Quantitative Lipidomic Analysis of Osteosarcoma Cell-Derived Products by UHPLC-MS/MS
Abstract
:1. Introduction
1.1. Bioactive Lipids
1.2. Lipid Analysis Features
1.3. Aim of the Work
1.4. Osteosarcoma-Derived Lipids
2. Material and Methods
2.1. Chemicals
2.2. Cell Cultures
2.3. Sample Collection
2.3.1. Cell Samples
Concentrated Conditioned Media (CM)
Extracellular Vesicles (EVs)
Cells Pellets
2.3.2. Serum and Urine Samples
2.4. Standard Solutions, Calibrators, and Quality Control (QC) Samples
2.4.1. Cell Samples
2.4.2. Serum and Urine Samples
2.5. Sample Preparation
2.6. Equipment
- -
- AEA, LNEA, LEA, PEA, OEA, SEA → m/z 62 relative to the protonated ethanolamine moiety.
- -
- 2AG → m/z 287 relative to glycerol neutral loss.
- -
- ODA, ADA → m/z 154 relative to the protonated dopamine moiety.
- -
- A5HT, O5HT, Pal5HT → m/z 160 relative to the protonated dehydroxy-5HT moiety.
- -
- ASer → m/z 106 relative to the protonated serine moiety.
- -
- AGly, OGly, PalGly → m/z 76 relative to the protonated glycine moiety.
2.7. Data Evaluation
2.8. Validation Procedure
2.8.1. Calibration Range and Linearity
2.8.2. Sensitivity and Specificity
2.8.3. Precision and Accuracy
2.8.4. Recovery and Matrix Effects
2.8.5. Stability Studies
2.9. Application to Real Samples
3. Results and Discussion
3.1. Sample Extraction
3.2. Instrumental Parameters
3.3. Method Validation
3.3.1. Calibration Range and Linearity
3.3.2. Precision and Accuracy
3.3.3. Extraction Recovery and Matrix Effect
3.3.4. Stability Studies
3.4. Application to Real Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, D.; Dubois, R.N. Eicosanoids and cancer. Nat. Rev. Cancer 2010, 10, 181–193. [Google Scholar] [CrossRef] [PubMed]
- Krishnamoorthy, S.; Honn, K.V. Eicosanoids and other lipid mediators and the tumor hypoxic microenvironment. Cancer Metastasis Rev. 2011, 30, 613–618. [Google Scholar] [CrossRef] [PubMed]
- Rossi, F.; Tortora, C.; Punzo, F.; Bellini, G.; Argenziano, M.; di Paola, A.; Torella, M.; Perrotta, S. The Endocannabinoid/Endovanilloid System in Bone: From Osteoporosis to Osteosarcoma. Int. J. Mol. Sci. 2019, 20, 1919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, G.; Li, L.; Zhu, B.; Li, Y. Lipidome in colorectal cancer. Oncotarget 2016, 7, 33429–33439. [Google Scholar] [CrossRef] [Green Version]
- Sulciner, M.L.; Gartung, A.; Gilligan, M.M.; Serhan, C.N.; Panigrahy, D. Targeting lipid mediators in cancer biology. Cancer Metastasis Rev. 2018, 37, 557–572. [Google Scholar] [CrossRef]
- Crofford, L. COX-1 and COX-2 tissue expression: Implications and predictions. J. Rheumatol. Suppl. 1997, 49, 9. [Google Scholar]
- Wang, D.; Dubois, R.N. Prostaglandins and cancer. Gut 2006, 55, 115–122. [Google Scholar] [CrossRef]
- Wang, T.; Falardeau, P.; Powell, W.S. Synthesis of prostaglandins and thromboxane B 2 by cholesterol-fed rabbits. Arterioscler. Thromb. 1991, 11, 501–508. [Google Scholar] [CrossRef] [Green Version]
- Serhan, C.N.; Chiang, N.; Van Dyke, T.E. Resolving inflammation: Dual anti-inflammatory and pro-resolution lipid mediators. Nat. Rev. Immunol. 2008, 8, 349–361. [Google Scholar] [CrossRef] [Green Version]
- Murphy, R.C.; Gijón, M.A. Biosynthesis and metabolism of leukotrienes. Biochem. J. 2007, 405, 379–395. [Google Scholar] [CrossRef] [Green Version]
