The ANXA2/S100A10 Complex—Regulation of the Oncogenic Plasminogen Receptor
Abstract
:1. Introduction
2. Plasminogen Activation
3. Role of the Carboxyl-Terminal Lysine in Plasminogen Binding
4. Plasminogen Receptors
5. Oncogenic Regulation of Plasminogen Receptors
6. Discovery of ANXA2/S100A10 Heterotetramer
7. Is ANXA2 a Plasminogen Receptor?
8. Structure and Regulation of S100A10
9. Role of the ANXA2/S100A10 Heterotetramer in Cancer
10. S100A10 as a Biomarker
10.1. Ovarian Cancer
10.2. Breast Cancer
10.3. Lung Cancer
10.4. Leukemias and Lymphomas
10.5. Colorectal Cancer
10.6. Thyroid Cancer
10.7. Esophageal Squamous Cell Carcinoma
10.8. Renal Cell Carcinoma
10.9. Low-Grade Glioma
10.10. Pancreatic Carcinoma
10.11. Gallbladder Cancer
10.12. Melanoma
10.13. Gastric
11. Conclusions
- S100A10 is an oncogenic plasminogen receptor that is activated by oncogenes such as RAS, MYC, SRC. HIF1α and PML-RAR; genes that participate in cancer promotion and metastasis. S100A10 is also regulated epigenetically by DNA methylation of CpG islands within its promoter.
- ANXA2 and S100A10 have distinct functions within the ANXA2/S100A10 heterotetramer. S100A10 binds tPA and plasminogen and stimulates the conversion of plasminogen to plasmin by plasminogen activators. ANXA2 functions to prevent S100A10 from rapid degradation and also stimulates the plasminogen receptor function of S100A10.
- Our studies with the S100A10-null mouse have established important roles for S100A10 in fibrinolysis, angiogenesis, and cancer progression and metastasis in vivo.
- Our in cellulo studies have established that Lys-57 is the crucial site for ubiquitylation of S100A10.
- The depletion or knockout of ANXA2 is not adequate or sufficient to establish a role of ANXA2 in any physiological process unless the depletion of S100A10 is found not to affect that process.
- S100A10 has the potential to be used as a biomarker for several cancers.
- Future experiments are necessary to define the potential role of S100A10 as a therapeutic target to block tumor growth, invasion, and metastasis in various cancers, to determine its usefulness in predicting chemotherapy response, and to test its potential as a therapeutic target to overcome chemoresistance.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rous, P. A sarcoma of the fowl transmissible by an agent separable from the tumor cells. J. Exp. Med. 1911, 13, 397–411. [Google Scholar] [CrossRef] [Green Version]
- Brugge, J.S.; Erikson, R.L. Identification of a Transformation-Specific Antigen Induced by an Avian Sarcoma Virus. Nature 1977, 269, 346–348. [Google Scholar] [CrossRef] [PubMed]
- Purchio, A.F.; Erikson, E.; Brugge, J.S.; Erikson, R.L. Identification of a Polypeptide Encoded by the Avian Sarcoma Virus Src Gene. Proc. Natl. Acad. Sci. USA 1978, 75, 1567–1571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collett, M.S.; Erikson, R.L. Protein Kinase Activity Associated with the Avian Sarcoma Virus Src Gene Product. Proc. Natl. Acad. Sci. USA 1978, 75, 2021–2024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levinson, A.D.; Oppermann, H.; Levintow, L.; Varmus, H.E.; Bishop, J.M. Evidence That the Transforming Gene of Avian Sarcoma Virus Encodes a Protein Kinase Associated with a Phosphoprotein. Cell 1978, 15, 561–572. [Google Scholar] [CrossRef]
- Hunter, T.; Sefton, B.M. Transforming Gene Product of Rous Sarcoma Virus Phosphorylates Tyrosine. Proc. Natl. Acad. Sci. USA 1980, 77, 1311–1315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collett, M.S.; Purchio, A.F.; Erikson, R.L. Avian Sarcoma Virus-Transforming Protein, pp60 src Shows Protein Kinase Activity Specific for Tyrosine. Nature 1980, 285, 167–169. [Google Scholar] [CrossRef]
- Jove, R.; Hanafusa, H. Cell Transformation by the Viral Src Oncogene. Annu. Rev. Cell Biol. 1987, 3, 31–56. [Google Scholar] [CrossRef]
- Fischer, A. Beitrag Zur Biologie Der Gewebezellen. Eine Vergleichendbiologische Studie Der Normalen Und Malignen Gewebezellen In Vitro. Arch. Entwickl. Org. Wilhelm Roux 1925, 104, 210–261. [Google Scholar]
- Unkeless, J.C.; Tobia, A.; Ossowski, L.; Quigley, J.P.; Rifkin, D.B.; Reich, E. An Enzymatic Function Associated with Transformation of Fibroblasts by Oncogenic Viruses. I. Chick Embryo Fibroblast Cultures Transformed by Avian RNA Tumor Viruses. J. Exp. Med. 1973, 137, 85–111. [Google Scholar] [CrossRef] [Green Version]
- Ossowski, L.; Quigley, J.P.; Kellerman, G.M.; Reich, E. Fibrinolysis Associated with Oncogenic Transformation. Requirement of Plasminogen for Correlated Changes in Cellular Morphology, Colony Formation in Agar, and Cell Migration. J. Exp. Med. 1973, 138, 1056–1064. [Google Scholar] [CrossRef] [PubMed]
- Ossowski, L.; Unkeless, J.C.; Tobia, A.; Quigley, J.P.; Rifkin, D.B.; Reich, E. An Enzymatic Function Associated with Transformation of Fibroblasts by Oncogenic Viruses. II. Mammalian Fibroblast Cultures Transformed by DNA and RNA Tumor Viruses. J. Exp. Med. 1973, 137, 112–126. [Google Scholar] [CrossRef] [Green Version]
