Natural Bioactive Cinnamoyltyramine Alkylamides and Co-Metabolites
Abstract
:1. Introduction
2. Biosynthesis of N-trans-Cinnamoyltyramine
3. Structure and Biological Activity of Cinnamoyltyramine Alkylamides and of Co-Metabolites Isolated from the Same Natural Sources
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Méndez-Bravo, A.; Calderón-Vázquez, C.; Ibarra-Laclette, E.; Raya-González, J.; Ramírez-Chávez, E.; Molina-Torres, J.; Guevara-García, A.A.; López-Bucio, J.; Herrera-Estrella, L. Alkamides activate jasmonic acid biosynthesis and signaling pathways and confer resistance to Botrytis cinerea in Arabidopsis thaliana. PLoS ONE 2011, 6, e27251. [Google Scholar] [CrossRef]
- Boonen, J.; Bronselaer, A.; Nielandt, J.; Veryser, L.; DeTre, G.; De Spiegeleer, B. Alkamid database: Chemistry, occurrence, and functionality of plant N-alkylamides. J. Ethnopharmacol. 2012, 142, 563–590. [Google Scholar] [CrossRef] [Green Version]
- Campos-Cuevas, J.C.; Pelagio-Flores, R.; Raya-Gonzalez, J.; Mendez-Bravo, A.; Ortiz-Castro, R.; Lopez-Bucio, J. Tissue culture of Arabidopsis thaliana explants reveals a stimulatory effect of alkamides on adventitious root formation and nitric oxide accumulation. Plant Sci. 2008, 174, 165–173. [Google Scholar] [CrossRef]
- Rios, M.Y. Natural Alkamides: Pharmacology, Chemistry and Distribution, Drug Discovery Research in Pharmacognosy; Vallisuta, O., Ed.; InTech: Rijeka, Croatia, 2012; ISBN 978-953-51-0213-7. [Google Scholar]
- Elufioye, T.O.; Habtemariam, S.; Adejare, A. Chemistry and pharmacology of alkylamides from natural origin. Rev. Bras. Farm. 2020, 30, 622–640. [Google Scholar] [CrossRef]
- Herrmann, K. The shikimate pathway: Early steps in the biosynthesis of aromatic compounds. Plant Cell 1995, 7, 907–919. [Google Scholar] [CrossRef]
- Dewick, P.M. Medicinal Natural Products—A Biosynthetic Approach; Jhom Wiley & Sons: Chicester, UK, 2009. [Google Scholar]
- MacDonald, M.J.; D’Cunha, G.B. A modern view of phenylalanine ammonia lyase. Biochem. Cell Biol. 2007, 85, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Hosoi, K.; Yoshida, S.; Hasegawa, M. L-Tyrosine carboxy-lyase of barley roots. Plant Cell Physiol. 1970, 11, 899–906. [Google Scholar] [CrossRef]
- Klempien, A.; Kaminaga, Y.; Qualley, A.; Nagegowda, D.A.; Widhalm, J.R.; Orlova, I.; Shasany, A.K.; Taguchi, G.; Kish, C.M.; Cooper, B.R. Contribution of CoA Ligases to benzenoid biosynthesis in petunia flowers. Plant Cell 2012, 24, 2015–2030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, M.H.; Lee, S.W. Phenolic phytoalexins in rice: Biological functions and biosynthesis. Int. J. Mol. Sci. 2015, 16, 29120–29133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thi, H.L.; Zhou, H.; Lin, C.H.; Liu, S.; Berezin, M.Y.; Smeda, R.J.; Fritschi, F.B. Synthesis and plant growth inhibitory activity of N-trans-cinnamoyltyramine: Its possible inhibition mechanisms and biosynthesis pathway. J. Plant Interact. 2017, 12, 51–57. [Google Scholar] [CrossRef]
- McCredie, R.S.; Ritchie, E.; Taylor, W.C. Constituents of Eupomatia species. The structure and synthesis of eupomatene, a lignan of novel type from Eupomatia laurina R. Br. Aust. J. Chem. 1969, 22, 1011–1032. [Google Scholar] [CrossRef]
- Pearce, G.; Marchand, P.A.; Griswold, J.; Lewis, N.G.; Ryan, C.A. Accumulation of feruloyltyramine and p-coumaroyltyramine in tomato leaves in response to wounding. Phytochemistry 1998, 47, 659–664. [Google Scholar] [CrossRef]
- Yoshihara, T.; Takamatsu, S.; Sakamura, S. Three new phenolic amides from the roots of eggplant (Solanum melongena L.). Agric. Biol. Chem. 1978, 42, 623–627. [Google Scholar] [CrossRef] [Green Version]
- Yoshihara, T.; Yamaguchi, K.; Takamatsu, S.; Sakamura, S. A new lignan amide, grossamide, from bell pepper (Capsicum annuum var. grossurri). Agric. Biol. Chem. 1981, 45, 2593–2598. [Google Scholar]
- Stoessl, A. The antifungal factors in barley. IV. Isolation, structure, and synthesis of the hordatines. Can. J. Chem. 1967, 45, 1745–1760. [Google Scholar] [CrossRef]
- Pihlava, J.M. Identification of hordatines and other phenolamides in barley (Hordeum vulgare) and beer by UPLC-QTOF-MS. J. Cereal Sci. 2014, 60, 645–652. [Google Scholar] [CrossRef]
- Ludwig, R.; Spencer, E.; Unwin, C. An antifungal factor from barley of possible significance in disease resistance. Can. J. Bot. 1960, 38, 21–29. [Google Scholar] [CrossRef]
- Stoessl, A.; Unwin, C. The antifungal factors in barley. V. Antifungal activity ofthe hordatines. Can. J. Bot. 1969, 48, 465–470. [Google Scholar] [CrossRef]
- Batchu, A.K.; Zimmermann, D.; Schulze-Lefert, P.; Koprek, T. Correlation between hordatine accumulation, environmental factors and genetic diversity in wild barley (Hordeum spontaneum C. Koch) accessions from the Near East Fertile Crescent. Genetica 2006, 127, 87–99. [Google Scholar] [CrossRef] [Green Version]
- Kristensen, B.; Burhenne, K.; Rasmussen, S. Peroxidases and the metabolism of hydroxycinnamic acid amides in Poaceae. Phytochem. Rev. 2004, 3, 127–140. [Google Scholar] [CrossRef]
- Goda, Y.; Shibuya, M.; Sankawa, U. Inhibitors of the arachidonate cascade from Allium chinense and their effect on in vitro platelet aggregation. Chem. Pharm. Bull. 1987, 35, 2668–2674. [Google Scholar] [CrossRef] [Green Version]
- Kashiwada, Y.; Nonaka, G.; Nishioka, I. Studies on Rhubarb (Rhei rhizoma). VI. Isolation and characterization of stilbenes. Chem. Pharm. Bull. 1984, 32, 3501–3517. [Google Scholar] [CrossRef] [Green Version]
- Bhatti, M.K.; Akhtar, F.; Choudhary, M.I. Alkaloids of Fumaria indica. Phytochemistry 1992, 31, 2869–2872. [Google Scholar]
- Zhao, G.; Hui, Y.; Rupprecht, J.K.; McLaughlin, J.L.; Wood, K.V. Additional bioactive compounds and trilobacin, a novel highly cytotoxic acetogenin, from the bark of Asimina triloba. J. Nat. Prod. 1992, 55, 347–356. [Google Scholar] [CrossRef]
- Achenbach, H.; Löwel, M. Constituents of Isolona maitlandii. Phytochemistry 1995, 40, 967–973. [Google Scholar] [CrossRef]
- Wu, T.S.; Chan, Y.Y.; Leu, Y.L. Constituents of the roots and stems of Aristolochia mollissima. J. Nat. Prod. 2001, 64, 71–74. [Google Scholar] [CrossRef]
- Lee, S.; You, I.S. Biodegradation mechanisms of capsaicin and its analogs I. Microbial-ω-hydroxylation on capsaicin mixture. Korean Biochem. J. 1977, 10, 135–146. [Google Scholar]
- Stefanini, M.; Charon, M.; Marchand, P.A. Rodent repellents at a European Union Plant Protection Product level, an orphan use to consider. J. Plant Protect. Res. 2020, 60, 1–6. [Google Scholar]
- Kawaguchi, Y.; Ochi, T.; Takaishi, Y.; Kawazoe, K.; Lee, K.H. New sesquiterpenes from Capsicum annuum. J. Nat. Prod. 2004, 67, 1893–1896. [Google Scholar] [CrossRef] [PubMed]
- Tuchinda, P.; Pohmakotr, M.; Munyoo, B.; Reutrakul, V.; Santisuk, T. An azaanthracene alkaloid from Polyalthia suberosa. Phytochemistry 2000, 53, 1079–1082. [Google Scholar] [CrossRef]