- Spector, A.A. Arachidonic acid cytochrome P450 epoxygenase pathway. J. Lipid Res. 2009, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rouzer, C.A.; Marnett, L.J. Endocannabinoid Oxygenation by Cyclooxygenases, Lipoxygenases, and Cytochromes P450: Cross-Talk between the Eicosanoid and Endocannabinoid Signaling Pathways. Chem. Rev. 2011, 111, 5899–5921. [Google Scholar] [CrossRef] [PubMed]
- Witkamp, R. Fatty acids, endocannabinoids and inflammation. Eur. J. Pharmacol. 2016, 785, 96–107. [Google Scholar] [CrossRef] [PubMed]
- Pertwee, R.G.; Howlett, A.C.; Abood, M.E.; Alexander, S.P.H.; Di Marzo, V.; Elphick, M.R.; Greasley, P.J.; Hansen, H.S.; Kunos, G. Cannabinoid Receptors and Their Ligands: Beyond CB 1 and CB 2. Pharmacol. Rev. 2010, 62, 588–631. [Google Scholar] [CrossRef] [Green Version]
- Di Marzo, V.; Bifulco, M.; De Petrocellis, L. The endocannabinoid system and its therapeutic exploitation. Nat. Rev. Drug Discov. 2004, 3, 771–784. [Google Scholar] [CrossRef] [PubMed]
- Devane, W.A.; Hanuš, L.; Breuer, A.; Pertwee, R.G.; Stevenson, L.A.; Griffin, G.; Gibson, D.; Mandelbaum, A.; Etinger, A.; Mechoulam, R. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 1992, 258, 1946–1949. [Google Scholar] [CrossRef]
- Mechoulam, R.; Ben-Shabat, S.; Hanus, L.; Ligumsky, M.; Kaminski, N.E.; Schatz, A.R.; Gopher, A.; Almog, S.; Martin, B.R.; Compton, D.R.; et al. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem. Pharmacol. 1995, 50, 83–90. [Google Scholar] [CrossRef]
- Sugiura, T.; Kondo, S.; Sukagawa, A.; Nakane, S.; Shinoda, A.; Itoh, K.; Yamashita, A.; Waku, K. 2-arachidonoylglycerol: A possible endogenous cannabinoid receptor ligand in brain. Biochem. Biophys. Res. Commun. 1995, 215, 89–97. [Google Scholar] [CrossRef]
- Burstein, S. The elmiric acids: Biologically active anandamide analogs. Neuropharmacology 2008, 55, 1259–1264. [Google Scholar] [CrossRef] [Green Version]
- Chu, C.J.; Huang, S.M.; De Petrocellis, L.; Bisogno, T.; Ewing, S.A.; Miller, J.D.; Zipkin, R.E.; Daddario, N.; Appendino, G.; Di Marzo, V.; et al. N-Oleoyldopamine, a Novel Endogenous Capsaicin-like Lipid That Produces Hyperalgesia. J. Biol. Chem. 2003, 278, 13633–13639. [Google Scholar] [CrossRef] [Green Version]
- Smith, M.; Wilson, R.; O’Brien, S.; Tufarelli, C.; Anderson, S.I.; O’Sullivan, S.E. The effects of the endocannabinoids anandamide and 2-arachidonoylglycerol on human osteoblast proliferation and differentiation. PLoS ONE 2015, 10, e0136546. [Google Scholar] [CrossRef] [PubMed]
- De Jesús, M.L.; Hostalot, C.; Garibi, J.M.; Sallés, J.; Meana, J.J.; Callado, L.F. Opposite changes in cannabinoid CB1 and CB2 receptor expression in human gliomas. Neurochem. Int. 2010, 56, 829–833. [Google Scholar] [CrossRef] [PubMed]
- Pertwee, R.G.; Howlett, A.C.; Abood, M.E.; Alexander, S.P.H.; Di Marzo, V.; Elphick, M.R.; Greasley, P.J.; Hansen, H.S.; Kunos, G.; Mackie, K.; et al. International Union of Basic and Clinical Pharmacology LXXIX. Cannabinoid Receptors and Their Ligands: Beyond CB 1 and CB 2. Pharmacol. Rev. 2010, 4, 588–631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, J.; Luo, X.; Yao, Y.; Xiao, H.; Guo, M. Investigation of changes in endocannabinoids and N-acylethanolamides in biofluids, and their correlations with female infertility. J. Chromatogr. A 2017, 1509, 16–25. [Google Scholar] [CrossRef]