- Maślikowski, B.M.; Néel, B.D.; Wu, Y.; Wang, L.; Rodrigues, N.A.; Gillet, G.; Bédard, P.-A. Cellular Processes of V-Src Transformation Revealed by Gene Profiling of Primary Cells-Implications for Human Cancer. BMC Cancer 2010, 10, 41. [Google Scholar] [CrossRef] [Green Version]
- Levin, E.G.; Loskutoff, D.J. Cultured Bovine Endothelial Cells Produce Both Urokinase and Tissue-Type Plasminogen Activators. J. Cell Biol. 1982, 94, 631–636. [Google Scholar] [CrossRef] [Green Version]
- Erikson, E.; Erikson, R.L. Identification of a Cellular Protein Substrate Phosphorylated by the Avian Sarcoma Virus-Transforming Gene Product. Cell 1980, 21, 829–836. [Google Scholar] [CrossRef]
- Radke, K.; Martin, G.S. Transformation by Rous Sarcoma Virus: Effects of Src Gene Expression on the Synthesis and Phosphorylation of Cellular Polypeptides. Proc. Natl. Acad. Sci. USA 1979, 76, 5212–5216. [Google Scholar] [CrossRef] [Green Version]
- Gould, K.L.; Cooper, J.A.; Hunter, T. The 46,000-Dalton Tyrosine Protein Kinase Substrate Is Widespread, Whereas the 36,000-Dalton Substrate Is Only Expressed at High Levels in Certain Rodent Tissues. J. Cell Biol. 1984, 98, 487–497. [Google Scholar] [CrossRef] [Green Version]
- Erikson, E.; Tomasiewicz, H.G.; Erikson, R.L. Biochemical Characterization of a 34-Kilodalton Normal Cellular Substrate of Pp60v-Src and an Associated 6-Kilodalton Protein. Mol. Cell Biol. 1984, 4, 77–85. [Google Scholar] [PubMed] [Green Version]
- Glenney, J.R.; Tack, B.F. Amino-Terminal Sequence of P36 and Associated P10: Identification of the Site of Tyrosine Phosphorylation and Homology with S-100. Proc. Natl. Acad. Sci. USA 1985, 82, 7884–7888. [Google Scholar] [CrossRef] [Green Version]
- Gerke, V.; Weber, K. Identity of P36K Phosphorylated upon Rous Sarcoma Virus Transformation with a Protein Purified from Brush Borders; Calcium-Dependent Binding to Non-Erythroid Spectrin and F-Actin. EMBO J. 1984, 3, 227–233. [Google Scholar] [CrossRef]
- Kassam, G.; Le, B.H.; Choi, K.S.; Kang, H.M.; Fitzpatrick, S.L.; Louie, P.; Waisman, D.M. The P11 Subunit of the Annexin II Tetramer Plays a Key Role in the Stimulation of T-PA-Dependent Plasminogen Activation. Biochemistry 1998, 37, 16958–16966. [Google Scholar] [CrossRef]
- Kassam, G.; Choi, K.S.; Ghuman, J.; Kang, H.M.; Fitzpatrick, S.L.; Zackson, T.; Zackson, S.; Toba, M.; Shinomiya, A.; Waisman, D.M. The Role of Annexin II Tetramer in the Activation of Plasminogen. J. Biol. Chem. 1998, 273, 4790–4799. [Google Scholar] [CrossRef] [Green Version]
- Choi, K.S.; Ghuman, J.; Kassam, G.; Kang, H.M.; Fitzpatrick, S.L.; Waisman, D.M. Annexin II Tetramer Inhibits Plasmin-Dependent Fibrinolysis. Biochemistry 1998, 37, 648–655. [Google Scholar] [CrossRef]
- Law, R.H.P.; Abu-Ssaydeh, D.; Whisstock, J.C. New Insights into the Structure and Function of the Plasminogen/Plasmin System. Curr. Opin. Struct. Biol. 2013, 23, 836–841. [Google Scholar] [CrossRef] [PubMed]
- Claeys, H.; Sottrup-Jensen, L.; Zajdel, M.; Petersen, T.E.; Magnusson, S. Multiple Gene Duplication in the Evolution of Plasminogen. Five Regions of Sequence Homology with the Two Internally Homologous Structures in Prothrombin. FEBS Lett. 1976, 61, 20–24. [Google Scholar] [CrossRef] [Green Version]
- Sottrup-Jensen, L.; Claeys, H.; Zajdel, M.; Petersen, T.E.; Magnusson, S. The Primary Structure of Human Plasminogen; Isolation of Two Lysine-Binding Fragments and One Mini-Plasminogen by Elastase-Catalysed-Specific Limited Proteolysis. In Progress in Chemical Fibrinolysis and Thrombosis; Raven Press: New York, NY, USA, 1978; pp. 191–209. [Google Scholar]
- Mangel, W.F.; Lin, B.H.; Ramakrishnan, V. Characterization of an Extremely Large, Ligand-Induced Conformational Change in Plasminogen. Science 1990, 248, 69–73. [Google Scholar] [CrossRef]
- Kornblatt, J.A.; Rajotte, I.; Heitz, F. Reaction of Canine Plasminogen with 6-Aminohexanoate: A Thermodynamic Study Combining Fluorescence, Circular Dichroism, and Isothermal Titration Calorimetry. Biochemistry 2001, 40, 3639–3647. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Baik, N.; Kim, K.-H.; Yang, J.-M.; Han, G.W.; Gong, Y.; Jardí, M.; Castellino, F.J.; Felez, J.; Parmer, R.J.; et al. Monoclonal Antibodies Detect Receptor-Induced Binding Sites in Glu-Plasminogen. Blood 2011, 118, 1653–1662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, Y.; Bodin, C.; Olsson, K. Crystal Structure of the Native Plasminogen Reveals an Activation-Resistant Compact Conformation. J. Thromb. Haemost. JTH 2012, 10, 1385–1396. [Google Scholar] [CrossRef]
- Horrevoets, A.J.; Smilde, A.E.; Fredenburgh, J.C.; Pannekoek, H.; Nesheim, M.E. The Activation-Resistant Conformation of Recombinant Human Plasminogen Is Stabilized by Basic Residues in the Amino-Terminal Hinge Region. J. Biol. Chem. 1995, 270, 15770–15776. [Google Scholar] [CrossRef] [Green Version]