- Li, H.Y.; Sun, N.J.; Kashiwada, Y.; Sun, L.; Snider, J.V.; Cosentino, L.M.; Lee, K.H. Anti-AIDS agents, 9. Suberosol, a new C-31 lanostane-type triterpene and anti-HIV principle from Polyalthia suberosa. J. Nat. Prod. 1993, 56, 1130–1133. [Google Scholar] [CrossRef] [PubMed]
- Tuchinda, P.; Pohmakotr, M.; Reutrakul, V.; Thanyachareon, W.; Sophasan, S.; Yoosook, C.; Pezzuto, J.M. 2-substituted furans from Polyalthia suberosa. Planta Med. 2001, 67, 572–575. [Google Scholar] [CrossRef] [PubMed]
- Park, J.B.; Schoene, N. Synthesis and characterization of N-coumaroyltyramine as a potent phytochemical which arrests human transformed cells via inhibiting protein tyrosine kinases. Biochem. Biophys. Res. Commun. 2002, 292, 1104–1110. [Google Scholar] [CrossRef]
- But, P.R.H.; Kimura, T.; Guo, J.X.; Sung, C.K. International Collation of Traditional and Folk Medicine: Part 2; World Scientific: Singapore, 1997; pp. 22–23. [Google Scholar]
- Kim, D.K.; Lee, K. Inhibitory effect of trans-N-p-coumaroyl tyramine from the twigs of Celtis chinensis on the acetylcholinesterase. Arch. Pharm. Res. 2003, 26, 735–738. [Google Scholar] [CrossRef]
- Shi, L.S.; Kuo, P.C.; Tsai, Y.L.; Damu, A.G.; Wu, T.S. The alkaloids and other constituents from the root and stem of Aristolochia elegans. Bioorg. Med. Chem. 2004, 12, 439–446. [Google Scholar] [CrossRef]
- Show, F.H. The pharmacological testing of alkaloids from Australian flora. Aust. J. Pharm. 1947, 28, 857. [Google Scholar]
- Van den Berghe, D.A.; Ieven, M.; Mertens, F.; Vlietinck, A.J.; Lammens, E. Screening of higher plants for biological activities. II. Antiviral activity. J. Nat. Prod. 1978, 41, 463–471. [Google Scholar]
- Mata, R.; Morales, I.; Pérez, O.; Rivero-Cruz, I.; Acevedo, L.; Enriquez-Mendoza, I.; Franzblau, S.; Timmermann, B. Antimycobacterial compounds from Piper sanctum. J. Nat. Prod. 2004, 67, 1961–1968. [Google Scholar] [CrossRef]
- Chang, F.R.; Hwang, T.L.; Yang, Y.L.; Li, C.E.; Wu, C.C.; Issa, H.H.; Hsieh, W.-B.; Wu, Y.C. Anti-inflammatory and cytotoxic diterpenes from formosan Polyalthia longifolia var. pendula. Planta Med. 2006, 72, 1344–1347. [Google Scholar] [CrossRef]
- Pereira, C.A.; Oliveira, F.M.; Conserva, L.M.; Lemos, R.P.; Andrade, E.H.A. Cinnamoyltyramine derivatives and other constituents from Sparattanthelium tupiniquinorum (Hernandiaceae). Biochem. System. Ecol. 2007, 9, 637–639. [Google Scholar] [CrossRef]
- Li, N.; Wu, J.L.; Hasegawa, T.; Sakai, J.I.; Bai, L.M.; Wang, L.Y.; Saori, K.; Yumiko, F.; Hirotsugu, O.; Takao, K.; et al. Bioactive lignans from Peperomia duclouxii. J. Nat. Prod. 2007, 70, 544–548. [Google Scholar] [CrossRef] [PubMed]
- Arayne, M.S.; Sultana, N.; Bahadur, S. The berberis story: Berberis vulgaris in therapeutics. Pak. J. Pharm. Sci. 2007, 20, 83–92. [Google Scholar]
- Tomosaka, H.; Chin, Y.W.; Salim, A.A.; Keller, W.J.; Chai, H.; Kinghorn, A.D. Antioxidant and cytoprotective compounds from Berberis vulgaris (barberry). Phytother. Res. 2008, 22, 979–981. [Google Scholar] [CrossRef] [PubMed]
- Kornienko, A.; Evidente, A. Chemistry, biology, and medicinal potential of narciclasine and its congeners. Chem. Rev. 2008, 108, 1982–2014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evidente, A.; Kireev, A.S.; Jenkins, A.R.; Romero, A.E.; Steelant, W.F.; Van Slambrouck, S.; Kornienko, A. Biological evaluation of structurally diverse Amaryllidaceae alkaloids and their synthetic derivatives: Discovery of novel leads for anticancer drug design. Planta Med. 2009, 75, 501–507. [Google Scholar] [CrossRef] [Green Version]
- Evidente, A.; Kornienko, A. Anticancer evaluation of structurally diverse Amaryllidaceae alkaloids and their synthetic derivatives. Phytochem. Rev. 2009, 8, 449–459. [Google Scholar] [CrossRef] [Green Version]
- Cimmino, A.; Masi, M.; Evidente, M.; Superchi, S.; Evidente, A. Amaryllidaceae alkaloids: Absolute configuration and biological activity. Chirality 2017, 29, 486–499. [Google Scholar] [CrossRef]
- Masi, M.; Di Lecce, R.; Cimmino, A.; Evidente, A. Advances in the chemical and biological characterization of Amaryllidaceae alkaloids and natural analogues isolated in the last decade. Molecules 2020, 25, 5621. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Shen, Y.H.; Tian, J.M.; Tang, J.; Su, J.; Liu, R.H.; Lia, H.-L.; Xua, X.K.; Zhang, W.D. Chemical constituents of Crinum asiaticum L. var. sinicum Baker and their cytotoxic activities. Chem. Biodiv. 2009, 6, 1751–1757. [Google Scholar] [CrossRef]
- Kirtikar, K.R.; Basu, B.D. Indian Medicinal Plants; India International Book Distributors: Dehradune, India, 1993; Volume 1, p. 77. [Google Scholar]
- Maurya, R.; Gupta, P.; Chand, K.; Kumar, M.; Dixit, P.; Singh, N.; Dube, A. Constituents of Tinospora sinensis and their antileishmanial activity against Leishmania donovani. Nat. Prod. Res. 2009, 23, 1134–1143. [Google Scholar] [CrossRef]
- Scott, I.M.; Puniani, E.; Jensen, H.; Livesey, J.F.; Poveda, L.; Vindas, P.S. Analysis of Piperaceae germplasm by HPLC and LCMS: A method for isolating and identifying unsaturated amides from Piper spp. extracts. J. Agric. Food Chem. 2005, 53, 1907–1913. [Google Scholar] [CrossRef]
- Miyakado, M.; Nakayama, I.; Yoshioka, H. The Piperaceae amides. Part III. Insecticidal joint action of pipercide and co-occurring compounds isolated from Piper nigrum L. Agric. Biol. Chem. 1979, 44, 1701–1703. [Google Scholar] [CrossRef]
- Rukachaisirikul, T.; Siriwattanakit, P.; Sukcharoenphol, K.; Wongvein, C.; Ruttanawang, P.; Wongwattanavuch, P. Chemical constituents and bioactivity of Piper sarmentosum. J. Ethnopharmacol. 2004, 93, 173–176. [Google Scholar] [CrossRef]
- Ee, G.C.L.; Lim, C.M.; Lim, C.K.; Rahmani, M.; Shaari, K.; Bong, C.F.J. Alkaloids from Piper sarmentosum and Piper nigrum. Nat. Prod. Res. 2009, 23, 1416–1423. [Google Scholar] [CrossRef] [PubMed]
- Ranieri Cortez, L.E.; Garcia Cortez, D.A.; Fernandes, J.B.; Vieira, P.C.; Ferreira, A.G.; da Silva, M.F.G.F. New alkaloids from Conchocarpus gaudichaudianus. Heterocycles 2009, 78, 2053. [Google Scholar] [CrossRef]
- Song, S.; Li, Y.; Feng, Z.; Jiang, J.; Zhang, P. Hepatoprotective constituents from the roots and stems of Erycibe hainanesis. J. Nat. Prod. 2010, 73, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Morikawa, T.; Xu, F.M.; Matsuda, H.; Yoshikawa, M. Structures of new flavonoids, erycibenins D, E, and F, and NO production inhibitors from Erycibe expansa originating in Thailand. Chem. Pharm. Bull. 2006, 54, 1530–1534. [Google Scholar] [CrossRef] [Green Version]
- Matsuda, H.; Yoshida, K.; Miyagawa, K.; Asao, Y.; Takayama, S.; Nakashima, S.; Xu, F.M.; Yoshikawa, M. Rotenoids and flavonoids with anti-invasion of HT1080, anti-proliferation of U937, and differentiation-inducing activity in HL-60 from Erycibe expansa. Bioorg. Med. Chem. 2007, 15, 1539–1546. [Google Scholar] [CrossRef] [PubMed]
- Kummalue, T.; O-charoenrat, P.; Jiratchariyakul, W.; Chanchai, M.; Pattanapanyasat, K.; Sukapirom, K.; Iemsri, S. Antiproliferative effect of Erycibe elliptilimba on human breast cancer cell lines. J. Ethnopharm. 2007, 110, 439–443. [Google Scholar] [CrossRef]
