, M.; Moon, D.C.; Tamang, M.D.; Kim, J.; Lee, Y.C.; Seol, S.Y.; Cho, D.T.; Lee, J.C. Emergence of 16S rRNA methylase gene armA and cocarriage of blaIMP-1 in Pseudomonas aeruginosa isolates from South Korea. Diagn. Microbiol. Infect Dis. 2010, 68, 468–470. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Lee, D.G. Antimicrobial peptide pleurocidin synergizes with antibiotics through hydroxyl radical formation and membrane damage, and exerts antibiofilm activity. Biochim. Biophys. Acta 2012, 1820, 1831–1838. [Google Scholar] [CrossRef]
- Falagas, M.E.; Karageorgopoulos, D.E.; Georgantzi, G.G.; Sun, C.; Wang, R.; Rafailidis, P.I. Susceptibility of Gram-negative bacteria to isepamicin: A systematic review. Expert Rev. Anti-Infect. Ther. 2012, 10, 207–218. [Google Scholar] [CrossRef]
- Ban, Y.H.; Song, M.C.; Hwang, J.Y.; Shin, H.L.; Kim, H.J.; Hong, S.K.; Lee, N.J.; Park, J.W.; Cha, S.S.; Liu, H.W.; et al. Complete reconstitution of the diverse pathways of gentamicin B biosynthesis. Nat. Chem. Biol. 2019, 15, 295–303. [Google Scholar] [CrossRef]
- Dozzo, P.; Moser, H.E. New aminoglycoside antibiotics. Expert Opin. Ther. Pat. 2010, 20, 1321–1341. [Google Scholar] [CrossRef]
- Chandrika, N.T.; Garneau-Tsodikova, S. A review of patents (2011–2015) towards combating resistance to and toxicity of aminoglycosides. Medchemcomm 2016, 7, 50–68. [Google Scholar] [CrossRef] [Green Version]
- Aggen, J.B.; Armstrong, E.S.; Goldblum, A.A.; Dozzo, P.; Linsell, M.S.; Gliedt, M.J.; Hildebrandt, D.J.; Feeney, L.A.; Kubo, A.; Matias, R.D.; et al. Synthesis and spectrum of the neoglycoside ACHN-490. Antimicrob. Agents Chemother. 2010, 54, 4636–4642. [Google Scholar] [CrossRef] [Green Version]
- Cox, G.; Ejim, L.; Stogios, P.J.; Koteva, K.; Bordeleau, E.; Evdokimova, E.; Sieron, A.; Savchenko, A.; Serio, A.W.; Krause, K.M.; et al. Plazomicin retains antibiotic activity against most aminoglycoside modifying enzymes. ACS Infect. Dis. 2018, 4, 980–987. [Google Scholar] [CrossRef] [PubMed]
- Eljaaly, K.; Alharbi, A.; Alshehri, S.; Ortwine, J.K.; Pogue, J.M. Plazomicin: A novel aminoglycoside for the treatment of resistant Gram-negative bacterial infections. Drugs 2019, 79, 243–269. [Google Scholar] [CrossRef] [PubMed]