- Medcalf, R.L. Fibrinolysis: From Blood to the Brain. J. Thromb. Haemost. JTH 2017, 15, 2089–2098. [Google Scholar] [CrossRef] [PubMed]
- Medcalf, R.L.; Keragala, C.B. The Fibrinolytic System: Mysteries and Opportunities. HemaSphere 2021, 5, e570. [Google Scholar] [CrossRef] [PubMed]
- Longstaff, C.; Kolev, K. Basic Mechanisms and Regulation of Fibrinolysis. J. Thromb. Haemost. JTH 2015, 13 (Suppl. S1), S98–S105. [Google Scholar] [CrossRef] [Green Version]
- Stoppelli, M.P. The Plasminogen Activation System in Cell Invasion; Landes Bioscience: Austin, TX, USA, 2013. [Google Scholar]
- Das, R.; Ganapathy, S.; Settle, M.; Plow, E.F. Plasminogen Promotes Macrophage Phagocytosis in Mice. Blood 2014, 124, 679–688. [Google Scholar] [CrossRef] [Green Version]
- Rosenwald, M.; Koppe, U.; Keppeler, H.; Sauer, G.; Hennel, R.; Ernst, A.; Blume, K.E.; Peter, C.; Herrmann, M.; Belka, C.; et al. Serum-Derived Plasminogen Is Activated by Apoptotic Cells and Promotes Their Phagocytic Clearance. J. Immunol. Baltim. J. Immunol. 2012, 189, 5722–5728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baker, S.K.; Strickland, S. A Critical Role for Plasminogen in Inflammation. J. Exp. Med. 2020, 217. [Google Scholar] [CrossRef]
- Lijnen, H.R.; Van Hoef, B.; Lupu, F.; Moons, L.; Carmeliet, P.; Collen, D. Function of the Plasminogen/Plasmin and Matrix Metalloproteinase Systems After Vascular Injury in Mice With Targeted Inactivation of Fibrinolytic System Genes. Arterioscler. Thromb. Vasc. Biol. 1998, 18, 1035–1045. [Google Scholar] [CrossRef] [Green Version]
- Wyganowska-Świątkowska, M.; Tarnowski, M.; Murtagh, D.; Skrzypczak-Jankun, E.; Jankun, J. Proteolysis Is the Most Fundamental Property of Malignancy and Its Inhibition May Be Used Therapeutically (Review). Int. J. Mol. Med. 2019, 43, 15–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McMahon, B.J.; Kwaan, H.C. Components of the Plasminogen-Plasmin System as Biologic Markers for Cancer. Adv. Exp. Med. Biol. 2015, 867, 145–156. [Google Scholar] [CrossRef]
- Didiasova, M.; Wujak, L.; Wygrecka, M.; Zakrzewicz, D. From Plasminogen to Plasmin: Role of Plasminogen Receptors in Human Cancer. Int. J. Mol. Sci. 2014, 15, 21229–21252. [Google Scholar] [CrossRef] [Green Version]
- Mikata, I.; Hasegawa, M.; Igarashi, T.; Shirakura, N.; Hoshida, M.; Toyama, K. Variations of plasmin in the hemorrhagic blood diseases. Keio J. Med. 1959, 8, 279–292. [Google Scholar] [CrossRef] [Green Version]
- Alkjaersig, N.; Fletcher, A.P.; Sherry, S. ε-Aminocaproic Acid: An Inhibitor of Plasminogen Activation. J. Biol. Chem. 1959, 234, 832–837. [Google Scholar] [CrossRef]
- Alkjaersig, N. The Purification and Properties of Human Plasminogen. Biochem. J. 1964, 93, 171–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Violand, B.N.; Byrne, R.; Castellino, F.J. The Effect of Alpha-, Omega-Amino Acids on Human Plasminogen Structure and Activation. J. Biol. Chem. 1978, 253, 5395–5401. [Google Scholar] [CrossRef]
- Deutsch, D.G.; Mertz, E.T. Plasminogen: Purification from Human Plasma by Affinity Chromatography. Science 1970, 170, 1095–1096. [Google Scholar] [CrossRef] [PubMed]
- Hudson, N.E. Biophysical Mechanisms Mediating Fibrin Fiber Lysis. BioMed Res. Int. 2017, 2017, 2748340. [Google Scholar] [CrossRef] [Green Version]
- Váradi, A.; Patthy, L. Beta(Leu121-Lys122) Segment of Fibrinogen Is in a Region Essential for Plasminogen Binding by Fibrin Fragment E. Biochemistry 1984, 23, 2108–2112. [Google Scholar] [CrossRef]
- Schielen, W.J.; Adams, H.P.; Voskuilen, M.; Tesser, G.I.; Nieuwenhuizen, W. The Sequence A Alpha-(154-159) of Fibrinogen Is Capable of Accelerating the t-PA Catalysed Activation of Plasminogen. Blood Coagul. Fibrinolysis Int. J. Haemost. Thromb. 1991, 2, 465–470. [Google Scholar] [CrossRef]
- Medved, L.; Nieuwenhuizen, W. Molecular Mechanisms of Initiation of Fibrinolysis by Fibrin. Thromb. Haemost. 2003, 89, 409–419. [Google Scholar]
- Thorsen, S. The Mechanism of Plasminogen Activation and the Variability of the Fibrin Effector during Tissue-Type Plasminogen Activator-Mediated Fibrinolysis. Ann. N. Y. Acad. Sci. 1992, 667, 52–63. [Google Scholar] [CrossRef]
- Rijken, D.C.; Sakharov, D.V. Basic Principles in Thrombolysis: Regulatory Role of Plasminogen. Thromb. Res. 2001, 103 (Suppl. S1), S41–S49. [Google Scholar] [CrossRef]
- An, S.S.; Carreno, C.; Marti, D.N.; Schaller, J.; Albericio, F.; Llinas, M. Lysine-50 Is a Likely Site for Anchoring the Plasminogen N-Terminal Peptide to Lysine-Binding Kringles. Protein Sci. 1998, 7, 1960–1969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Law, R.H.P.; Caradoc-Davies, T.; Cowieson, N.; Horvath, A.J.; Quek, A.J.; Encarnacao, J.A.; Steer, D.; Cowan, A.; Zhang, Q.; Lu, B.G.C.; et al. The X-Ray Crystal Structure of Full-Length Human Plasminogen. Cell Rep. 2012, 1, 185–190. [Google Scholar] [CrossRef] [Green Version]