- Zhang, L.; Bai, B.; Liu, X.; Wang, Y.; Li, M.; Zhao, D. α-Glucosidase inhibitors from Chinese yam (Dioscorea opposita Thunb.). Food Chem. 2011, 126, 203–206. [Google Scholar] [CrossRef]
- Fasidi, I.; Bakare, N. Distribution of food reserves in Dioscorea dumetorum (Kunth) Pax tubers during sprouting. Food Chem. 1995, 52, 423–426. [Google Scholar] [CrossRef]
- Omonigho, S.E.; Ikenebomeh, M.J. Effect of different preservative treatments on the chemical changes of pounded white yam (Dioscorea rotundata) in storage at 28 ± 2 °C. Food Chem. 2000, 68, 201–209. [Google Scholar] [CrossRef]
- Seo, G.W.; Cho, J.Y.; Moon, J.H.; Park, K.H. Isolation and identification of cinnamic acid amides as antioxidants from Allium fistulosum L. and their free radical scavenging activity. Food Sci. Biotechnol. 2011, 20, 555. [Google Scholar] [CrossRef]
- Rabinowitch, H.D.; Brewster, J.L. Japanese brunching onion (Allium fistulosum L). In Onions and Allied Crops: Biochemistry, Food Science, and Minor Crops; CRC Press Inc.: New York, NY, USA, 1990; pp. 27–33. [Google Scholar]
- Sohn, H.Y.; Kum, E.J.; Pyu, H.Y.; Jeon, S.J.; Kim, N.S.; Son, K.H. Antifungal activity of fistulosides, steroidal saponins, from Allium fistulosum L. J. Life Sci. 2006, 16, 310–314. [Google Scholar]
- Seo, D.C.; Chung, S.M.; Lee, J.Y.; Kim, Y.S.; Chung, J.H. Effect of Oriental onion (Allium fistulosum) on platelet aggregation. J. Food Hyg. Saf. 1996, 11, 273–276. [Google Scholar]
- Chen, J.H.; Chen, H.I.; Tsai, S.J.; Jen, C.J. Chronic consumption of rawbut not boiled Welsh onion juice inhibits rat platelet function. J. Nutr. 2000, 130, 34–37. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.H.; Tsai, S.J.; Chen, H.I. Welsh onion (Allium fistulosum L.) extract alters vascular responses in rat aortae. J. Cardiovasc. Pharm. 1999, 33, 515–520. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, Y.; Aoyama, S.; Hamaguchi, N.; Rhi, G.S. Antioxidative and antihypertensive effects of Welsh onion on rats fed with a high-fat high-sucrose diet. Biosci. Biotech. Bioch. 2005, 69, 1311–1317. [Google Scholar] [CrossRef]
- Aoyama, S.; Hiraike, T.; Yamamoto, Y. Antioxidant, lipid-lowering and antihypertensive effects of red Welsh onion (Allium fistulosum) inspontaneously hypertensive rats. Food Sci. Technol. Res. 2008, 14, 99–103. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.Y.; Yeh, Y.T.; Yang, W.L. Amides from the stem of Capsicum annuum. Nat. Prod. Comm. 2011, 6, 1934578X1100600217. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Luo, J.; Kong, L. Phenylethyl cinnamides as potential α-glucosidase inhibitors from the roots of Solanum melongena. Nat. Prod. Comm. 2011, 6, 1934578X1100600623. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Q.B.; Yang, Q.; Shi, M.Y.; Yi, J.P. Study on analgesia and anti-inflammation activities of the roots of Solanum melongena. Pharmacol. Clin. Chin. Mater. Med. 2003, 19, 26–28. [Google Scholar]
- Wang, Z.Y.; Rong, H.; Zhai, W.H. Antiatheroscloresis activity of the acidic constituents from the roots of Solanum melongena. Chin. J. Ethnomed. Ethnopharmacol. 2007, 2, 53–54. [Google Scholar]
- Kennedy, P.G.E. Human African trypanosomiasis of the CNS: Current issues and challenges. J. Clin. Investig. 2004, 113, 496–504. [Google Scholar] [CrossRef]
- Moradi-Afrapoli, F.; Yassa, N.; Zimmermann, S.; Saeidnia, S.; Hadjiakhoondi, A.; Ebrahimi, S.N.; Hamburger, M. Cinnamoylphenethyl amides from Polygonum hyrcanicum possess anti-trypanosomal activity. Nat. Prod. Commun. 2012, 7, 1934578X1200700616. [Google Scholar] [CrossRef] [Green Version]
- Ghorbani, A. Studies on pharmaceutical ethnobotany in the region of Turkmen Sahra, north of Iran (part 1): General results. J. Ethnopharmacol. 2005, 102, 58–68. [Google Scholar] [CrossRef]
- Pedersen, H.A.; Steffensen, S.K.; Christophersen, C. Cinnamoylphenethylamine 1H-NMR chemical shifts: A concise reference for ubiquitous compounds. Nat. Prod. Commun. 2010, 5, 1259–1262. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.X.; Guan, S.H.; Feng, R.H.; Wang, Y.; Wu, Z.Y.; Zhang, Y.B.; Chen, X.-H.; Bi, K.-S.; Guo, D.A. Neolignanamides, lignanamides, and other phenolic compounds from the root bark of Lycium chinense. J. Nat. Prod. 2013, 76, 51–58. [Google Scholar] [CrossRef]
- Yao, X.; Peng, Y.; Xu, L.J.; Li, L.; Wu, Q.L.; Xiao, P.G. Phytochemical and biological studies of Lycium medicinal plants. Chem. Biodiv. 2011, 8, 976–1010. [Google Scholar] [CrossRef]
- Kokubun, T.; Kite, G.C.; Veitch, N.C.; Simmonds, M.S. Amides and an alkaloid from Portulaca oleracea. Nat. Prod. Commun. 2012, 7, 1934578X1200700821. [Google Scholar] [CrossRef] [Green Version]
- Chan, K.; Islam, M.W.; Kamil, M.; Radhakrishnan, R.; Zakaria, M.N.M.; Habibullah, M.; Attas, A. The analgesic and anti-inflammatory effects of Portulaca oleracea L. subsp. sativa (Haw.) Celak. J. Ethnopharmacol. 2000, 73, 445–451. [Google Scholar] [CrossRef]
- Rashed, A.N.; Afifi, F.U.; Disi, A.M. Simple evaluation of the wound healing activity of a crude extract of Portulaca oleracea L. (growing in Jordan) in Mus musculus JVI-1. J. Ethnopharmacol. 2003, 88, 131–136. [Google Scholar] [CrossRef]
- Ahn, J.H.; Kim, E.S.; Lee, C.; Kim, S.; Cho, S.H.; Hwang, B.Y.; Lee, M.K. Chemical constituents from Nelumbo nucifera leaves and their anti-obesity effects. Bioorg. Med. Chem. Lett. 2013, 23, 3604–3608. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.Y.; Kuo, Y.H.; Lin, Y.L.; Chiang, W. Antioxidative effect and active components from leaves of Lotus (Nelumbo nucifera). J. Agric. Food Chem. 2009, 57, 6623. [Google Scholar] [CrossRef] [PubMed]
- Pinto, F.D.C.L.; Torres, M.D.C.M.; Silveira, E.R.; Pessoa, O.D.L.; Braz-Filho, R.; Guedes, M.L.D.S. Chemical constituents of Solanum buddleifolium Sendtn. Quím. Nova 2013, 36, 1111–1115. [Google Scholar] [CrossRef] [Green Version]
- Pinto, F.C.L.; Silva, F.M.; Theodoro, P.N.E.T.; Uchoa, D.E.A.; Espíndola, L.S.; Pessoa, O.D.L.; Silveira, E.R.; Braz-Filho, R. Glicoalcaloides antifúngicos, flavonoides e outros constituintes químicos de Solanum asperum. Quim. Nova 2011, 34, 284–288. [Google Scholar] [CrossRef]
- Wu, Y.; Zheng, C.J.; Deng, X.H.; Qin, L.P. Two new bis-alkaloids from the aerial part of Piper flaviflorum. Helv. Chim. Acta 2013, 96, 951–955. [Google Scholar] [CrossRef]
- McFerren, M.A.; Cordova, D.; Rodriguez, E.; Rauh, J.J. In vitro neuropharmacological evaluation of piperovatine, an isobutylamide from Piper piscatorum (Piperaceae). J. Ethnopharmacol. 2002, 83, 201–207. [Google Scholar] [CrossRef]
- Liu, Y.; Yadev, V.-R.; Aggarwal, B.-B.; Nair, M.-G. Inhibitory effects of black pepper (Piper nigrum) extracts and compounds on human tumor cell proliferation, cyclooxygenase enzymes, lipid peroxidation and nuclear transcription factor-kappa-B. Nat. Prod. Commun. 2010, 5, 1253. [Google Scholar] [CrossRef] [Green Version]
- Du, Z.; Wen, F.N.; Zhang, J.P.; Wua, J.F.; Liu, F.; Wan, X.Q.; Li, Z.; Han, B. Two rare hydroazulene-type sesquiterpenes from the roots of Aristolochia yunnanensis. Z. Naturforsch. B 2014, 69, 742–746. [Google Scholar] [CrossRef]
