Recent Advances in the Biosynthesis of Carbazoles Produced by Actinomycetes
Abstract
:1. Introduction
2. Elucidation of the Carbazole Biosynthetic Pathway
2.1. Discovery of the Carbazole Synthase CqsB2
2.2. Reconstitution of Carbazole Backbone
3. Enzymatic Modification of the Carbazole Skeleton
3.1. New-Type Carbazole Prenyltransferase
3.2. Isopentenyl Diphosphate Isomerase
3.3. Biotransformation of Carbazole Derivatives
4. Conserved Gene Clusters Distributed in Bacteria
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schmidt, A.W.; Reddy, K.R.; Knölker, H.J. Occurrence, Biogenesis, and Synthesis of Biologically Active Carbazole Alkaloids. Chem. Rev. 2012, 112, 3193–3328. [Google Scholar] [CrossRef] [PubMed]
- Alkhalaf, L.M.; Ryan, K.S. Biosynthetic Manipulation of Tryptophan in Bacteria: Pathways and Mechanisms. Chem. Boil. 2015, 22, 317–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cardellina, J.H.; Kirkup, M.P.; Moore, R.E.; Mynderse, J.S.; Seff, K.; Simmons, C.J. Hyellazone and chlorohyellazole, two novel carbazoles from the blue-green alga Hyella caespitosa born. et flah. Tetrahedron Lett. 1979, 20, 4915–4916. [Google Scholar] [CrossRef]
- Kotoda, N.; Shin-ya, K.; Furihata, K.; Hayakawa, Y.; Seto, H. Isolation and structure elucidation of novel neuronal cell protecting substances, carbazomadurins A and B produced by Actinomadura madurae. J. Antibiot. 1997, 50, 770–772. [Google Scholar] [CrossRef] [Green Version]
- Nihei, Y.; Yamamoto, H.; Hasegawa, M.; Hanada, M.; Fukagawa, Y.; Oki, T. Epocarbazolins a and b, novel 5-lipoxygenase inhibitors. J. Antibiot. 1993, 46, 25–33. [Google Scholar] [CrossRef]
- Kato, S.; Kawai, H.; Kawasaki, T.; Toda, Y.; Urata, T.; Hayakawa, Y. Studies on free radical scavenging substances from microorganisms. I. Carazostatin, a new free radical scavenger produced by Streptomyces chromofuscus DC 118. J. Antibiot. 1989, 42, 1879–1881. [Google Scholar] [CrossRef] [Green Version]
- Kathrin, S.; Nachtigall, J.; Hänchen, A.; Nicholson, G.; Goodfellow, M.; Süssmuth, R.D.; Fiedler, H.P. Lipocarbazoles, Secondary Metabolites from Tsukamurella pseudospumae Acta 1857 with Antioxidative Activity. J. Nat. Prod. 2009, 72, 1768–1772. [Google Scholar] [CrossRef]
- Mo, C.J.; Shin-ya, K.; Furihata, K.; Shimazu, A.; Hayakawa, Y.; Seto, H.; Furihata, K.; Furihata, K. Isolation and structural elucidation of antioxidative agents, antiostatins A1 to A4 and B2 to B5. J. Antibiot. 1990, 43, 1337–1340. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.Y.; Zhan, Z.J.; Zhang, H.; Qi, H.; Zhang, L.Q.; Chen, S.X.; Gan, L.S.; Wang, J.D.; Ma, L.F. Morindolestatin, Naturally Occurring Dehydromorpholinocarbazole Alkaloid from Soil-Derived Bacterium of the Genus Streptomyces. Org. Lett. 2020, 22, 1113–1116. [Google Scholar] [CrossRef]
- Shin-ya, K.; Tanaka, M.; Furihata, K.; Hayakawa, Y.; Seto, H. Structure of carquinostatin a, a new neuronal cell protecting substance produced by Streptomyces exfoliatus. Tetrahedron Lett. 1993, 34, 4943–4944. [Google Scholar] [CrossRef]