- Gurewich, V.; Pannell, R.; Louie, S.; Kelley, P.; Suddith, R.L.; Greenlee, R. Effective and Fibrin-Specific Clot Lysis by a Zymogen Precursor Form of Urokinase (pro-Urokinase). A Study in Vitro and in Two Animal Species. J. Clin. Investig. 1984, 73, 1731–1739. [Google Scholar] [CrossRef] [Green Version]
- De Munk, G.A.; Caspers, M.P.; Chang, G.T.; Pouwels, P.H.; Enger-Valk, B.E.; Verheijen, J.H. Binding of Tissue-Type Plasminogen Activator to Lysine, Lysine Analogues, and Fibrin Fragments. Biochemistry 1989, 28, 7318–7325. [Google Scholar] [CrossRef] [PubMed]
- Romagnuolo, R.; Marcovina, S.M.; Boffa, M.B.; Koschinsky, M.L. Inhibition of Plasminogen Activation by Apo(a): Role of Carboxyl-Terminal Lysines and Identification of Inhibitory Domains in Apo(a). J. Lipid Res. 2014, 55, 625–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Godier, A.; Hunt, B.J. Plasminogen Receptors and Their Role in the Pathogenesis of Inflammatory, Autoimmune and Malignant Disease. J. Thromb. Haemost. JTH 2013, 11, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Miles, L.A.; Hawley, S.B.; Baik, N.; Andronicos, N.M.; Castellino, F.J.; Parmer, R.J. Plasminogen Receptors: The Sine qua Non of Cell Surface Plasminogen Activation. Front. Biosci. 2005, 10, 1754–1762. [Google Scholar] [PubMed]
- Miles, L.A.; Parmer, R.J. Plasminogen Receptors: The First Quarter Century. Semin. Thromb. Hemost. 2013, 39, 329–337. [Google Scholar] [CrossRef] [Green Version]
- Miles, L.A.; Plow, E.F.; Waisman, D.M.; Parmer, R.J. Plasminogen Receptors. J. Biomed. Biotechnol. 2012, 2012, 130735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miles, L.A.; Ny, L.; Wilczynska, M.; Shen, Y.; Ny, T.; Parmer, R.J. Plasminogen Receptors and Fibrinolysis. Int. J. Mol. Sci. 2021, 22, 1712. [Google Scholar] [CrossRef] [PubMed]
- Bharadwaj, A.G.; Holloway, R.W.; Miller, V.A.; Waisman, D.M. Plasmin and Plasminogen System in the Tumor Microenvironment: Implications for Cancer Diagnosis, Prognosis, and Therapy. Cancers 2021, 13, 1838. [Google Scholar] [CrossRef]
- Herren, T.; Swaisgood, C.; Plow, E.F. Regulation of Plasminogen Receptors. Front. Biosci. 2003, 8, D1–D8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plow, E.F.; Doeuvre, L.; Das, R. So Many Plasminogen Receptors: Why? J. Biomed. Biotechnol. 2012, 2012, 141806. [Google Scholar] [CrossRef] [Green Version]
- Felez, J. Plasminogen Binding to Cell Surfaces. Fibrinolysis Proteolysis 1998, 12, 183–189. [Google Scholar] [CrossRef]
- Miles, L.A.; Levin, E.G.; Plescia, J.; Collen, D.; Plow, E.F. Plasminogen Receptors, Urokinase Receptors, and Their Modulation on Human Endothelial Cells. Blood 1988, 72, 628–635. [Google Scholar] [CrossRef] [Green Version]
- Miles, L.A.; Plow, E.F. Binding and Activation of Plasminogen on the Platelet Surface. J. Biol. Chem. 1985, 260, 4303–4311. [Google Scholar] [CrossRef]
- Ranson, M.; Andronicos, N.M.; O’Mullane, M.J.; Baker, M.S. Increased Plasminogen Binding Is Associated with Metastatic Breast Cancer Cells: Differential Expression of Plasminogen Binding Proteins. Br. J. Cancer 1998, 77, 1586–1597. [Google Scholar] [CrossRef] [Green Version]
- Miles, L.A.; Dahlberg, C.M.; Plescia, J.; Felez, J.; Kato, K.; Plow, E.F. Role of Cell-Surface Lysines in Plasminogen Binding to Cells: Identification of Alpha-Enolase as a Candidate Plasminogen Receptor. Biochemistry 1991, 30, 1682–1691. [Google Scholar] [CrossRef] [PubMed]
- Hembrough, T.A.; Vasudevan, J.; Allietta, M.M.; Glass, W.F.; Gonias, S.L. A Cytokeratin 8-like Protein with Plasminogen-Binding Activity Is Present on the External Surfaces of Hepatocytes, HepG2 Cells and Breast Carcinoma Cell Lines. J. Cell Sci. 1995, 108, 1071–1082. [Google Scholar] [CrossRef] [PubMed]
- Hawley, S.B.; Tamura, T.; Miles, L.A. Purification, Cloning, and Characterization of a Profibrinolytic Plasminogen-Binding Protein, TIP49a. J. Biol. Chem. 2001, 276, 179–186. [Google Scholar] [CrossRef] [Green Version]
- Herren, T.; Burke, T.A.; Das, R.; Plow, E.F. Identification of Histone H2B as a Regulated Plasminogen Receptor. Biochemistry 2006, 45, 9463–9474. [Google Scholar] [CrossRef]
- Andronicos, N.M.; Chen, E.I.; Baik, N.; Bai, H.; Parmer, C.M.; Kiosses, W.B.; Kamps, M.P.; Yates, J.R.; Parmer, R.J.; Miles, L.A. Proteomics-Based Discovery of a Novel, Structurally Unique, and Developmentally Regulated Plasminogen Receptor, Plg-RKT, a Major Regulator of Cell Surface Plasminogen Activation. Blood 2010, 115, 1319–1330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, Z.; Larson, P.J.; Bognacki, J.; Raghunath, P.N.; Tomaszewski, J.E.; Kuo, A.; Canziani, G.; Chaiken, I.; Cines, D.B.; Higazi, A.A. Tissue Factor Regulates Plasminogen Binding and Activation. Blood 1998, 91, 1987–1998. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Gronow, M.; Gomez, C.F.; de Ridder, G.G.; Ray, R.; Pizzo, S.V. Binding of Tissue-Type Plasminogen Activator to the Glucose-Regulated Protein 78 (GRP78) Modulates Plasminogen Activation and Promotes Human Neuroblastoma Cell Proliferation in Vitro. J. Biol. Chem. 2014, 289, 25166–25176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parkkinen, J.; Rauvala, H. Interactions of Plasminogen and Tissue Plasminogen Activator (t-PA) with Amphoterin. Enhancement of t-PA-Catalyzed Plasminogen Activation by Amphoterin. J. Biol. Chem. 1991, 266, 16730–16735. [Google Scholar] [CrossRef]