- Song, L.R. Chinese Materia Medica (Zhonghua Ben-Cao); Shanghai Science and Technology Press: Shanghai, China, 1999; Volume 8, pp. 486–487. [Google Scholar]
- Xie, L.W.; Atanasov, A.G.; Guo, D.A.; Malainer, C.; Zhang, J.X.; Zehl, M.; Guan, S.H.; Elke, H.; Heiss, E.; Verena, M.; et al. Activity-guided isolation of NF-κB inhibitors and PPARγ agonists from the root bark of Lycium chinense Miller. J. Ethnopharmacol. 2014, 152, 470–477. [Google Scholar] [CrossRef] [PubMed]
- Shen, D.Y.; Chan, Y.Y.; Hwang, T.L.; Juang, S.H.; Huang, S.C.; Kuo, P.C.; Thang, T.D.; Lee, E.-J.; Damu, A.G.; Wu, T.S. Constituents of the roots of Clausena lansium and their potential anti-inflammatory activity. J. Nat. Prod. 2014, 77, 1215–1223. [Google Scholar] [CrossRef]
- Li, W.S.; McChesney, J.D.; El-Feraly, F.S. Carbazole alkaloids from Clausena lansium. Phytochemistry 1991, 30, 343–346. [Google Scholar] [CrossRef] [PubMed]
- Lin, J. Cinnamamide derivatives from Clausena lansium. Phytochemistry 1989, 28, 621–622. [Google Scholar] [CrossRef]
- Sim, J.Y.; Kim, M.; Kim, M.J.; Chun, W.; Kwon, Y. Acetylcholinesterase inhibitors from the stem of Zea mays. Nat. Prod. Sci. 2014, 20, 13–16. [Google Scholar]
- Kim, C.S.; Kim, K.H.; Lee, K.R. Phytochemical constituents of the leaves of Hosta longipes. Nat. Prod. Sci. 2014, 20, 86–90. [Google Scholar]
- Sun, J.; Huo, H.X.; Zhang, J.; Huang, Z.; Zheng, J.; Zhang, Q.; Zhao, Y.-F.; Li, J.; Tu, P.F. Phenylpropanoid amides from the roots of Solanum melongena L. (Solanaceae). Biochem. System. Ecol. 2015, 58, 265–269. [Google Scholar] [CrossRef]
- Hu, L.; Wang, F.F.; Wang, X.H.; Yang, Q.S.; Xiong, Y.; Liu, W.X. Phytoconstituents from the leaves of Dracaena cochinchinensis (Lour.). Biochem. Syst. Ecol. 2015, 63, 1–5. [Google Scholar] [CrossRef]
- Zeng, X.; Wang, H.; Gong, Z.; Huang, J.; Pei, W.; Wang, X.; Zhang, J.; Tang, X. Antimicrobial and cytotoxic phenolics and phenolic glycosides from Sargentodoxa cuneata. Fitoterapia 2015, 101, 153–161. [Google Scholar] [CrossRef]
- Umeokoli, B.O.; Muharini, R.; Okoye, F.B.; Ajiwe, V.I.; Akpuaka, M.U.; Lin, W.; Liu, Z.; Proksch, P. New C-methylated flavonoids and α-pyrone derivative from roots of Talinum triangulare growing in Nigeria. Fitoterapia 2016, 109, 169–173. [Google Scholar] [CrossRef]
- Afolabi, O.B.; Oloyede, O.I.; Oladimeji, T. Effect of extract of Talinum triangulare (waterleaf) in lead-induced chromosomal aberration. J. Phytopharmacol. 2014, 3, 238–241. [Google Scholar]
- Egharevba, R.K.A.; Ikhatua, M.I. Ethno-medical uses of plants in the treatment of various skin diseases in Ovia North East, Edo State, Nigeria. Res. J. Agric. Biol. Sci. 2008, 4, 58–64. [Google Scholar]
- Onwurah, N.N.; Eke, I.G.; Anaga, A.O. Antiulcer properties of aqueous extract of Talinum triangulare leaves in experimentally induced gastric ulceration in mice. Asian J. Phar. Biol. Res. 2013, 3, 4–7. [Google Scholar]
- Zhao, N.; Yang, G.; Zhang, Y.; Chen, L.; Chen, Y. A new 9,10-dihydrophenanthrene from Dendrobium moniliforme. Nat. Prod. Res. 2016, 30, 174–179. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.C.; Wu, L.G.; Ko, F.N.; Teng, C.M. Antiplatelet aggregation principles of Dendrobium loddigesii. J. Nat. Prod. 1994, 57, 1271–1274. [Google Scholar] [CrossRef] [PubMed]
- Ma, G.X.; Gerald, A.L. The activity of erianin and chrysotoxine from Dendrobium chrysotoxum to reverse multidrug resistance in B16/h MDR-1 cells. J. Chin. Pharm. Sci. 1998, 7, 142–146. [Google Scholar]
- Zhang, L.; Tu, Z.C.; Yuan, T.; Wang, H.; Xie, X.; Fu, Z.F. Antioxidants and α-glucosidase inhibitors from Ipomoea batatas leaves identified by bioassay-guided approach and structure-activity relationships. Food Chem. 2016, 208, 61–67. [Google Scholar] [CrossRef]
- Promchai, T.; Jaidee, A.; Cheenpracha, S.; Trisuwan, K.; Rattanajak, R.; Kamchonwongpaisan, S.; Laphookhieo, S.; Pyne, S.G.; Ritthiwigrom, T. Antimalarial oxoprotoberberine alkaloids from the leaves of Miliusa cuneata. J. Nat. Prod. 2016, 79, 978–983. [Google Scholar] [CrossRef]
- Odonbayar, B.; Murata, T.; Batkhuu, J.; Yasunaga, K.; Goto, R.; Sasaki, K. Antioxidant flavonols and phenolic compounds from Atraphaxis frutescens and their inhibitory activities against insect phenoloxidase and mushroom tyrosinase. J. Nat. Prod. 2016, 79, 3065–3071. [Google Scholar] [CrossRef]
- Zhang, M.L.; Sanderson, S.C.; Sun, Y.X.; Byalt, V.V.; Hao, X.L. Tertiary montane origin of the Central Asian flora, evidence inferred from cpDNA sequences of Atraphaxis (Polygonaceae). J. Integr. Plant Biol. 2014, 56, 1125–1135. [Google Scholar] [CrossRef]
- Boldsaikhan, B. Encyclopedia of Mongolian Medicinal Plants; Mongolian University of Science and Technology: Ulaanbaatar, Mongolia, 2004; p. 16. [Google Scholar]
- An, Y.W.; Zhan, Z.L.; Xie, J.; Yang, Y.N.; Jiang, J.S.; Feng, Z.M.; Zhang, P.C. Bioactive octahydroxylated C21 steroids from the root bark of Lycium chinense. J. Nat. Prod. 2016, 79, 1024–1034. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; Choi, C.W.; Hong, S.S.; Shin, H.; Oh, J.S. A new neolignan from Coix lachryma-jobi var. mayuen. Nat. Prod. Commun. 2016, 11, 1934578X1601100224. [Google Scholar] [CrossRef] [Green Version]
- Chung, C.P.; Hsia, S.M.; Lee, M.Y.; Chen, H.J.; Cheng, F.; Chan, L.C.; Kuo, Y.H.; Lin, Y.L.; Chiang, W.J. Gastroprotective activities of adlay (Coix lachryma-jobi L. var. ma-yuen Stapf) on the growth of the stomach cancer AGS cell line and indomethacin-induced gastric ulcers. J. Agric. Food Chem. 2011, 59, 6025–6033. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.Q.; Wang, Y.; Gao, S.Y.; Zhu, L.H.; Wang, F.; Li, H.; Chen, L.X. Phenolic amides with anti-Parkinson’s disease (PD) effects from Nicandra physaloides. J. Funct. Foods 2017, 31, 229–236. [Google Scholar] [CrossRef]
- Gunasekera, S.P.; Cordell, G.A.; Farnsworth, N.R. Plant anticancer agents XX. Constituents of Nicandra physalodes. Planta Med. 1981, 43, 389–391. [Google Scholar] [CrossRef] [PubMed]
- Gill, H.K.; Smith, R.W.; Whiting, D.A. Biosynthesis of the nicandrenoids: Stages in the oxidative elaboration of the side chain and the fate ofthediastereotopic 25-methyl groups of 24-methylenecholesterol. Chem. Commun. 1986, 18, 1459–1460. [Google Scholar] [CrossRef]
- Bian, D.Q.; Meng, Q.Y.; Pang, Y.J.; Dou, J.H.; Wang, S. Effect of water extract of Nicandra physaloides (L.) gaertn on expression of key enzymes for hepatic glycogen synthesis in rat models of type 2 diabetes mellitus. Chin. J. Gerontol. 2012, 32, 3492–3493. [Google Scholar]
- Al-Barham, M.B.; Al-Jaber, H.I.; Al-Qudah, M.A.; Abu Zarga, M.H. New aristolochic acid and other chemical constituents of Aristolochia maurorum growing wild in Jordan. Nat. Prod. Res. 2017, 31, 245–252. [Google Scholar] [CrossRef]
- Goun, E.; Cunningham, G.; Solodnikov, S.; Krasnykch, O.; Miles, H. Antithrombin activity of some constituents from Origanum vulgare. Fitoterapia 2002, 73, 692–694. [Google Scholar] [CrossRef]