- Vago, R.; Ravelli, A.; Bettiga, A.; Casati, S.; Lavorgna, G.; Benigni, F.; Salonia, A.; Montorsi, F.; Orioli, M.; Ciu, P.; et al. Urine Endocannabinoids as Novel Non-Invasive Biomarkers for Bladder Cancer at Early Stage. Cancers 2020, 12, 870. [Google Scholar] [CrossRef] [Green Version]
- Ottria, R.; Cappelletti, L.; Ravelli, A.; Mariotti, M.; Gigli, F.; Romagnoli, S.; Ciuffreda, P.; Banfi, G.; Drago, L. Plasma endocannabinoid behaviour in total knee and hip arthroplasty. J. Biol. Regul. Homeost. Agents 2016, 30, 1147–1152. [Google Scholar]
- Ottria, R.; Ravelli, A.; Gigli, F.; Ciuffreda, P. Simultaneous ultra-high performance liquid chromathograpy-electrospray ionization-quadrupole-time of flight mass spectrometry quantification of endogenous anandamide and related N -acylethanolamides in bio-matrices. J. Chromatogr. B 2014, 958, 83–89. [Google Scholar] [CrossRef]
- Liakh, I.; Pakiet, A.; Sledzinski, T.; Mika, A. Modern Methods of Sample Preparation for the Analysis of Oxylipins in Biological Samples. Molecules 2019, 24, 1639. [Google Scholar] [CrossRef] [Green Version]
- Marchioni, C.; Donizeti, I.; Souza, D.; Ricardo, V.; Junior, A. Recent advances in LC-MS/MS methods to determine endocannabinoids in biological samples: Application in neurodegenerative diseases. Anal. Chim. Acta 2018, 1044. [Google Scholar] [CrossRef]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Psychiatry 1979, 24, 422. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Sloane Stanley, G. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1987, 55, 999–1033. [Google Scholar]
- Breil, C.; Abert Vian, M.; Zemb, T.; Kunz, W.; Chemat, F. “Bligh and Dyer” and Folch methods for solid–liquid–liquid extraction of lipids from microorganisms. Comprehension of solvatation mechanisms and towards substitution with alternative solvents. Int. J. Mol. Sci. 2017, 18, 708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gouveia-Figueira, S.; Nording, M.L. Validation of a tandem mass spectrometry method using combined extraction of 37 oxylipins and 14 endocannabinoid-related compounds including prostamides from biological matrices. Prostaglandins Other Lipid Mediat. 2015, 121, 110–121. [Google Scholar] [CrossRef] [PubMed]
- Masoodi, M.; Mir, A.A.; Petasis, N.A.; Serhan, C.N.; Nicolaou, A. Simultaneous lipidomic analysis of three families of bioactive lipid mediators leukotrienes, resolvins, protectins and related hydroxy-fatty acids by liquid chromatography/electrospray ionisation tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2008, 22, 75–83. [Google Scholar] [CrossRef] [Green Version]
- Fowler, C.J.; Fowler, C.J. Monoacylglycerol lipase—A target for drug development? Br. J. Pharmacol. 2012, 166, 1568–1585. [Google Scholar] [CrossRef] [Green Version]
- Pertwee, R.G.; Ross, R.A. Cannabinoid receptors and their ligands. Prostaglandins Leukot. Essent. Fat. Acids 2002, 66, 101–121. [Google Scholar] [CrossRef]
- Di Marzo, V. Targeting the endocannabinoid system: To enhance or reduce? Nat. Rev. Drug Discov. 2008, 7, 438–455. [Google Scholar] [CrossRef]