- Lind, S.E.; Smith, C.J. Actin Accelerates Plasmin Generation by Tissue Plasminogen Activator. J. Biol. Chem. 1991, 266, 17673–17678. [Google Scholar] [CrossRef]
- Miles, L.A.; Andronicos, N.M.; Baik, N.; Parmer, R.J. Cell-Surface Actin Binds Plasminogen and Modulates Neurotransmitter Release from Catecholaminergic Cells. J. Neurosci. 2006, 26, 13017–13024. [Google Scholar] [CrossRef] [PubMed]
- Dudani, A.K.; Ganz, P.R. Endothelial Cell Surface Actin Serves as a Binding Site for Plasminogen, Tissue Plasminogen Activator and Lipoprotein(a). Br. J. Haematol. 1996, 95, 168–178. [Google Scholar] [CrossRef]
- Kanalas, J.J.; Makker, S.P. Identification of the Rat Heymann Nephritis Autoantigen (GP330) as a Receptor Site for Plasminogen. J. Biol. Chem. 1991, 266, 10825–10829. [Google Scholar] [CrossRef]
- Pluskota, E.; Soloviev, D.A.; Bdeir, K.; Cines, D.B.; Plow, E.F. Integrin AlphaMbeta2 Orchestrates and Accelerates Plasminogen Activation and Fibrinolysis by Neutrophils. J. Biol. Chem. 2004, 279, 18063–18072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lishko, V.K.; Novokhatny, V.V.; Yakubenko, V.P.; Skomorovska-Prokvolit, H.V.; Ugarova, T.P. Characterization of Plasminogen as an Adhesive Ligand for Integrins AlphaMbeta2 (Mac-1) and Alpha5beta1 (VLA-5). Blood 2004, 104, 719–726. [Google Scholar] [CrossRef]
- Miles, L.A.; Ginsberg, M.H.; White, J.G.; Plow, E.F. Plasminogen Interacts with Human Platelets through Two Distinct Mechanisms. J. Clin. Investig. 1986, 77, 2001–2009. [Google Scholar] [CrossRef] [Green Version]
- Stillfried, G.E.; Saunders, D.N.; Ranson, M. Plasminogen Binding and Activation at the Breast Cancer Cell Surface: The Integral Role of Urokinase Activity. Breast Cancer Res. BCR 2007, 9, R14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Redlitz, A.; Fowler, B.J.; Plow, E.F.; Miles, L.A. The Role of an Enolase-Related Molecule in Plasminogen Binding to Cells. Eur. J. Biochem. 1995, 227, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Gronow, M.; Stack, S.; Pizzo, S.V. Plasmin Binding to the Plasminogen Receptor Enhances Catalytic Efficiency and Activates the Receptor for Subsequent Ligand Binding. Arch. Biochem. Biophys. 1991, 286, 625–628. [Google Scholar] [CrossRef]
- Camacho, M.; Fondaneche, M.C.; Burtin, P. Limited Proteolysis of Tumor Cells Increases Their Plasmin-Binding Ability. FEBS Lett 1989, 245, 21–24. [Google Scholar] [CrossRef] [Green Version]
- Bergmann, S.; Wild, D.; Diekmann, O.; Frank, R.; Bracht, D.; Chhatwal, G.S.; Hammerschmidt, S. Identification of a Novel Plasmin(Ogen)-Binding Motif in Surface Displayed Alpha-Enolase of Streptococcus Pneumoniae. Mol. Microbiol. 2003, 49, 411–423. [Google Scholar] [CrossRef]
- Ehinger, S.; Schubert, W.D.; Bergmann, S.; Hammerschmidt, S.; Heinz, D.W. Plasmin(Ogen)-Binding Alpha-Enolase from Streptococcus Pneumoniae: Crystal Structure and Evaluation of Plasmin(Ogen)-Binding Sites. J. Mol. Biol. 2004, 343, 997–1005. [Google Scholar] [CrossRef]
- Marcos, C.M.; de Fátima da Silva, J.; de Oliveira, H.C.; Moraes da Silva, R.A.; Mendes-Giannini, M.J.S.; Fusco-Almeida, A.M. Surface-Expressed Enolase Contributes to the Adhesion of Paracoccidioides Brasiliensis to Host Cells. FEMS Yeast Res. 2012, 12, 557–570. [Google Scholar] [CrossRef] [Green Version]
- Weber, M.; Burgos, R.; Yus, E.; Yang, J.-S.; Lluch-Senar, M.; Serrano, L. Impact of C-Terminal Amino Acid Composition on Protein Expression in Bacteria. bioRxiv 2019, 751305. [Google Scholar] [CrossRef]
- Felez, J.; Miles, L.A.; Fabregas, P.; Jardi, M.; Plow, E.F.; Lijnen, R.H. Characterization of Cellular Binding Sites and Interactive Regions within Reactants Required for Enhancement of Plasminogen Activation by TPA on the Surface of Leukocytic Cells. Thromb. Haemost. 1996, 76, 577–584. [Google Scholar] [CrossRef]
- Kumari, S.; Malla, R. New Insight on the Role of Plasminogen Receptor in Cancer Progression. Cancer Growth Metastasis 2015, 8, 35–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Condeelis, J.; Pollard, J.W. Macrophages: Obligate Partners for Tumor Cell Migration, Invasion, and Metastasis. Cell 2006, 124, 263–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorelik, E.; Wiltrout, R.H.; Brunda, M.J.; Holden, H.T.; Herberman, R.B. Augmentation of Metastasis Formation by Thioglycollate-Elicited Macrophages. Int. J. Cancer 1982, 29, 575–581. [Google Scholar] [CrossRef]
- Aras, S.; Zaidi, M.R. TAMeless Traitors: Macrophages in Cancer Progression and Metastasis. Br. J. Cancer 2017, 117, 1583–1591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wygrecka, M.; Marsh, L.M.; Morty, R.E.; Henneke, I.; Guenther, A.; Lohmeyer, J.; Markart, P.; Preissner, K.T. Enolase-1 Promotes Plasminogen-Mediated Recruitment of Monocytes to the Acutely Inflamed Lung. Blood 2009, 113, 5588–5598. [Google Scholar] [CrossRef] [Green Version]