- Shin-ya, K.; Kunigami, T.; Kim, J.S.; Furihata, K.; Hayakawa, Y.; Seto, H. Carquinostatin B, a New Neuronal Cell-protecting Substance Produced by Streptomyces exfoliatus. Biosci. Biotechnol. Biochem. 1997, 61, 1768–1769. [Google Scholar] [CrossRef] [PubMed]
- Grammel, H.; Wolf, H.; Gilles, E.D.; Huth, F.; Laatsch, H. Carbazole antibiotics synthesis in a Streptomyces tendae bald mutant, created by acriflavine treatment. Z. Nat. C 1998, 53, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Shin-ya, K.; Shimizu, S.; Kunigami, T.; Furihata, K.; Furihata, K.; Seto, H. A New Neuronal Cell Protecting Substance, Lavanduquinocin, Produced by Streptomyces viridochromogenes. J. Antibiot. 1995, 48, 574–578. [Google Scholar] [CrossRef]
- Kato, S.; Shindo, K.; Kataoka, Y.; Yamagishi, Y.; Mochizuki, J. Studies on free radical scavenging substances from microorganisms. II. Neocarazostatins A, B and C, novel free radical scavengers. J. Antibiot. 1991, 44, 903–907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, M.; Shin-ya, K.; Furihata, K.; Seto, H. Isolation and Structural Elucidation of Antioxidative Substances, Carbazoquinocins A to F. J. Antibiot. 1995, 48, 326–328. [Google Scholar] [CrossRef] [Green Version]
- Sakano, K.; Nakamura, S. New antibiotics, carbazomycins A and B. II. Structural elucidation. J. Antibiot. 1980, 33, 961–966. [Google Scholar] [CrossRef]
- Naid, T.; Kitahara, T.; Kaneda, M.; Nakamura, S. Carbazomycins C, D, E and F, minor components of the carbazomycin complex. J. Antibiot. 1987, 40, 157–164. [Google Scholar] [CrossRef] [Green Version]
- Kaneda, M.; Naid, T.; Kitahara, T.; Nakamura, S.; Hirata, T.; Suga, T. Carbazomycins G and H, novel carbazomycin congeners containing a quinol moiety. J. Antibiot. 1988, 41, 602–608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Intaraudom, C.; Rachtawee, P.; Suvannakad, R.; Pittayakhajonwut, P. Antimalarial and antituberculosis substances from Streptomyces sp. BCC26924. Tetrahedron 2011, 67, 7593–7597. [Google Scholar] [CrossRef]
- Hammond, B.; Kontos, H.A.; Hess, M.L. Oxygen radicals in the adult respiratory distress syndrome, in myocardial ischemia and reperfusion injury, and in cerebral vascular damage. Can. J. Physiol. Pharmacol. 1985, 63, 173–187. [Google Scholar] [CrossRef]
- Cerutti, P. Prooxidant states and tumor promotion. Science 1985, 227, 375–381. [Google Scholar] [CrossRef] [PubMed]
- Writing Group; Edaravone (MCI-186) ALS 19 Study Group. Safety and efficacy of edaravone in well defined patients with amyotrophic lateral sclerosis: A randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2017, 16, 505–512. [Google Scholar] [CrossRef]
- Makino, M.; Sugimoto, H.; Shiro, Y.; Asamizu, S.; Onaka, H.; Nagano, S. Crystal structures and catalytic mechanism of cytochrome P450 StaP that produces the indolocarbazole skeleton. Proc. Natl. Acad. Sci. USA 2007, 104, 11591–11596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Zhang, Q.; Li, S.; Zhu, Y.; Zhang, G.; Zhang, H.; Tian, X.; Zhang, S.; Ju, J.; Zhang, C. Identification and Characterization of Xiamycin A and Oxiamycin Gene Cluster Reveals an Oxidative Cyclization Strategy Tailoring Indolosesquiterpene Biosynthesis. J. Am. Chem. Soc. 2012, 134, 8996–9005. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Baunach, M.; Ding, L.; Hertweck, C. Bacterial Synthesis of Diverse Indole Terpene Alkaloids by an Unparalleled Cyclization Sequence†. Angew. Chem. Int. Ed. 2012, 51, 10293–10297. [Google Scholar] [CrossRef]