- Kim, H.S.; Lee, J.W.; Jang, H.; Le, T.P.L.; Kim, J.G.; Lee, M.S.; Hwang, B.Y. Phenolic amides from Tribulus terrestris and their inhibitory effects on nitric oxide production in RAW 264.7 cells. Archiv. Pharm. Res. 2018, 41, 192–195. [Google Scholar] [CrossRef]
- Tang, W.; Eisenbrand, B. Handbook of Chinese Medicinal Plants: Chemistry, Pharmacology, Toxicology; Wiley-VCH: Weinheim, Germany, 2011. [Google Scholar]
- Qi, J.J.; Yan, Y.M.; Cheng, L.Z.; Liu, B.H.; Qin, F.Y.; Cheng, Y.X. A novel flavonoid glucoside from the fruits of Lycium ruthenicun. Molecules 2018, 23, 325. [Google Scholar] [CrossRef] [Green Version]
- Rao, A.V.; Snyde, D.M. Raspberries and human health: A review. J. Agric. Food Chem. 2010, 58, 3871–3883. [Google Scholar] [CrossRef] [PubMed]
- Zilic, S.; Serpen, A.; Akillioglu, G.; Gokmen, V.; Vancetovic, J. Phenolic compounds, carotenoids, anthocyanins, and antioxidant capacity of colored maize (Zea mays L.) Kernels. J. Agric. Food Chem. 2012, 60, 1224–1231. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Xu, F.; Ji, T.F.; Li, J. A new spermidine from the fruits of Lycium ruthenicum. Chem. Nat. Compd. 2014, 50, 880–883. [Google Scholar] [CrossRef]
- Panidthananon, W.; Chaowasku, T.; Sritularak, B.; Likhitwitayawuid, K. A new benzophenone C-glucoside and other constituents of Pseuduvaria fragrans and their α-glucosidase inhibitory activity. Molecules 2018, 23, 1600. [Google Scholar] [CrossRef] [Green Version]
- Su, Y.C.F.; Chaowasku, T.; Saunders, R.M.K. An extended phylogeny of Pseuduvaria (Annonaceae) with descriptions of three new species and a reassessment of the generic status of Oreomitra. Syst. Bot. 2010, 35, 30–39. [Google Scholar] [CrossRef]
- Jiang, M.; Zhang, W.; Yang, X.; Xiu, F.; Xu, H.; Ying, X.; Stien, D. An isoindole alkaloid from Portulaca oleracea L. Nat. Prod. Res. 2018, 32, 2431–2436. [Google Scholar] [CrossRef]
- Chen, D.L.; Li, G.; Liu, Y.Y.; Ma, G.X.; Zheng, W.; Sun, X.B.; Xu, X.D. A new cadinane sesquiterpenoid glucoside with cytotoxicity from Abelmoschus sagittifolius. Nat. Prod. Res. 2019, 33, 1699–1704. [Google Scholar] [CrossRef]
- Sun, J.; Chen, L.J.; Zhang, Y.; Zhan, R.; Chen, Y.G. Two new phenylpropanoid esters from Bulbophyllum retusiusculum. J. Asian Nat. Prod. Res. 2019, 21, 331–336. [Google Scholar] [CrossRef]
- Li, K.; Zhang, Z.; Zhao, G.; Sun, P.; Cui, B.; Chi, S. Chemical constituents from the roots of Fallopia convolvulus (L.) A. Löve. Biochem. System. Ecol. 2019, 84, 26–28. [Google Scholar] [CrossRef]
- Huang, X.Y.; Shao, Z.X.; An, L.J.; Xue, J.J.; Li, D.H.; Li, Z.L.; Hua, H.M. New lignanamides and alkaloids from Chelidonium majus and their anti-inflammation activity. Fitoterapia 2019, 139, 104359. [Google Scholar] [CrossRef]
- Cahlíková, L.; Opletal, L.; Kurfürst, M.; Macáková, K.; Kulhánková, A.; Hošťálková, A. Acetylcholinesterase and butyrylcholinesterase inhibitory compounds from Chelidonium majus (Papaveraceae). Nat. Prod. Commun. 2010, 5, 1035–1038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gañán, N.A.; Dias, A.M.A.; Bombaldi, F.; Zygadlo, J.A.; Brignole, E.A.; de Sousa, H.C.; Braga, M.E.M. Alkaloids from Chelidonium majus L.: Fractionated supercritical CO2, extraction with co-solvents, separation e purification. Technology 2016, 165, 199–207. [Google Scholar]
- Suthiphasilp, V.; Maneerat, W.; Andersen, R.J.; Phukhatmuen, P.; Pyne, S.G.; Laphookhieo, S. Dasymaschalolactams A–E, aristolactams from a twig extract of Dasymaschalon dasymaschalum. J. Nat. Prod. 2019, 82, 3176–3180. [Google Scholar] [CrossRef]
- Hanthanong, S.; Choodej, S.; Teerawatananond, T.; Pudhom, K. Rearranged clerodane diterpenoids from the stems of Tinospora baenzigeri. J. Nat. Prod. 2019, 82, 1405–1411. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.H.; Luo, X.R.; Wu, R.F.; Zhang, B.N. Flora of China (ZhongguoZhiwu Zhi); Science Press: Beijing, China, 1996; Volume 30–31, pp. 19–25. [Google Scholar]
- Ahmad, S.M.; Hoot, S.B.; Qazi, P.H. Phylogenetic patterns and genetic diversity of Indian Tinospora species based on chloroplast sequence data and cytochrome P450 polymorphisms. Plant Syst. Evol. 2009, 281, 87–96. [Google Scholar] [CrossRef]
- Xiao, X.; Ren, W.; Zhang, N.; Bing, T.; Liu, X.; Zhao, Z.; Shangguan, D. Comparative study of the chemical constituents and bioactivities of the extracts from fruits, leaves and root barks of Lycium barbarum. Molecules 2019, 24, 1585. [Google Scholar] [CrossRef] [Green Version]
- Potterat, O. Goji (Lycium barbarum and L. chinense): Phytochemistry, pharmacology and safety in the perspective of traditional uses and recent popularity. Planta Med. 2010, 76, 7–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, K.; Sasaki, T.; Li, W.; Li, Q.; Wang, Y.; Asada, Y.; Kato, H.; Koike, K. Two novel steroidal alkaloid glycosides from the seeds of Lycium barbarum. Chem. Biodivers. 2011, 8, 2277–2284. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, B.; Ma, H.R.; Aisa, H.A. Two new sesquiterpenoid glycosides from the leaves of Lycium barbarum. J. Asian Nat. Prod. Res. 2016, 18, 871–877. [Google Scholar] [CrossRef]
- Jaidee, W.; Andersen, R.J.; Patrick, B.O.; Pyne, S.G.; Muanprasat, C.; Borwornpinyo, S.; Laphookhieo, S. Alkaloids and styryllactones from Goniothalamus cheliensis. Phytochemistry 2019, 157, 8–20. [Google Scholar] [CrossRef]
- Duc, L.V.; Thanh, T.B.; Thanh, H.N.; Tien, V.N. Chemical constituents and cytotoxic effect from the barks of Goniothalamus cheliensis Merr. & Chun. growing in Vietnam. J. Appl. Pharmaceut. Sci. 2016, 6, 1–5. [Google Scholar]
- Efdi, M.; Fujita, S.; Inuzuka, T.; Koketsu, T. Chemical studies on Goniothalamus tapis Miq. Nat. Prod. Res. 2010, 24, 657–662. [Google Scholar] [CrossRef] [PubMed]
- Peng, W.W.; Fu, X.X.; Xiong, Z.H.; Wu, H.L.; Chang, J.W.; Huo, G.H.; Li, B.T. Taxonomic significance and antitumor activity of alkaloids from Clausena lansium Lour. Skeels (Rutaceae). Biochem. System. Ecol. 2020, 90, 104046. [Google Scholar] [CrossRef]
- Li, L.; Wu, H.; Liu, S.; Wang, G.; Yan, F.; Feng, J. Chemical constituents from the leaves of Zanthoxylum nitidum (Roxb.) DC. Biochem. System. Ecol. 2020, 91, 104080. [Google Scholar] [CrossRef]
- Kagho, D.U.; Fongang, Y.S.; Awantu, A.F.; Bankeu, J.J.; Toghueo, R.M.; Ngouela, A.S.; Ali, M.S. Ceramides and other bioactive compounds from Celtis tessmannii Rendle. Chem. Data Coll. 2020, 28, 100483. [Google Scholar] [CrossRef]
- Titanji, V.P.K.; Zofou, D.; Ngemenya, M.N. The antimalarial potential of medicinal plants used for the treatment of malaria in Cameroonian folk medicine. Afr. J. Tradit. Complement. Altern. Med. 2008, 5, 302–321. [Google Scholar]
- Nchiozem-Ngnitedem, V.A.; Omosa, L.K.; Bedane, K.G.; Derese, S.; Brieger, L.; Strohmann, C.; Spiteller, M. Anti-inflammatory steroidal sapogenins and a conjugated chalcone-stilbene from Dracaena usambarensis Engl. Fitoterapia 2020, 146, 104717. [Google Scholar] [CrossRef]
- Wen, F.; Zhao, X.; Zhao, Y.; Lu, Z.; Guo, Q. The anticancer effects of Resina draconis extract on cholangiocarcinoma. Tumor Biol. 2016, 37, 15203–15210. [Google Scholar] [CrossRef]