- Das, R.; Burke, T.; Plow, E.F. Histone H2B as a Functionally Important Plasminogen Receptor on Macrophages. Blood 2007, 110, 3763–3772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lighvani, S.; Baik, N.; Diggs, J.E.; Khaldoyanidi, S.; Parmer, R.J.; Miles, L.A. Regulation of Macrophage Migration by a Novel Plasminogen Receptor Plg-RKT. Blood 2011, 118, 5622–5630. [Google Scholar] [CrossRef] [Green Version]
- Phipps, K.D.; Surette, A.P.; O’Connell, P.A.; Waisman, D.M. Plasminogen Receptor S100A10 Is Essential for the Migration of Tumor-Promoting Macrophages into Tumor Sites. Cancer Res. 2011, 71, 6676–6683. [Google Scholar] [CrossRef] [Green Version]
- Dutta, S.; Bandyopadhyay, C.; Bottero, V.; Veettil, M.V.; Wilson, L.; Pins, M.R.; Johnson, K.E.; Warshall, C.; Chandran, B. Angiogenin Interacts with the Plasminogen Activation System at the Cell Surface of Breast Cancer Cells to Regulate Plasmin Formation and Cell Migration. Mol. Oncol. 2014, 8, 483–507. [Google Scholar] [CrossRef] [Green Version]
- Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The next Generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allgayer, H.; Wang, H.; Shirasawa, S.; Sasazuki, T.; Boyd, D. Targeted Disruption of the K-Ras Oncogene in an Invasive Colon Cancer Cell Line down-Regulates Urokinase Receptor Expression and Plasminogen- Dependent Proteolysis. Br. J. Cancer 1999, 80, 1884–1891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Testa, J.E.; Medcalf, R.L.; Cajot, J.F.; Schleuning, W.D.; Sordat, B. Urokinase-Type Plasminogen Activator Biosynthesis Is Induced by the EJ-Ha-Ras Oncogene in CL26 Mouse Colon Carcinoma Cells. Int. J. Cancer 1989, 43, 816–822. [Google Scholar] [CrossRef]
- Mauro, C.D.; Pesapane, A.; Formisano, L.; Rosa, R.; D’Amato, V.; Ciciola, P.; Servetto, A.; Marciano, R.; Orsini, R.C.; Monteleone, F.; et al. Urokinase-Type Plasminogen Activator Receptor (UPAR) Expression Enhances Invasion and Metastasis in RAS Mutated Tumors. Sci. Rep. 2017, 7, 9388. [Google Scholar] [CrossRef] [PubMed]
- Ying, H.; Kimmelman, A.C.; Lyssiotis, C.A.; Hua, S.; Chu, G.C.; Fletcher-Sananikone, E.; Locasale, J.W.; Son, J.; Zhang, H.; Coloff, J.L.; et al. Oncogenic Kras Maintains Pancreatic Tumors through Regulation of Anabolic Glucose Metabolism. Cell 2012, 149, 656–670. [Google Scholar] [CrossRef] [Green Version]
- Fu, Q.-F.; Liu, Y.; Fan, Y.; Hua, S.-N.; Qu, H.-Y.; Dong, S.-W.; Li, R.-L.; Zhao, M.-Y.; Zhen, Y.; Yu, X.-L.; et al. Alpha-Enolase Promotes Cell Glycolysis, Growth, Migration, and Invasion in Non-Small Cell Lung Cancer through FAK-Mediated PI3K/AKT Pathway. J. Hematol. Oncol. 2015, 8, 22. [Google Scholar] [CrossRef] [Green Version]
- Madureira, P.A.; Bharadwaj, A.G.; Bydoun, M.; Garant, K.; O’Connell, P.; Lee, P.; Waisman, D.M. Cell Surface Protease Activation during RAS Transformation: Critical Role of the Plasminogen Receptor, S100A10. Oncotarget 2016, 7, 47720–47737. [Google Scholar] [CrossRef] [Green Version]
- Kundu, S.; Ali, M.A.; Handin, N.; Conway, L.P.; Rendo, V.; Artursson, P.; He, L.; Globisch, D.; Sjöblom, T. Common and Mutation Specific Phenotypes of KRAS and BRAF Mutations in Colorectal Cancer Cells Revealed by Integrative -Omics Analysis. J. Exp. Clin. Cancer Res. CR 2021, 40, 225. [Google Scholar] [CrossRef]
- Pardali, K.; Moustakas, A. Actions of TGF-Beta as Tumor Suppressor and pro-Metastatic Factor in Human Cancer. Biochim. Biophys. Acta 2007, 1775, 21–62. [Google Scholar] [CrossRef]
- Bydoun, M.; Sterea, A.; Weaver, I.C.G.; Bharadwaj, A.D.; Waisman, D.M. A Novel Mechanism of Plasminogen Activation in Epithelial and Mesenchymal Cells. Sci. Rep. 2018, 8, 14091. [Google Scholar] [CrossRef] [Green Version]
- Bydoun, M.; Sterea, A.; Liptay, H.; Uzans, A.; Huang, W.-Y.; Rodrigues, G.J.; Weaver, I.C.G.; Gu, H.; Waisman, D.M. S100A10, a Novel Biomarker in Pancreatic Ductal Adenocarcinoma. Mol. Oncol. 2018, 12, 1895–1916. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Pawliczak, R.; Yao, X.; Cowan, M.J.; Gladwin, M.T.; Walter, M.J.; Holtzman, M.J.; Madara, P.; Logun, C.; Shelhamer, J.H. Interferon-Gamma Induces P11 Gene and Protein Expression in Human Epithelial Cells through Interferon-Gamma-Activated Sequences in the P11 Promoter. J. Biol. Chem. 2003, 278, 9298–9308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Li, H.; Su, T.P.; Barker, J.L.; Maric, D.; Fullerton, C.S.; Webster, M.J.; Hough, C.J.; Li, X.X.; Ursano, R. P11 Is Up-Regulated in the Forebrain of Stressed Rats by Glucocorticoid Acting via Two Specific Glucocorticoid Response Elements in the P11 Promoter. Neuroscience 2008, 153, 1126–1134. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.L.; Cowan, M.J.; Gladwin, M.T.; Lawrence, M.M.; Angus, C.W.; Shelhamer, J.H. Dexamethasone Alters Arachidonate Release from Human Epithelial Cells by Induction of P11 Protein Synthesis and Inhibition of Phospholipase A2 Activity. J. Biol. Chem. 1999, 274, 17202–17208. [Google Scholar] [CrossRef] [Green Version]