- Yamasaki, K.; Kaneda, M.; Watanabe, K.; Ueki, Y.; Ishimaru, K.; Nakamura, S.; Nomi, R.; Yoshida, N.; Nakajima, T. New antibiotics, carbazomycins A and B. III. Taxonomy and biosynthesis. J. Antibiot. 1983, 36, 552–558. [Google Scholar] [CrossRef] [Green Version]
- Kaneda, M.; Kitahara, T.; Yamasaki, K.; Nakamura, S. Biosynthesis of carbazomycin B. II. Origin of the whole carbon skeleton. J. Antibiot. 1990, 43, 1623–1626. [Google Scholar] [CrossRef] [Green Version]
- Orihara, N.; Furihata, K.; Seto, H. Studies on the biosynthesis of terpenoidal compounds produced by actinomycetes. 2. Biosynthesis of carquinostatin B via the non-mevalonate pathway in Streptomyces exfoliatus. J. Antibiot. 1997, 50, 979–981. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.; Elsayed, S.S.; Lv, M.; Tabudravu, J.; Rateb, M.E.; Gyampoh, R.; Kyeremeh, K.; Ebel, R.; Jaspars, M.; Deng, Z.; et al. Biosynthesis of Neocarazostatin A Reveals the Sequential Carbazole Prenylation and Hydroxylation in the Tailoring Steps. Chem. Biol. 2015, 22, 1633–1642. [Google Scholar] [CrossRef]
- Su, L.; Lv, M.; Kyeremeh, K.; Deng, Z.; Deng, H.; Yu, Y. A ThDP-dependent enzymatic carboligation reaction involved in Neocarazostatin A tricyclic carbazole formation. Org. Biomol. Chem. 2016, 14, 8679–8684. [Google Scholar] [CrossRef] [Green Version]
- Su, L.; Zhang, R.; Kyeremeh, K.; Deng, Z.; Deng, H.; Yu, Y. Dissection of the neocarazostatin: A C 4 alkyl side chain biosynthesis by in vitro reconstitution. Org. Biomol. Chem. 2017, 15, 3843–3848. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, M.; Tomita, T.; Shin-ya, K.; Nishiyama, M.; Kuzuyama, T. An Unprecedented Cyclization Mechanism in the Biosynthesis of Carbazole Alkaloids in Streptomyces. Angew. Chem. Int. Ed. 2019, 58, 13349–13353. [Google Scholar] [CrossRef] [PubMed]
- Ames, B.D.; Korman, T.P.; Zhang, W.; Smith, P.; Vu, T.; Tang, Y.; Tsai, S.C. Crystal structure and functional analysis of tetracenomycin ARO/CYC: Implications for cyclization specificity of aromatic polyketides. Proc. Natl. Acad. Sci. USA 2008, 105, 5349–5354. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.Y.; Ames, B.D.; Tsai, S.C. Insight into the Molecular Basis of Aromatic Polyketide Cyclization: Crystal Structure and in Vitro Characterization of WhiE-ORFVI. Biochemistry 2012, 51, 3079–3091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radauer, C.; Lackner, P.; Breiteneder, H. The Bet v 1 fold: An ancient, versatile scaffold for binding of large, hydrophobic ligands. BMC Evol. Boil. 2008, 8, 286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Su, L.; Fang, Q.; Tabudravu, J.N.; Yang, X.; Rickaby, K.; Trembleau, L.; Kyeremeh, K.; Deng, Z.; Deng, H.; et al. Enzymatic Reconstitution and Biosynthetic Investigation of the Bacterial Carbazole Neocarazostatin A. J. Org. Chem. 2019, 84, 16323–16328. [Google Scholar] [CrossRef]