- Li, N.; Ma, Z.; Li, M.; Xing, Y.; Hou, Y. Natural potential therapeutic agents of neurodegenerative diseases from the traditional herbal medicine Chinese dragon blood. J. Ethnopharmacol. 2014, 152, 508–521. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, P.; Yu, H.; Li, J.; Wang, M.W.; Zhao, W. Anti-Helicobacter pylori and thrombin inhibitory components from Chinese dragon’s blood, Dracaena cochinchinensis. J. Nat. Prod. 2007, 70, 1570–1577. [Google Scholar] [CrossRef]
- Truong, L.H.; Cuong, N.H.; Dang, T.H.; Hanh, N.T.M.; Thi, V.L.; Tran Thi Hong, H.; Minh, C.V. Cytotoxic constituents from Isotrema tadungense. J. Asian Nat. Prod. Res. 2021, 23, 491–497. [Google Scholar] [CrossRef]
- Jumeta, K.J.D.; Kagho, D.U.K.; Ateba, J.E.T.; Fotsing, Y.S.F.; Bankeu, J.J.K.; Sewald, N.; Ngouela, A.S. A new cerebroside and bioactive compounds from Celtis adolphi-friderici Engl.(Cannabaceae). Biochem. Syst. Ecol. 2021, 94, 104201. [Google Scholar] [CrossRef]
- Poorter, L.; Bongers, F.; Kouame, F.N.; Hawthorne, W.D. Biodiversity of West African forests: An ecological atlas of woody plant species. Global Ecol. Biogeogr. 2004, 26, 1423–1434. [Google Scholar] [CrossRef]
- Zolfaghari, B.; Yazdiniapour, Z.; Sadeghi, M.; Akbari, M.; Troiano, R.; Lanzotti, V. Cinnamic acid derivatives from welsh onion (Allium fistulosum) and their antibacterial and cytotoxic activities. Phytochem. Anal. 2021, 32, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Le, T.P.L.; Lee, J.W.; Kim, J.G.; Han, J.S.; Kwon, H.; Lee, D.; Hwang, B.Y. Tetrahydroprotoberberine N-oxides from Chelidonium majus and their inhibitory effects on NO production in RAW 264.7 cells. Phytochem. Lett. 2021, 41, 38–42. [Google Scholar] [CrossRef]
Alkylamide | Source | Biological Activity | References |
---|---|---|---|
N-trans-Cinnamoyltyramine (1, Scheme 3) | A. yunnanensis | No activity | [95] |
N-cis-Feruloyltyramine (NCFT, 2, Figure 2) | C. annuum var. grossum | “ | [13,14] |
C. annuum | “ | [29] | |
P. suberosa | “ | [32,34] | |
A. elegans | “ | [38] | |
P. longifolia var. pendula | “ | [42] | |
P. hyrcanicum | “ | [82] | |
N. nucifera | Inhibition of pancreatic lipase | [88] | |
D. cochinchinensis | No activity | [104] | |
I. batatas | Inhibition of α-glucosidase | [113] | |
L. chinense | No activity | [118] | |
N. physaloides | Inhibition of apoptosis and cytoprotective | [121] | |
L. ruthenicun | No activity | [129] | |
L. barbarum | “ | [146] | |
N-trans-p-Coumaroyltyramine (NTCT, paprazine, 4, Figure 2) | C. annuum var. grossum | “ | [13,14] |
S. melongena | “ | [15] | |
A. chinense | Inhibition of thromboxane and prostaglandin synthetase | [23] | |
A. triloba | No activity | [26] | |
I. maitlandii | “ | [27] | |
C. annuum | “ | [29,30] | |
A. mollissima | “ | [28] | |
P. suberosa | Anticancer activity and inhibition of protein tyrosine kinases | [32,33,34,35] | |
C. chinensis | Inhibition of acetylcholinesterase | [36,37] | |
A. elegans | No activity | [38] | |
P. sanctum | Antibiotic | [41] | |
P. longifolia var. pendula | No activity | [42] | |
S. tupiniquinorum | “ | [43] | |
P. duclouxii | “ | [44] | |
B. vulgaris | “ | [45] | |
C. asiaticum var. sinicum | “ | [52] | |
T. sinensis | “ | [54] | |
P. nigrum | “ | [58] | |
C. gaudichaudianus | “ | [59] | |
D. opposita | Antidiabetic | [64] | |
A. fistulosum | No activity | [67] | |
C. annum | “ | [75] | |
S. melongena | Antidiabetic | [76,103] | |
P. hyrcanicum | Antiprotozoal | [80] | |
L. chinense | Moderate radical scavenging, anti-inflammatory and antidiabetic | [83,97,118] | |
P. oleracea | No activity | [85,135] | |
N. nucifera | Inhibition of pancreatic lipase | [88] | |
S. buddleifolium | No activity | [90] | |
C. lansium | “ | [98] | |
Z. mays | “ | [101] | |
H. longipes | “ | [102] | |
D. cochinchinensis | “ | [104] | |
S. cuneata | “ | [105] | |
T. triangulare | “ | [106] | |
D. moniliforme | “ | [110] | |
I. batatas | Inhibition of α-glucosidase | [113] | |
M. cuneata | No activity | [114] | |
A. frutescens | “ | [115] | |
C.-jobi var. mayuen | “ | [119] | |
N. physaloides | “ | [121] | |
A. maurorum | “ | [125] | |
T. terrestris | “ | [127] | |
L. ruthenicun | “ | [129] | |
P. fragrans | Inhibition of α-glucosidase | [133] | |
A. sagittifolius | Moderate cytotoxicity | [136] | |
B. retusiusculum | No activity | [137] | |
F. convolvulus | “ | [138] | |
C. majus | “ | [139] | |
D. dasymaschalum | Inhibition of α-glucosidase | [142] | |
T. baenzigeri | Hepatoprotective activity | [143] | |
L. barbarum | No activity | [146] | |
G. cheliensis | “ | [150] | |
C. lansium | “ | [153] | |
Z. nitidum | “ | [154] | |
C. tessmannii | “ | [155] | |
D. usambarensis | “ | [156] | |
I. tadungense | “ | [161] | |
C. adolphi-friderici | “ | [162] | |
A. fistulosum | “ | [164] | |
C. majus | Inhibition of NO production in RAW 264.7 cells | [165] | |
N-trans-Feruloyltyramine (NTFT, 5, Figure 2) | C. annuum var. grossum | No activity | [13,14] |
S. melongena | “ | [15] | |
F. indica | “ | [25] | |
A. triloba | “ | [26] | |
C. annuum | “ | [29] | |
P. suberosa | “ | [32,34] | |
A. elegans | “ | [38] | |
P. sanctum | “ | [41] | |
P. longifolia var. pendula | “ | [42] | |
S. tupiniquinorum | “ | [43] | |
P. duclouxii | “ | [44] | |
C. gaudichaudianus | “ | [59] | |
A. fistulosum | Radical scavenging | [67] | |
S. melongena | Antidiabetic | [76,103] | |
P. hyrcanicum | Antiprotozoal | [80] | |
L. chinense | Moderate radical scavenging, anti-inflammatory and antidiabetic | [83,97] | |
P. oleracea | Anti-inflammatory | [85,135] | |
N. nucifera | No activity | [88] | |
S. buddleifolium | “ | [90] | |
P. flaviflorum | “ | [92] | |
Z. mays | “ | [101] | |
D. cochinchinensis | “ | [104] | |
T. triangulare | “ | [106] | |
I. batatas | Inhibition of α-glucosidase | [113] | |
M. cuneata | No activity | [114] | |
A. frutescens | “ | [115] | |
N. physaloides | “ | [121] | |
T. terrestris | “ | [127] | |
L. ruthenicun | “ | [129] | |
P. fragrans | Inhibition of α-glucosidase | [133] | |
F. convolvulus | No activity | [138] | |
D. dasymaschalum | Inhibition of α-glucosidase | [142] | |
T. baenzigeri | No activity | [143] | |
L. barbarum | “ | [146] | |
G. cheliensis | “ | [150] | |
D. usambarensis | “ | [157] | |
I. tadungense | “ | [161] | |
C. adolphi-friderici | “ | [162] | |
A. fistulosum | “ | [164] | |
C. majus | “ | [165] | |
N-trans-p-Coumaroyloctopamine (NTCO, 6, Figure 2) | Capsicum annuum var. grossum | “ | [13,14] |
Solanum melongena L. | “ | [15] | |
T. triangulare | “ | [106] | |
N-trans-Feruloyloctopamine (NTFO, 7, Figure 2) | Capsicum annuum var. grossum | “ | [13,14] |
Solanum melongena L. | “ | [15] | |
D. cochinchinensis | “ | [104] | |
T. triangulare | “ | [106] | |
N. physaloides | Cytoprotective | [121] | |
L. ruthenicun | No activity | [129] | |
C. adolphi-friderici | “ | [162] | |
N-cis-p-Cumaroyltyramine (NCCT, 11, Figure 2) | A. chinense | Inhibition of prostaglandin and thromboxane synthetase | [23] |
A. mollissima | No activity | [28] | |
C. annuum | “ | [29] | |