- Chun, S.Y.; Bae, H.W.; Kim, W.J.; Park, J.H.; Hsu, S.Y.; Hsueh, A.J. Expression of Messenger Ribonucleic Acid for the Antiapoptosis Gene P11 in the Rat Ovary: Gonadotropin Stimulation in Granulosa Cells of Preovulatory Follicles. Endocrinology 2001, 142, 2311–2317. [Google Scholar] [CrossRef]
- Munz, B.; Gerke, V.; Gillitzer, R.; Werner, S. Differential Expression of the Calpactin I Subunits Annexin II and P11 in Cultured Keratinocytes and during Wound Repair. J. Investig. Dermatol. 1997, 108, 307–312. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.-L.; Pawliczak, R.; Cowan, M.J.; Gladwin, M.T.; Madara, P.; Logun, C.; Shelhamer, J.H. Epidermal Growth Factor Induces P11 Gene and Protein Expression and Down-Regulates Calcium Ionophore-Induced Arachidonic Acid Release in Human Epithelial Cells. J. Biol. Chem. 2002, 277, 38431–38440. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.; Xie, Y.; Tran, L.; Lan, J.; Yang, Y.; Murugan, N.L.; Wang, R.; Wang, Y.J.; Semenza, G.L. Chemotherapy-Induced S100A10 Recruits KDM6A to Facilitate OCT4-Mediated Breast Cancer Stemness. J. Clin. Investig. 2020, 130, 4607–4623. [Google Scholar] [CrossRef] [PubMed]
- Chédeville, A.L.; Lourdusamy, A.; Monteiro, A.R.; Hill, R.; Madureira, P.A. Investigating Glioblastoma Response to Hypoxia. Biomedicines 2020, 8, 310. [Google Scholar] [CrossRef]
- Martin-Rendon, E.; Hale, S.J.M.; Ryan, D.; Baban, D.; Forde, S.P.; Roubelakis, M.; Sweeney, D.; Moukayed, M.; Harris, A.L.; Davies, K.; et al. Transcriptional Profiling of Human Cord Blood CD133+ and Cultured Bone Marrow Mesenchymal Stem Cells in Response to Hypoxia. Stem Cells 2007, 25, 1003–1012. [Google Scholar] [CrossRef]
- Zheng, L.; Foley, K.; Huang, L.; Leubner, A.; Mo, G.; Olino, K.; Edil, B.H.; Mizuma, M.; Sharma, R.; Le, D.T.; et al. Tyrosine 23 Phosphorylation-Dependent Cell-Surface Localization of Annexin A2 Is Required for Invasion and Metastases of Pancreatic Cancer. PLoS ONE 2011, 6, e19390. [Google Scholar] [CrossRef] [Green Version]
- O’Connell, P.A.; Madureira, P.A.; Berman, J.N.; Liwski, R.S.; Waisman, D.M. Regulation of S100A10 by the PML-RAR-α Oncoprotein. Blood 2011, 117, 4095–4105. [Google Scholar] [CrossRef] [Green Version]
- Sertel, S.; Eichhorn, T.; Simon, C.H.; Plinkert, P.K.; Johnson, S.W.; Efferth, T. Pharmacogenomic Identification of C-Myc/Max-Regulated Genes Associated with Cytotoxicity of Artesunate towards Human Colon, Ovarian and Lung Cancer Cell Lines. Molecules 2010, 15, 2886–2910. [Google Scholar] [CrossRef] [Green Version]
- Bekusova, V.V.; Patsanovskii, V.M.; Nozdrachev, A.D.; Trashkov, A.P.; Artemenko, M.R.; Anisimov, V.N. Metformin Prevents Hormonal and Metabolic Disturbances and 1,2-Dimethylhydrazine-Induced Colon Carcinogenesis in Non-Diabetic Rats. Cancer Biol. Med. 2017, 14, 100–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, G.; Fei, F.; Qu, J.; Wang, X.; Zhao, Y.; Li, Y.; Zhang, S. ITRAQ-Based Proteomic Analysis of DMH-Induced Colorectal Cancer in Mice Reveals the Expressions of β-Catenin, Decorin, Septin-7, and S100A10 Expression in 53 Cases of Human Hereditary Polyposis Colorectal Cancer. Clin. Transl. Oncol. Off. Publ. Fed. Span. Oncol. Soc. Natl. Cancer Inst. Mex. 2019, 21, 220–231. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Fogg, D.K.; Waisman, D.M. RNA Interference-Mediated Silencing of the S100A10 Gene Attenuates Plasmin Generation and Invasiveness of Colo 222 Colorectal Cancer Cells. J. Biol. Chem. 2004, 279, 2053–2062. [Google Scholar] [CrossRef] [Green Version]
- Yu, M.; Bardia, A.; Wittner, B.S.; Stott, S.L.; Smas, M.E.; Ting, D.T.; Isakoff, S.J.; Ciciliano, J.C.; Wells, M.N.; Shah, A.M.; et al. Circulating Breast Tumor Cells Exhibit Dynamic Changes in Epithelial and Mesenchymal Composition. Science 2013, 339, 580–584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bydoun, M.; Waisman, D.M. On the Contribution of S100A10 and Annexin A2 to Plasminogen Activation and Oncogenesis: An Enduring Ambiguity. Future Oncol. Lond. Engl. 2014, 10, 2469–2479. [Google Scholar] [CrossRef] [PubMed]
- Gerke, V.; Weber, K. The Regulatory Chain in the P36-Kd Substrate Complex of Viral Tyrosine-Specific Protein Kinases Is Related in Sequence to the S-100 Protein of Glial Cells. EMBO J. 1985, 4, 2917–2920. [Google Scholar] [CrossRef] [PubMed]
- Khanna, N.C.; Tokuda, M.; Chong, S.M.; Waisman, D.M. Phosphorylation of P36 in Vitro by Protein Kinase C. Biochem. Biophys. Res. Commun. 1986, 137, 397–403. [Google Scholar] [CrossRef]
- Johnstone, S.A.; Hubaishy, I.; Waisman, D.M. Phosphorylation of Annexin II Tetramer by Protein Kinase C Inhibits Aggregation of Lipid Vesicles by the Protein. J. Biol. Chem. 1992, 267, 25976–25981. [Google Scholar] [CrossRef]