- Moreno, E.; Cavic, M.; Krivokuca, A.; Casadó, V. The Endocannabinoid System as a Target in Cancer Diseases: Are We There Yet? Front. Pharmacol. 2019, 10. [Google Scholar] [CrossRef] [Green Version]
- Idris, A.I.; Sophocleous, A.; Landao-Bassonga, E.; Van’t Hof, R.J.; Ralston, S.H. Regulation of bone mass, osteoclast function, and ovariectomy-induced bone loss by the type 2 cannabinoid receptor. Endocrinology 2008, 149, 5619–5626. [Google Scholar] [CrossRef]
- Munro, S.; Thomas, K.; Abu-Shaar, M. Molecular characterization of a peripheral receptor for cannabinoids. Nature 1993, 365, 61–65. [Google Scholar] [CrossRef]
- Bovée, J.V.M.G.; Hogendoorn, P.C.W.; Wunder, J.S.; Alman, B.A. Cartilage tumours and bone development: Molecular pathology and possible therapeutic targets. Nat. Rev. Cancer 2010, 10, 481–488. [Google Scholar] [CrossRef]
- Zamborsky, R.; Kokavec, M.; Harsanyi, S.; Danisovic, L. Identification of Prognostic and Predictive Osteosarcoma Biomarkers. Med. Sci. 2019, 7, 28. [Google Scholar] [CrossRef] [Green Version]
- Roy, J.; Watson, J.E.; Hong, I.S.; Fan, T.M.; Das, A. Antitumorigenic Properties of Omega-3 Endocannabinoid Epoxides. J. Med. Chem. 2018, 61, 5569–5579. [Google Scholar] [CrossRef]
- Carnovali, M.; Ottria, R.; Pasqualetti, S.; Banfi, G.; Ciuffreda, P.; Mariotti, M. Effects of bioactive fatty acid amide derivatives in zebrafish scale model of bone metabolism and disease. Pharmacol. Res. 2016, 104, 1–8. [Google Scholar] [CrossRef]
- Ottria, R.; Casati, S.; Ciuffreda, P. Optimized synthesis and characterization of N-acylethanolamines and O-acylethanolamines, important family of lipid-signalling molecules. Chem. Phys. Lipids 2012, 165, 705–711. [Google Scholar] [CrossRef]
- Ottria, R.; Casati, S.; Ciuffreda, P. 1H,13C and15N NMR assignments for N- and O-acylethanolamines, important family of naturally occurring bioactive lipid mediators. Magn. Reson. Chem. 2012, 50, 823–828. [Google Scholar] [CrossRef]
- Giannasi, C.; Niada, S.; Farronato, D.; Lombardi, G.; Manfredi, B.; Farronato, G.; Brini, A.T. Nitrogen containing bisphosphonates impair the release of bone homeostasis mediators and matrix production by human primary pre-osteoblasts. Int. J. Med. Sci. 2019, 16, 23–32. [Google Scholar] [CrossRef] [Green Version]
- Niada, S.; Giannasi, C.; Gomarasca, M.; Stanco, D.; Casati, S.; Brini, A.T. Adipose-derived stromal cell secretome reduces TNFα-induced hypertrophy and catabolic markers in primary human articular chondrocytes. Stem Cell Res. 2019, 38, 101463. [Google Scholar] [CrossRef]
- Théry, C.; Clayton, A.; Amigorena, S.; Raposo, G. Isolation and Characterization of Exosomes from Cell Culture Supernatants. Curr. Protoc. Cell Biol. 2006. [Google Scholar] [CrossRef]
- Gualerzi, A.; Niada, S.; Giannasi, C.; Picciolini, S.; Morasso, C.; Vanna, R.; Rossella, V.; Masserini, M.; Bedoni, M.; Ciceri, F.; et al. Raman spectroscopy uncovers biochemical tissue-related features of extracellular vesicles from mesenchymal stromal cells. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef]
- Guidance for Industry Bioanalytical Method Validation. Available online: https://www.fda.gov/downloads/drugs/guidances/ucm070107.Pdf (accessed on 6 April 2020).