- Nudelman, I.; Rebibo-Sabbah, A.; Cherniavsky, M.; Belakhov, V.; Hainrichson, M.; Chen, F.; Schacht, J.; Pilch, D.S.; Ben-Yosef, T.; Baasov, T. Development of novel aminoglycoside (NB54) with reduced toxicity and enhanced suppression of disease-causing premature stop mutations. J. Med. Chem. 2009, 52, 2836–2845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
No. | A-ISP | P-ISP | M-ISP | |||
---|---|---|---|---|---|---|
δC | δH, (J in Hz) | δC | δH, (J in Hz) | δC | δH, (J in Hz) | |
1 | 48.8 | 4.08 (m, 1H) | 48.8 | 4.08 (m, 1H) | 48.6 | 4.08 (m, 1H) |
2 | 30.5 | 1.68 (ddd, 15.0, 7.5, 7.5, 1H) 2.12 (brd, 15.0, 1H) | 30.5 | 1.66 (ddd, 15.0, 7.5, 7.5, 1H) 2.12 (brd, 15.0, 1H) | 30.3 | 1.68 (ddd, 15.0, 7.5, 7.5, 1H) 2.12 (brd, 15.0, 1H) |
3 | 48.8 | 3.42 (m, 1H) | 48.8 | 3.42 (m, 1H) | 48.5 | 3.42 (m, 1H) |
4 | 80.6 | 3.68 (dd, 7.5, 7.5, 1H) | 80.5 | 3.68 (dd, 7.5, 7.5, 1H) | 80.4 | 3.68 (dd, 7.5, 7.5, 1H) |
5 | 73.1 | 3.74 (dd, 7.5, 7.5, 1H) | 73.1 | 3.72 (dd, 7.5, 7.5, 1H) | 73.0 | 3.74 (dd, 7.5, 7.5, 1H) |
6 | 79.5 | 3.67 (dd, 7.5, 7.5, 1H) | 79.5 | 3.67 (dd, 7.5, 7.5, 1H) | 79.2 | 3.67 (dd, 7.5, 7.5, 1H) |
1a | 173.0 | 173.0 | 172.9 | |||
1b | 67.9 | 4.35 (dd, 7.5, 5.0, 1H) | 67.9 | 4.34 (dd, 7.5, 5.0, 1H) | 66.8 | 4.35 (dd, 7.5, 5.0, 1H) |
1c | 42.0 | 3.15 (dd, 15.0, 7.5, 1H) 3.21 (dd, 15.0, 5.0, 1H) | 42.0 | 3.15 (dd, 15.0, 7.5, 1H) 3.21 (dd, 15.0, 5.0, 1H) | 41.8 | 3.15 (dd, 15.0, 7.5, 1H) 3.21 (dd, 15.0, 5.0, 1H) |
1′ | 98.2 | 5.31 (brs, 1H) | 98.0 | 5.30 (brs, 1H) | 98.4 | 5.31 (brs, 1H) |
2′ | 71.3 | 3.52 (dd, 7.5, 4.0, 1H) | 71.3 | 3.53 (dd, 7.5, 4.0, 1H) | 71.1 | 3.52 (dd, 7.5, 4.0, 1H) |
3′ | 71.5 | 3.72 (dd, 7.5, 7.5, 1H) | 71.5 | 3.71 (dd, 7.5, 7.5, 1H) | 71.3 | 3.72 (dd, 7.5, 7.5, 1H) |
4′ | 72.5 | 3.61 (dd, 7.5, 7.5, 1H) | 72.5 | 3.61 (dd, 7.5, 7.5, 1H) | 72.3 | 3.61 (dd, 7.5, 7.5, 1H) |
5′ | 70.6 | 3.22 (brdd, 7.5, 7.5, 1H) | 70.6 | 3.22 (brdd, 7.5, 7.5, 1H) | 70.4 | 3.22 (brdd, 7.5, 7.5, 1H) |
6′ | 39.9 | 3.36 (dd, 15.0, 5.0, 1H) 3.43 (brd, 15.0, 1H) | 39.8 | 3.36 (dd, 15.0, 5.0, 1H) 3.43 (brd, 15.0, 1H) | 39.7 | 3.36 (dd, 15.0, 5.0, 1H) 3.43 (brd, 15.0, 1H) |
6′a | 174.8 | 178.8 | 174.7 | |||
6′b | 20.6 | 1.94 (s, 3H) | 29.3 | 2.15 (q, 8.0, 2H) | 21.9 | 1.88 (s, 2H) |
6′c | 9.8 | 0.97 (t, 8.0, 3H) | 176.7 | |||
1″ | 98.4 | 5.03 (brs, 1H) | 98.4 | 5.03 (brs, 1H) | 98.2 | 5.03 (brs, 1H) |