- Proteau, P.J.; Li, Y.; Chen, J.; Williamson, R.T.; Gould, S.J.; Laufer, R.S.; Dmitrienko, G.I. Isoprekinamycin Is a Diazobenzo[a]fluorene Rather than a Diazobenzo[b]fluorene. J. Am. Chem. Soc. 2000, 122, 8325–8326. [Google Scholar] [CrossRef]
- Hertweck, C.; Luzhetskyy, A.; Rebets, Y.; Bechthold, A. Type II polyketide synthases: Gaining a deeper insight into enzymatic teamwork. Nat. Prod. Rep. 2007, 24, 162–190. [Google Scholar] [CrossRef]
- Shen, Y.; Yoon, P.; Yu, T.W.; Floss, H.G.; Hopwood, D.; Moore, B.S. Ectopic expression of the minimal whiE polyketide synthase generates a library of aromatic polyketides of diverse sizes and shapes. Proc. Natl. Acad. Sci. USA 1999, 96, 3622–3627. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Hahn, F.; Demydchuk, Y.; Chettle, J.; Tosin, M.; Osada, H.; Leadlay, P.F. In vitro reconstruction of tetronate RK-682 biosynthesis. Nat. Methods 2009, 6, 99–101. [Google Scholar] [CrossRef]
- Pistorius, D.; Ullrich, A.; Lucas, S.; Hartmann, R.W.; Kazmaier, U.; Müller, R. Biosynthesis of 2-Alkyl-4(1H)-Quinolones in Pseudomonas aeruginosa: Potential for Therapeutic Interference with Pathogenicity. ChemBioChem 2011, 12, 850–853. [Google Scholar] [CrossRef] [PubMed]
- Katsuyama, Y.; Miyazono, K.I.; Tanokura, M.; Ohnishi, Y.; Horinouchi, S. Structural and Biochemical Elucidation of Mechanism for Decarboxylative Condensation of β-Keto Acid by Curcumin Synthase. J. Boil. Chem. 2010, 286, 6659–6668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bretschneider, T.; Zocher, G.; Unger, M.; Scherlach, K.; Stehle, T.; Hertweck, C. A ketosynthase homolog uses malonyl units to form esters in cervimycin biosynthesis. Nat. Methods 2011, 8, 154–161. [Google Scholar] [CrossRef] [PubMed]
- Abugrain, M.E.; Brumsted, C.J.; Osborn, A.R.; Philmus, B.; Mahmud, T. A Highly Promiscuous ß-Ketoacyl-ACP Synthase (KAS) III-like Protein Is Involved in Pactamycin Biosynthesis. ACS Chem. Boil. 2017, 12, 362–366. [Google Scholar] [CrossRef]
- Rock, C.O.; Cronan, J.E. Escherichia coli as a model for the regulation of dissociable (type II) fatty acid biosynthesis. Biochim. Biophys. Acta (BBA) Lipids Lipid Metab. 1996, 1302, 1–16. [Google Scholar] [CrossRef]
- Willadsen, P.; Eggerer, H. Substrate Stereochemistry of the Enoyl-CoA Hydratase Reaction. JBIC J. Boil. Inorg. Chem. 1975, 54, 247–252. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [Green Version]
- Tello, M.; Kuzuyama, T.; Heide, L.E.; Noel, J.P.; Richard, S.B. The ABBA family of aromatic prenyltransferases: Broadening natural product diversity. Cell. Mol. Life Sci. 2008, 65, 1459–1463. [Google Scholar] [CrossRef] [Green Version]
- Kuzuyama, T.; Noel, J.P.; Richard, S.B. Structural basis for the promiscuous biosynthetic prenylation of aromatic natural products. Nature 2005, 435, 983–987. [Google Scholar] [CrossRef] [Green Version]
- Metzger, U.; Schall, C.; Zocher, G.; Unsöld, I.; Stec, E.; Li, S.M.; Heide, L.E.; Stehle, T. The structure of dimethylallyl tryptophan synthase reveals a common architecture of aromatic prenyltransferases in fungi and bacteria. Proc. Natl. Acad. Sci. USA 2009, 106, 14309–14314. [Google Scholar] [CrossRef] [Green Version]