- Van de Merbel, N.C. Quantitative determination of endogenous compounds in biological samples using chromatographic techniques. Trends Anal. Chem. 2008, 27, 924–933. [Google Scholar] [CrossRef]
- Balvers, M.G.J.; Wortelboer, H.M.; Witkamp, R.F.; Verhoeckx, K.C.M. Liquid chromatography-tandem mass spectrometry analysis of free and esterified fatty acid N-acyl ethanolamines in plasma and blood cells. Anal. Biochem. 2013, 434, 275–283. [Google Scholar] [CrossRef]
- Gachet, M.S.; Rhyn, P.; Bosch, O.G.; Quednow, B.B.; Gertsch, J. A quantitiative LC-MS/MS method for the measurement of arachidonic acid, prostanoids, endocannabinoids, N-acylethanolamines and steroids in human plasma. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2015, 976–977, 6–18. [Google Scholar] [CrossRef]
- Stenson, W. Measurement of prostaglandins and other eicosanoids. Curr. Protoc. Immunol. 2001, 7, 33. [Google Scholar] [CrossRef]
- Pautke, C.; Schieker, M.; Tischer, T.; Kolk, A.; Neth, P.; Mutschler, W.; Milz, S. Characterization of osteosarcoma cell lines MG-63, Saos-2 and U-2 OS in comparison to human osteoblasts. Anticancer Res. 2004, 24, 3743–3748. [Google Scholar]
- Hong, E.S.; Burkett, S.S.; Morrow, J.; Lizardo, M.M.; Osborne, T.; Li, S.Q.; Luu, H.H.; Meltzer, P.; Khanna, C. Characterization of the metastatic phenotype of a panel of established osteosarcoma cells. Oncotarget 2015, 6, 29469–29481. [Google Scholar] [CrossRef] [Green Version]
- Roy, J.; Dibaeinia, P.; Fan, T.M.; Sinha, S.; Das, A. Global analysis of osteosarcoma lipidomes reveal altered lipid profiles in metastatic versus nonmetastatic cells. J. Lipid Res. 2019, 60, 375–387. [Google Scholar] [CrossRef] [Green Version]
Compound | Precursor Ion (m/z) | Product Ions (m/z) | DP (eV) | CE (eV) |
---|---|---|---|---|
AA (20:4) | 303.1 | 59.1 | −45 | −42 |
259.6 | −45 | −20 | ||
EPA (20:5) | 301.4 | 59.1 | −55 | −42 |
203.1 | −55 | −20 | ||
DHA (22:6) | 327.3 | 283.3 | −80 | −10 |
59.1 | −80 | −35 | ||
TXB2 | 369 | 177 | −50 | −22 |
195 | −50 | −20 | ||
PGE2 | 351.5 | 315 | −50 | −25 |
271.1 | −50 | −25 | ||
PGD2 | 351.5 | 271 | −50 | −30 |
189 | −50 | −30 | ||
PGF2α | 353 | 291 | −50 | −35 |
193 | −50 | −35 | ||
6αKeto-PGF1α | 369.5 | 245 | −50 | −35 |
163 | −50 | −35 | ||
LTB4 | 335 | 273 | −45 | −23 |
195 | −45 | −23 | ||
5(S)-HETE | 319.5 | 115 | −50 | −18 |
301.1 | −50 | −18 | ||
15(S)-HETE | 319.5 | 219 | −50 | −15 |
301.2 | −50 | −15 | ||
14,15-EET | 319.,5 | 219.1 | −50 | −22 |
301 | −50 | −40 | ||
AEA | 348 | 62 | 76 | 42 |
133 | 76 | 33 | ||
2AG | 379.4 | 287.3 | 76 | 18 |