A. elegans | “ | [38] | |
P. duclouxii | “ | [44] | |
D. opposita | “ | [64] | |
S. melongena | Antidiabetic | [76,103] | |
N. nucifera | No activity | [88] | |
C. lansium | “ | [98] | |
H. longipes | “ | [102] | |
C.-jobi var. mayuen | “ | [119] | |
L. ruthenicun | “ | [129] | |
L. barbarum | “ | [146] | |
C. majus | “ | [165] | |
N-trans-Sinapoyltyramine (NTST, 52, Figure 4) | P. longifolia var. pendula | “ | [42] |
I. tadungense | “ | [161] | |
N-trans-Caffeoyltyramine (NTCAT, 59, Figure 5) | C. asiaticum var. sinicum | “ | [52] |
C. asiaticum | “ | [75] | |
P. hyrcanicum | Antiprotozoal | [80] | |
L. chinense | Moderate radical scavengingNF-κB inhibitory | [83,97,118] | |
S. buddleifolium | No activity | [90] | |
M. cuneata | “ | [114] | |
N. physaloides | Cytoprotective | [121] | |
F. convolvulus | No activity | [138] | |
C. tessmannii | “ | [155] | |
A. fistulosum | “ | [164] | |
3′-Methoxy-NTFT (86, Figure 7) | A. fistulosum | Radical scavenging | [67] |
4′-O-Methyl-TNCT (88, Figure 7) | C. annuum | No activity | [75] |
4′-O-Methyl-TNCAT (89, Figure 7) | C. annuum | “ | [75] |
N-cis-feruloyloctopamine (NCFO, 91, Figure 7) | L. chinense | Moderate radical scavenging, anti-inflammatory and antidiabetic | [83] |
L. ruthenicun | No activity | [129] | |
D. usambarensis | “ | [157] | |
N-trans-p-oumaroylserotonine (NTCS, 121, Figure 9) | Z. mays | “ | [101] |
N-trans.-p-coumaroyltryptamine (NTCTR, 122, Figure 9) | “ | “ | “ |
N-trans-sinapoyloctopamine (NTSO, 123, Figure 9) | S. melongena | “ | [103] |
N-trans-caffeoyloctopamine (NTCAO, 124, Figure 9) | “ | “ | “ |
N-trans-feruloylnoradrenline (NTFA, 125, Figure 9) | “ | “ | “ |
N-cis-feruloylnoradrenline (NCFA 126, Figure 9) | “ | “ | “ |
N-trans-p-coumaroylnoradrenline (NTCA, 127, Figure 9) | “ | “ | “ |
Metabolite | Source | Biological Activity | References |
---|---|---|---|
Grossamide (3, Figure 2) | Capsicum annuum var. grossum | No activity | [1,14] |
Hordatin A (8, Figure 2) | H. vulgare | Antifungal | [17] |
Hordatin B (9, Figure 2) | “ | “ | “ |
Hordatin M (10, Figure 2) | “ | “ | “ |
Lunularic acid (12, Figure 2) | A. chinense | Inhibition of thromboxane and prostaglandin synthetase | [23] |
Rhapontigenin (13, Figure 2) | R. rhabarbarum | “ | [24] |
Piceatannol, (14, Figure 2) | “ | “ | “ |
Rhaponticin (15, Figure 2) | “ | “ | “ |
Piceatannol glucoside (16, Figure 2) | “ | “ | “ |
Mandolin S (17, Figure 2) | A. mollissima | No activity | [29,30] |
Mandolin R (18, Figure 2) | “ | “ | “ |
Mandolin U (19, Figure 2) | “ | “ | “ |
Mandolin W (20, Figure 3) | “ | “ | “ |
Mandolin X (21, Figure 3) | “ | “ | “ |
Canusesnol A (22, Figure 3) | C. annuum | Cytotoxic | [31] |
Canusesnol B (23, Figure 3) | “ | No activity | “ |
Canusesnol C (24, Figure 3) | “ | “ | “ |
Canusesnol D (25, Figure 3) | “ | “ | “ |
Canusesnol E (26, Figure 3) | “ | “ | “ |
Canusesnol F (27, Figure 3) | “ | “ | “ |
Canusesnol G (28, Figure 3) | “ | “ | “ |
Canusesnol H (29, Figure 3) | “ | “ | “ |
Canusesnol I (30, Figure 3) | “ | “ | “ |
Canusesnol J (31, Figure 3) | “ | “ | “ |
Aristolactam E (32, Figure 3) | A. elegans | “ | [38] |
Aristolactam-AIIIa-6-O-β-d-glucoside (33, Figure 3) | “ | “ | “ |
Aristoquinoline A (34, Figure 3) | “ | “ | “ |
Aristoquinoline B (35, Figure 3) | “ | “ | “ |
Aristoquinoline C (36, Figure 3) | “ | “ | “ |
Aristogin F (37, Figure 3) | “ | “ | “ |
2-Oxo-12-(3′,4′-methylenedioxyphenyl)dodecane (38, Figure 4) | P. sanctum | Antibiotic | [41] |
2-Oxo-14-(3′,4′-methylenedioxyphenyl)tetradecane (39, Figure 4) | “ | “ | “ |
(40, Figure 4) | “ | No activity | “ |
2-Oxo-18-(3′,4′-methylenedioxyphenyl)octadecane (41, Figure 4) | “ | “ | “ |
2-Oxo-14-(3’,4’-methylenedioxyphenyl)-trans-13-tetradecene (42, Figure 4) | “ | “ | “ |
2-Oxo-16-(3′,4′-methylenedioxyphenyl)-trans-15-hexadecene (43, Figure 4) | “ | Antibiotic | “ |
2-Oxo-18-(3′,4′-methylenedioxyphenyl)-trans-17-octadecene (44, Figure 4) | “ | No activity | “ |
2-Oxo-16-phenyl-trans-3-hexadecene (45, Figure 4) | “ | “ | “ |
Methyl [6-(10-phenyldecanyl)tetrahydropyran-2-yl]acetate (46, Figure 4) | “ | “ | “ |
Methyl 2-(6-tridecyltetrahydro-2H-pyran-2-yl)acetate (47, Figure 4) | “ | “ | “ |
Methyl 2-(5-tetradecyltetrahydro-2-furanyl)acetate (48, Figure 4) | “ | “ | “ |
2-Oxo-14-(3′,4′-methylenedioxyphenyl)-trans-3-tetradecene (49, Figure 4) | “ | “ | “ |
2-Oxo-16-(3′,4′-methylenedioxyphenyl)-trans-3-hexadecene (50, Figure 4) | “ | “ | “ |
2-Oxo-16-phenyl-3-hexadecane (51, Figure 4) | “ | “ | “ |
Lignan 53 (Figure 5) | P. duclouxii | No activity | [44] |
Lignan 54 (Figure 5) | “ | “ | “ |
Lignan 55 (Figure 5) | “ | Anticancer | “ |
Lignan 56 (Figure 5) | “ | “ | “ |
Lignan 57 (Figure 5) | “ | “ | “ |
Lignan 58 (Figure 5) | “ | Anti-inflammatory | “ |
Asiaticumine A (60, Figure 5) | C. asiaticum var. sinicum | No activity | [52] |
Asiaticumine B (61, Figure 5) | “ | “ | “ |
4-Methyl-heptadec-6-enoic acid ethyl ester and (62 Figure 5) | T. sinensis | Antileishmanial | [54] |
3-Hydroxy-2,9,11-trimethoxy-5,6-dihydro isoquino[3,2-a] isoquinolinylium (63 Figure 5) | “ | “ | “ |
1-Nitrosoimino-2,4,5-trimethoxybenzene (64, Figure 5) | P. sarmentosum | Cytotoxic | [58] |
Alkaloid 65 (Figure 5) | C. gaudichaudianus | No activity | [59] |
Alkaloid 66 (Figure 5) | “ | “ | “ |
Alkaloid 67 (Figure 5) | “ | “ | “ |
Alkaloid 68 (Figure 5) | “ | “ | “ |
Eryciboside A (69, Figure 6) | E. hainanesis | No activity | [60] |
Eryciboside B (70, Figure 6) | “ | Hepatoprotective | “ |
Eryciboside C (71, Figure 6) | “ | No activity | “ |
Eryciboside D (72, Figure 6) | “ | “ | “ |
Eryciboside E (73, Figure 6) | “ | “ | “ |
Eryciboside F (74, Figure 6) | “ | Hepatoprotective | “ |
Eryciboside G (75, Figure 6) | “ | No activity | “ |
Eryciboside H (76, Figure 6) | “ | “ | “ |
Eryciboside I (77, Figure 6) | “ | “ | “ |
Eryciboside J (78, Figure 6) | “ | “ | “ |
Eryciboside K (79, Figure 6) | “ | “ | “ |
Eryciboside L (80, Figure 6) | “ | Hepatoprotective | “ |
Chlorogenic acid derivative (81, Figure 6) | “ | No activity | “ |
Chlorogenic acid derivative (82, Figure 6) | “ | “ | “ |
Chlorogenic acid derivative (83, Figure 6) | “ | “ | “ |
Chlorogenic acid derivative (84, Figure 6) | “ | “ | “ |
Biscoumarin (85, Figure 6) | “ | Hepatoprotective | “ |
Kaempferol (87, Figure 7) | A. fistulosum | No activity | [67] |
N-trans-3,4-dimethoxycinnamoyldopamine (90, Figure 7) | P. hyrcanicum | “ | [82] |
Neolignanamide (92, Figure 7) | L. chinense | Moderate radical scavenging | [83] |
Neolignanamide (93, Figure 7) | “ | “ | “ |
Neolignanamide (94, Figure 7) | “ | “ | “ |
Neolignanamide (95, Figure 7) | “ | “ | “ |
Neolignanamide (96, Figure 7) | “ | “ | “ |
Neolignanamide (97, Figure 7) | “ | “ | “ |
Neolignanamide (98, Figure 7) | “ | “ | “ |
Lignanamide (99, Figure 7) | “ | “ | “ |
Portulacaldehyde (100, Figure 7) | P. oleracea | No activity | [85] |
N-(E)-Feruloyl-4-O-methyldopamine (101, Figure 8) | “ | Anti-inflammatory | “ |
Nelumnucifoside A (102, Figure 8) | N. nucifera | No activity | [88] |