2″ | 66.3 | 3.88 (dd, 7.5, 4.0, 1H) | 66.3 | 3.88 (dd, 7.5, 4.0, 1H) | 66.2 | 3.88 (dd, 7.5, 4.0, 1H) |
3″ | 64.6 | 3.21 (d, 7.5, 1H) | 64.6 | 3.21 (d, 7.5, 1H) | 64.4 | 3.21 (d, 7.5, 1H) |
4″ | 70.1 | 70.1 | 69.9 | |||
5″ | 67.1 | 4.07 (brd, 15.0, 1H) 3.24 (brd, 15.0, 1H) | 67.9 | 4.06 (brd, 15.0, 1H) 3.25 (brd, 15.0, 1H) | 67.7 | 4.07 (brd, 15.0, 1H) 3.24 (brd, 15.0, 1H) |
6″ | 35.3 | 2.78 (s, 3H) | 35.3 | 2.78 (s, 3H) | 35.1 | 2.76 (s, 3H) |
7″ | 21.1 | 1.21 (s, 3H) | 21.1 | 1.21 (s, 3H) | 20.9 | 1.19 (s, 3H) |
Bacterial Strains | MIC90 (µg/mL) | |||
---|---|---|---|---|
ISP | A-ISP | P-ISP | M-ISP | |
E. coli ATCC 25922 | 4 | 8 | 4 | 2 |
AREC a P00538 | 32 | 16 | 16 | 4 |
AREC a P00579 | >64 | 16 | 16 | 8 |
AREC a P00650 | >64 | 8 | 16 | 4 |
AREC a P00651 | >64 | 8 | 8 | 4 |
AREC a P00661 | 32 | 16 | 8 | 4 |
P. aeruginosa ATCC 27853 | 8 | 16 | 8 | 4 |
MDRPA b 1–21 | >64 | 8 | 16 | 4 |
MDRPA b 1–23 | >64 | 16 | 16 | 4 |
MDRPA b 1–67 | >64 | 16 | 8 | 2–4 |
MDRPA b 2–22 | >64 | 16 | 16 | 2 |
MDRPA b 2–35 | >64 | 32 | 16 | 4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ban, Y.H.; Song, M.C.; Kim, H.J.; Lee, H.; Wi, J.B.; Park, J.W.; Lee, D.G.; Yoon, Y.J. Development of 6′-N-Acylated Isepamicin Analogs with Improved Antibacterial Activity against Isepamicin-Resistant Pathogens. Biomolecules 2020, 10, 893. https://doi.org/10.3390/biom10060893
Ban YH, Song MC, Kim HJ, Lee H, Wi JB, Park JW, Lee DG, Yoon YJ. Development of 6′-N-Acylated Isepamicin Analogs with Improved Antibacterial Activity against Isepamicin-Resistant Pathogens. Biomolecules. 2020; 10(6):893. https://doi.org/10.3390/biom10060893
Chicago/Turabian StyleBan, Yeon Hee, Myoung Chong Song, Hee Jin Kim, Heejeong Lee, Jae Bok Wi, Je Won Park, Dong Gun Lee, and Yeo Joon Yoon. 2020. "Development of 6′-N-Acylated Isepamicin Analogs with Improved Antibacterial Activity against Isepamicin-Resistant Pathogens" Biomolecules 10, no. 6: 893. https://doi.org/10.3390/biom10060893
APA StyleBan, Y. H., Song, M. C., Kim, H. J., Lee, H., Wi, J. B., Park, J. W., Lee, D. G., & Yoon, Y. J. (2020). Development of 6′-N-Acylated Isepamicin Analogs with Improved Antibacterial Activity against Isepamicin-Resistant Pathogens. Biomolecules, 10(6), 893. https://doi.org/10.3390/biom10060893