203 | 76 | 25 | ||
LNEA | 322.3 | 62.2 | 85 | 35 |
81.2 | 85 | 35 | ||
LEA | 324.3 | 62.2 | 85 | 35 |
109 | 85 | 32 | ||
PEA | 300.1 | 62 | 98 | 19 |
283 | 98 | 36 | ||
OEA | 326.3 | 62.2 | 85 | 35 |
309 | 85 | 21 | ||
SEA | 328.3 | 62.2 | 85 | 35 |
311.1 | 85 | 22 | ||
DHEA | 372.3 | 62 | 85 | 18 |
67 | 85 | 36 | ||
AGly | 362.3 | 287 | 85 | 18 |
76 | 85 | 18 | ||
ADA | 440.5 | 137 | 95 | 34 |
154 | 95 | 23 | ||
2AGE | 365.3 | 273 | 85 | 10 |
121 | 85 | 20 | ||
ODA | 418.3 | 137 | 85 | 24 |
154 | 85 | 35 | ||
EPEA | 346.3 | 62 | 85 | 35 |
135 | 85 | 35 | ||
ASer | 392.5 | 106 | 85 | 35 |
137.3 | 85 | 33 | ||
OGly | 340.5 | 76 | 85 | 35 |
265 | 85 | 35 | ||
PalGly | 314.5 | 76 | 85 | 35 |
239 | 85 | 20 | ||
AGABA | 406.5 | 287.4 | 85 | 24 |
84.1 | 85 | 55 | ||
A5HT | 463.3 | 160.4 | 85 | 35 |
132.2 | 85 | 35 | ||
O5HT | 441.7 | 160.4 | 85 | 35 |
132.2 | 85 | 35 | ||
Pal5HT | 415.7 | 160.4 | 130 | 47 |
132.2 | 130 | 47 | ||
TXB2-d4 | 373 | 199 | −50 | −22 |
173 | −50 | −22 | ||
PGF2a-d4 | 357 | 295 | −50 | −35 |
197 | −50 | −35 | ||
LTB4-d4 | 339 | 197 | −45 | −23 |
277 | −45 | −23 | ||
EPA-d5 | 306.3 | 59.1 | −50 | −35 |
208.1 | −50 | −18 | ||
AEA-d8 | 356.3 | 62 | 76 | 35 |
70 | 76 | 35 | ||
SEA-d4 | 332.3 | 66.2 | 85 | 35 |
62 | 85 | 18 | ||
EPEA-d4 | 350.3 | 66 | 85 | 35 |
135 | 85 | 35 | ||
OEA-d2 | 328.3 | 62 | 85 | 35 |
311 | 85 | 35 | ||
PEA-d5 | 305.1 | 62 | 85 | 35 |
288 | 85 | 35 | ||
ADA-d8 | 448.5 | 137 | 85 | 35 |
154 | 85 | 35 | ||
AGly-d8 | 370.6 | 76 | 85 | 20 |
84 | 85 | 20 | ||
ASer-d8 | 400.6 | 106 | 85 | 35 |
70 | 85 | 35 | ||
O5HT-d17 | 458.7 | 160.4 | 130 | 47 |
132.2 | 130 | 47 |
Compound | R2 | Analytical Range (ng/mL) | LOD (SM) (ng/mL) | LOQ (SM) (ng/mL) | LOD (PBS) (ng/mL) | LOQ (PBS) (ng/mL) |
---|---|---|---|---|---|---|
AA (20:4) | 1.000 | 1–25 | 0.259 | 0.864 | 0.014 | 0.046 |
EPA (20:5) | 1.000 | 1–25 | 0.039 | 0.132 | 0.007 | 0.024 |
DHA (22:6) | 0.999 | 1–25 | 0.013 | 0.042 | 0.022 | 0.073 |
TXB2 | 0.991 | 0.1–2.5 | 0.021 | 0.070 | 0.022 | 0.073 |
PGE2 | 1.000 | 0.1–2.5 | 0.018 | 0.061 | 0.010 | 0.035 |
PGD2 | 0.999 | 0.1–2.5 | 0.008 | 0.028 | 0.031 | 0.103 |
PGF2α | 1.000 | 0.1–2.5 | 0.008 | 0.028 | 0.018 | 0.059 |
6aKeto-PGF1α | 1.000 | 0.1–2.5 | 0.006 | 0.020 | 0.014 | 0.048 |
LTB4 | 0.999 | 0.1–2.5 | 0.011 | 0.037 | 0.033 | 0.110 |
5(S)-HETE | 0.998 | 0.1–2.5 | 0.031 | 0.100 | 0.016 | 0.053 |
15(S)-HETE | 0.999 | 0.1–2.5 | 0.012 | 0.041 | 0.021 | 0.070 |
14,15-EET | 0.999 | 0.1–2.5 | 0.002 | 0.006 | 0.027 | 0.090 |