- Roose, B.W.; Christianson, D.W. Structural Basis of Tryptophan Reverse N-Prenylation Catalyzed by CymD. Biochemistry 2019, 58, 3232–3242. [Google Scholar] [CrossRef] [PubMed]
- Yazaki, K.; Kunihisa, M.; Fujisaki, T.; Sato, F. Geranyl Diphosphate:4-Hydroxybenzoate Geranyltransferase from Lithospermum erythrorhizon. J. Boil. Chem. 2001, 277, 6240–6246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melzer, M.; Heide, L.E. Characterization of Polyprenyldiphosphate: 4-Hydroxybenzoate Polyprenyltransferase from Escherichia coli. Biochim. Biophys. Acta (BBA) Lipids Lipid Metab. 1994, 1212, 93–102. [Google Scholar] [CrossRef]
- Heide, L.E. Prenyl transfer to aromatic substrates: Genetics and enzymology. Curr. Opin. Chem. Boil. 2009, 13, 171–179. [Google Scholar] [CrossRef]
- Botta, B.; Vitali, A.; Menendez, P.; Misiti, D.; Monache, G.D. Prenylated Flavonoids: Pharmacology and Biotechnology. Curr. Med. Chem. 2005, 12, 713–739. [Google Scholar] [CrossRef]
- Ramos-Valdivia, A.C.; Van Der Heijden, R.; Verpoorte, R. Isopentenyl diphosphate isomerase: A core enzyme in isoprenoid biosynthesis. A review of its biochemistry and function. Nat. Prod. Rep. 1997, 14, 591–603. [Google Scholar] [CrossRef]
- Kaneda, K.; Kuzuyama, T.; Takagi, M.; Hayakawa, Y.; Seto, H. An unusual isopentenyl diphosphate isomerase found in the mevalonate pathway gene cluster from Streptomyces sp. strain CL190. Proc. Natl. Acad. Sci. USA 2000, 98, 932–937. [Google Scholar] [CrossRef]
- Takagi, M.; Kuzuyama, T.; Takahashi, S.; Seto, H. A Gene Cluster for the Mevalonate Pathway from Streptomyces sp. Strain CL190. J. Bacteriol. 2000, 182, 4153–4157. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, M. Biosynthetic Studies on the Prenylated Indole Compounds Produced by Streptomyces. Ph.D. Thesis, The University of Tokyo, Tokyo, Japan, 2018. UTokyo Repository. [Google Scholar] [CrossRef]
- Choshi, T.; Uchida, Y.; Kubota, Y.; Nobuhiro, J.; Takeshita, M.; Hatano, T.; Hibino, S. Lipase-catalyzed asymmetric synthesis of desprenyl-carquinostatin A and descycloavandulyl-lavanduquinocin. Chem. Pharm. Bull. 2007, 55, 1060–1064. [Google Scholar] [CrossRef] [Green Version]
- Bailey, T.L.; Johnson, J.; Grant, C.E.; Noble, W.S. The MEME Suite. Nucleic Acids Res. 2015, 43, W39–W49. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kobayashi, M.; Kuzuyama, T. Recent Advances in the Biosynthesis of Carbazoles Produced by Actinomycetes. Biomolecules 2020, 10, 1147. https://doi.org/10.3390/biom10081147
Kobayashi M, Kuzuyama T. Recent Advances in the Biosynthesis of Carbazoles Produced by Actinomycetes. Biomolecules. 2020; 10(8):1147. https://doi.org/10.3390/biom10081147
Chicago/Turabian StyleKobayashi, Masaya, and Tomohisa Kuzuyama. 2020. "Recent Advances in the Biosynthesis of Carbazoles Produced by Actinomycetes" Biomolecules 10, no. 8: 1147. https://doi.org/10.3390/biom10081147
APA StyleKobayashi, M., & Kuzuyama, T. (2020). Recent Advances in the Biosynthesis of Carbazoles Produced by Actinomycetes. Biomolecules, 10(8), 1147. https://doi.org/10.3390/biom10081147