Nelumnucifoside B (103, Figure 8) | “ | “ | “ |
Flavifloramide A (104, Figure 8) | P. flaviflorum | “ | [92] |
Flavifloramide B (105, Figure 8) | “ | “ | “ |
Aristoyunnolin I (106, Figure 8) | A. yunnanensis | “ | [95] |
Aristoyunnolin I (107, Figure 8) | “ | “ | “ |
Custonolide (108, Figure 8) | “ | Moderate cytotoxicity | “ |
Claulamine C (109, Figure 8) | C. lansium | No activity | [98] |
Claulamine D (110, Figure 8) | “ | “ | “ |
Claulamine E (111, Figure 8) | “ | “ | “ |
Clausenaline B (112, Figure 8) | “ | “ | “ |
Clausenaline C (113, Figure 8) | “ | “ | “ |
Clausenaline D (114, Figure 8) | “ | “ | “ |
Clausenaline E (115, Figure 9) | “ | “ | “ |
Clausenaline F (116, Figure 9) | “ | “ | “ |
Clausemarins A (117, Figure 9) | “ | Anti-inflammatory | “ |
Clausemarin B (118, Figure 9) | “ | No activity | “ |
Clausemarin C (119, Figure 9) | “ | “ | “ |
Clausemarin D (120, Figure 9) | “ | “ | “ |
(3R)-3,7-dihydroxy-8-methoxy-3-(4′-methoxybenzyl)-4-chromanone (128, Figure 9) | D. cochinchinensis | “ | [104] |
Sargentodoside A (129, Figure 9) | S. cuneata | “ | [105] |
Sargentodoside B (130, Figure 9) | “ | “ | “ |
Sargentodoside C (131, Figure 9) | “ | “ | “ |
Sargentodoside D (132, Figure 9) | “ | “ | “ |
Sargentodoside E (133, Figure 9) | “ | “ | “ |
Sargentodognan F (134, Figure 9) | “ | “ | “ |
Sargentodognan G (135, Figure 9) | “ | “ | “ |
5,6-Dimethoxy-7-hydroxy-8-methyl-flavone (136, Figure 9) | T. triangulare | “ | [106] |
5,6-Dimethoxy-8-methyl-2-phenyl-7H-1-benzopyran-7-one (137, Figure 9) | “ | “ | “ |
4-Methoxy-6-(2-hydroxy-4-phenylbutyl)-2H-pyran-2-one (138, Figure 10) | “ | “ | “ |
9,10-Dihydrophenanthrene-1,5-dihydroxy-3,4,7-trimethoxy-9,10-dihydrophenanthrene (139, Figure 10) | D. moniliforme | “ | [110] |
Miliusacunine A (140, Figure 10) | M. cuneata | Antimalaria | [114] |
Miliusacunine B (141, Figure 10) | “ | “ | “ |
Miliusacunine C (142, Figure 10) | “ | No activity | “ |
Miliusacunine D (143, Figure 10) | “ | “ | “ |
Miliusacunine E (144, Figure 10) | “ | “ | “ |
7-Methoxyflavonol (145, Figure 10) | A. frutescens | Radical scavenging | [115] |
7-Methoxyflavonol (146, Figure 10) | “ | Inhibition mushroom tyrosinase | “ |
7-Methoxyflavonol (147, Figure 10) | “ | “ | “ |
7-Methoxyflavonol (148, Figure 10) | “ | “ | “ |
7-Methoxyflavonol (149, Figure 10) | “ | Radical scavenging | “ |
Fisetinidol glucoside (150, Figure 10) | “ | “ | “ |
Benzyl glycoside (151, Figure 11) | “ | “ | “ |
Lyciumsterol A (152, Figure 11) | L. chinense | No activity | [118] |
Lyciumsterol B (153, Figure 11) | “ | Protective effects on pancreatic islet cells | “ |
Lyciumsterol C (154, Figure 11) | “ | “ | “ |
Lyciumsterol D (155, Figure 11) | “ | No activity | “ |
Lyciumsterol E (156, Figure 11) | “ | “ | “ |
Lyciumsterol F (157, Figure 11) | “ | Protective effects on pancreatic islet cells | “ |
Lyciumsterol G (158, Figure 11) | “ | Protective effects on pancreatic islet cells and autophagy activation | “ |
Lyciumsterol H (159, Figure 11) | “ | No activity | “ |
Lyciumsterol I (160, Figure 11) | “ | Autophagy activation | “ |
Lyciumsterol J (161, Figure 11) | “ | No activity | “ |
Lyciumsterol K (162, Figure 10) | “ | Autophagy activation | “ |
(7R, 8S)-7-(4-Hydroxy-3,5-dimethoxyphenyl)-8-hydroxy me-thyl-10-[N-7″-(4″-hydrxyphenyl)ethyl]carbamoylethenyl-3′-methoxybenzodihydrofuran (163, Figure 11) | N. physaloides | No activity | [121] |
cis-N-p-Hydroxycinnamoyl-7′-methoxyethyltyramine (164, Figure 11) | “ | “ | “ |
Aristolochic acid II alanine amide (163, Figure 11) | A. maurorum | “ | [125] |
cis-Terrestriamide (165, Figure 11) | T. terrestris | “ | [127] |
Ruthenicunoid A (166 Figure 11) | L. ruthenicun | Inhibition of SIRT1 | [129] |
Pseuduvarioside (167, Figure 12) | P. fragrans | No activity | [133] |
Oleraisoindole (168, Figure 12) | P. oleracea | Inhibited NO production in RAW 264.7 cells | [135] |
2β,7,3-Trihydroxycalamenene 3-O-β-d-glucoside (170, Figure 12) | A. sagittifolius | Moderate cytotoxicity | [136] |
Bobulretulate A (171 Figure 12) | B. retusiusculum | No activity | [137] |
Bobulretulate B (172, Figure 12) | “ | “ | “ |
Majusamide A (173, Figure 12) | C. majus | “ | [139] |
Majusamide B (174, Figure 12) | “ | “ | “ |
Chelidoniumine (175, Figure 12) | “ | “ | “ |
Tetrahydrocoptisine-N-oxide (176, Figure 12) | “ | “ | “ |
Dasymaschalolactam A (177, Figure 12) | D. dasymaschalum | “ | [142] |
Dasymaschalolactam B (178, Figure 12) | “ | “ | “ |
Dasymaschalolactam C (179, Figure 12) | “ | “ | “ |
Dasymaschalolactam D (180, Figure 12) | “ | “ | “ |
Dasymaschalolactam E (181, Figure 12) | “ | “ | “ |
Dasymaschalolactone (182, Figure 12) | “ | “ | “ |
4-epi-Baenzigeride A (183, Figure 13) | T. baenzigeri | “ | [143] |
4,12-di-epi-Baenzigeride A (184, Figure 13) | “ | “ | “ |
Tinobaenzin A (185, Figure 13) | “ | “ | “ |
Tinobaenzin B (186, Figure 13) | “ | “ | “ |
4-O-d-glucoside (187, Figure 13) | “ | “ | “ |
Goniochelienic acid A (188, Figure 13) | G. cheliensis | “ | [150] |
Goniochelienic acid B (189, Figure 13) | “ | “ | “ |
Methyl goniochelienate (190, Figure 13) | “ | “ | “ |
Goniochelieninone (191, Figure 13) | “ | “ | “ |
(−)-(4S,5S,6R,7S,8S)-goniochelienlactone (192, Figure 13) | “ | “ | “ |
7-O-Acetyl derivative of 192 (193, Figure 13) | “ | “ | “ |
(+)-(7S,8S)-Goniochelienbutenolide A (194, Figure 13) | “ | “ | “ |
(−)-(7S,8R)-Goniochelienbutenolide B (195, Figure 13) | “ | “ | “ |
Celtisamide A (196, Figure 13) | C. tessmannii | “ | [155] |
Celtisamide B (197, Figure 13) | “ | “ | “ |
Dracaenogenin C (198, Figure 14) | D. usambarensis | “ | [157] |
Dracaenogenin D (199, Figure 14) | “ | “ | “ |
Dracaenogenin E (200, Figure 14) | “ | “ | “ |
Dracaenogenin F (201, Figure 14) | “ | “ | “ |
3′′-Methoxycochinchinenene H (202, Figure 14) | “ | Anti-inflammatory | “ |
Aristolochiaside (203, Figure 14) | I. tadungense | Cytotoxic | [161] |
Eloundemnoside (204, Figure 15) | C. adolphi-friderici | Moderate butyrylcholinesterase inhibition | [162] |
Fistuloimidate A (205, Figure 15) | A. fistulosum | Antibiotic | [164] |
Fistuloimidate B (206, Figure 15) | “ | “ | “ |
7R,14S-cis-Tetrahydrocoptisine N-oxides and (207, Figure 15) | C. majus | No activity | [165] |
7R,14R-trans-Tetrahydrocoptisine N-oxide (208, Figure 15) | “ | Inhibited NO production in RAW 264.7 cells | “ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Evidente, A.; Masi, M. Natural Bioactive Cinnamoyltyramine Alkylamides and Co-Metabolites. Biomolecules 2021, 11, 1765. https://doi.org/10.3390/biom11121765
Evidente A, Masi M. Natural Bioactive Cinnamoyltyramine Alkylamides and Co-Metabolites. Biomolecules. 2021; 11(12):1765. https://doi.org/10.3390/biom11121765
Chicago/Turabian StyleEvidente, Antonio, and Marco Masi. 2021. "Natural Bioactive Cinnamoyltyramine Alkylamides and Co-Metabolites" Biomolecules 11, no. 12: 1765. https://doi.org/10.3390/biom11121765
APA StyleEvidente, A., & Masi, M. (2021). Natural Bioactive Cinnamoyltyramine Alkylamides and Co-Metabolites. Biomolecules, 11(12), 1765. https://doi.org/10.3390/biom11121765