Compound | R2 | Analytical Range (ng/mL) | LOD (SM) (ng/mL) | LOQ (SM) (ng/mL) | LOD (PBS) (ng/mL) | LOQ (PBS) (ng/mL) |
---|---|---|---|---|---|---|
AEA | 0.9960 | 0.1–2.5 | 0.013 | 0.045 | 0.027 | 0.088 |
2AG | 0.9918 | 0.1–2.5 | 0.004 | 0.015 | 0.027 | 0.089 |
2AGE | 0.9986 | 0.1–2.5 | 0.008 | 0.026 | 0.015 | 0.049 |
LNEA | 0.9965 | 0.1–2.5 | 0.033 | 0.109 | 0.019 | 0.064 |
LEA | 0.9916 | 0.1–2.5 | 0.030 | 0.100 | 0.028 | 0.094 |
PEA | 0.9954 | 0.1–2.5 | 0.030 | 0.101 | 0.027 | 0.090 |
OEA | 0.9998 | 0.1–2.5 | 0.020 | 0.076 | 0.025 | 0.084 |
SEA | 0.9999 | 0.1–2.5 | 0.005 | 0.018 | 0.013 | 0.045 |
DHEA | 0.9964 | 0.1–2.5 | 0.020 | 0.081 | 0.028 | 0.092 |
EPEA | 0.9982 | 0.1–2.5 | 0.010 | 0.033 | 0.005 | 0.017 |
ADA | 0.9980 | 0.1–2.5 | 0.018 | 0.059 | 0.029 | 0.099 |
ODA | 0.9998 | 0.1–2.5 | 0.031 | 0.106 | 0.029 | 0.099 |
ASer | 0.9959 | 0.1–2.5 | 0.019 | 0.064 | 0.023 | 0.081 |
AGly | 0.9998 | 0.1–2.5 | 0.030 | 0.101 | 0.029 | 0.099 |
OGly | 0.9985 | 0.1–2.5 | 0.028 | 0.094 | 0.035 | 0.100 |
PalGly | 0.9999 | 0.1–2.5 | 0.006 | 0.019 | 0.026 | 0.099 |
AGABA | 0.9988 | 0.1–2.5 | 0.021 | 0.084 | 0.017 | 0.057 |
A5HT | 0.9982 | 0.1–2.5 | 0.008 | 0.028 | 0.007 | 0.024 |
O5HT | 0.9942 | 0.1–2.5 | 0.002 | 0.073 | 0.013 | 0.043 |
Pal5HT | 0.9980 | 0.1–2.5 | 0.007 | 0.023 | 0.012 | 0.042 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casati, S.; Giannasi, C.; Minoli, M.; Niada, S.; Ravelli, A.; Angeli, I.; Mergenthaler, V.; Ottria, R.; Ciuffreda, P.; Orioli, M.; et al. Quantitative Lipidomic Analysis of Osteosarcoma Cell-Derived Products by UHPLC-MS/MS. Biomolecules 2020, 10, 1302. https://doi.org/10.3390/biom10091302
Casati S, Giannasi C, Minoli M, Niada S, Ravelli A, Angeli I, Mergenthaler V, Ottria R, Ciuffreda P, Orioli M, et al. Quantitative Lipidomic Analysis of Osteosarcoma Cell-Derived Products by UHPLC-MS/MS. Biomolecules. 2020; 10(9):1302. https://doi.org/10.3390/biom10091302
Chicago/Turabian StyleCasati, Sara, Chiara Giannasi, Mauro Minoli, Stefania Niada, Alessandro Ravelli, Ilaria Angeli, Veronica Mergenthaler, Roberta Ottria, Pierangela Ciuffreda, Marica Orioli, and et al. 2020. "Quantitative Lipidomic Analysis of Osteosarcoma Cell-Derived Products by UHPLC-MS/MS" Biomolecules 10, no. 9: 1302. https://doi.org/10.3390/biom10091302
APA StyleCasati, S., Giannasi, C., Minoli, M., Niada, S., Ravelli, A., Angeli, I., Mergenthaler, V., Ottria, R., Ciuffreda, P., Orioli, M., & Brini, A. T. (2020). Quantitative Lipidomic Analysis of Osteosarcoma Cell-Derived Products by UHPLC-MS/MS. Biomolecules, 10(9), 1302. https://doi.org/10.3390/biom10091302