- Jones, P.G.; Moore, G.J.; Waisman, D.M. A Nonapeptide to the Putative F-Actin Binding Site of Annexin-II Tetramer Inhibits Its Calcium-Dependent Activation of Actin Filament Bundling. J. Biol. Chem. 1992, 267, 13993–13997. [Google Scholar] [CrossRef]
- Johnstone, S.A.; Hubaishy, I.; Waisman, D.M. Regulation of Annexin I-Dependent Aggregation of Phospholipid Vesicles by Protein Kinase C. Biochem. J. 1993, 294, 801–807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hubaishy, I.; Jones, P.G.; Bjorge, J.; Bellagamba, C.; Fitzpatrick, S.; Fujita, D.J.; Waisman, D.M. Modulation of Annexin II Tetramer By Tyrosine Phosphorylation. Biochemistry 1995, 34, 14527–14534. [Google Scholar] [CrossRef] [PubMed]
- Bellagamba, C.; Hubaishy, I.; Bjorge, J.D.; Fitzpatrick, S.L.; Fujita, D.J.; Waisman, D.M. Tyrosine Phosphorylation of Annexin II Tetramer Is Stimulated by Membrane Binding. J. Biol. Chem. 1997, 272, 3195–3199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kassam, G.; Manro, A.; Braat, C.E.; Louie, P.; Fitzpatrick, S.L.; Waisman, D.M. Characterization of the Heparin Binding Properties of Annexin II Tetramer. J. Biol. Chem. 1997, 272, 15093–15100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filipenko, N.R.; Waisman, D.M. The C-Terminus of Annexin II Mediates Binding to F-Actin. J. Biol. Chem. 2001, 276, 5310–5315. [Google Scholar] [CrossRef] [Green Version]
- Filipenko, N.R.; MacLeod, T.J.; Yoon, C.S.; Waisman, D.M. Annexin A2 Is a Novel RNA-Binding Protein. J. Biol. Chem. 2004, 279, 8723–8731. [Google Scholar] [CrossRef] [Green Version]
- Filipenko, N.R.; Kang, H.M.; Waisman, D.M. Characterization of the Ca2+-Binding Sites of Annexin II Tetramer. J. Biol. Chem. 2001, 276, 38877–38884. [Google Scholar] [CrossRef]
- Shao, C.; Zhang, F.; Kemp, M.M.; Linhardt, R.J.; Waisman, D.M.; Head, J.F.; Seaton, B.A. Crystallographic Analysis of Calcium-Dependent Heparin Binding to Annexin A2. J. Biol. Chem. 2006, 281, 31689–31695. [Google Scholar] [CrossRef]
- Caplan, J.F.; Filipenko, N.R.; Fitzpatrick, S.L.; Waisman, D.M. Regulation of Annexin A2 by Reversible Glutathionylation. J. Biol. Chem. 2004, 279, 7740–7750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horrevoets, A.J.; Pannekoek, H.; Nesheim, M.E. Production and Characterization of Recombinant Human Plasminogen(S741C-Fluorescein). A Novel Approach to Study Zymogen Activation without Generation of Active Protease. J. Biol. Chem. 1997, 272, 2176–2182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tran-Thang, C.; Kruithof, E.K.; Atkinson, J.; Bachmann, F. High-Affinity Binding Sites for Human Glu-Plasminogen Unveiled by Limited Plasmic Degradation of Human Fibrin. Eur. J. Biochem. 1986, 160, 599–604. [Google Scholar] [CrossRef]
- Kube, E.; Becker, T.; Weber, K.; Gerke, V. Protein-Protein Interaction Studied by Site-Directed Mutagenesis. Characterization of the Annexin II-Binding Site on P11, a Member of the S100 Protein Family. J. Biol. Chem. 1992, 267, 14175–14182. [Google Scholar] [CrossRef]
- Rakoczi, I.; Wiman, B.; Collen, D. On the Biological Significance of the Specific Interaction between Fibrin, Plasminogen and Antiplasmin. Biochim. Biophys. Acta 1978, 540, 295–300. [Google Scholar] [CrossRef]
- Rouy, D.; Angles-Cano, E. The Mechanism of Activation of Plasminogen at the Fibrin Surface by Tissue-Type Plasminogen Activator in a Plasma Milieu in Vitro. Role of Alpha 2-Antiplasmin. Biochem. J. 1990, 271, 51–57. [Google Scholar] [CrossRef]
- Longstaff, C.; Gaffney, P.J. Serpine-Serine Protease Binding Kinetics: Alpha2-Antiplasmin as a Model Inhibitor. Biochemistry 1991, 30, 979–986. [Google Scholar] [CrossRef] [PubMed]
- Mazzieri, R.; Masiero, L.; Zanetta, L.; Monea, S.; Onisto, M.; Garbisa, S.; Mignatti, P. Control of Type IV Collagenase Activity by Components of the Urokinase-Plasmin System: A Regulatory Mechanism with Cell-Bound Reactants. EMBO J. 1997, 16, 2319–2332. [Google Scholar] [CrossRef] [Green Version]
- Jespersen, J.; Gram, J.; Astrup, T. The Autodigestion of Human Plasmin Follows a Bimolecular Mode of Reaction Subject to Product Inhibition. Thromb. Res. 1986, 41, 395–404. [Google Scholar] [CrossRef]
- Fitzpatrick, S.L.; Kassam, G.; Choi, K.S.; Kang, H.M.; Fogg, D.K.; Waisman, D.M. Regulation of Plasmin Activity by Annexin II Tetramer. Biochemistry 2000, 39, 1021–1028. [Google Scholar] [CrossRef]
- MacLeod, T.J.; Kwon, M.; Filipenko, N.R.; Waisman, D.M. Phospholipid-Associated Annexin A2-S100A10 Heterotetramer and Its Subunits: Characterization of the Interaction with Tissue Plasminogen Activator, Plasminogen, and Plasmin. J. Biol. Chem. 2003, 278, 25577–25584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gately, S.; Twardowski, P.; Stack, M.S.; Patrick, M.; Boggio, L.; Cundiff, D.L.; Schnaper, H.W.; Madison, L.; Volpert, O.; Bouck, N.; et al. Human Prostate Carcinoma Cells Express Enzymatic Activity That Converts Human Plasminogen to the Angiogenesis Inhibitor, Angiostatin. Cancer Res. 1996, 56, 4887–4890. [Google Scholar]
- O’Reilly, M.S.; Holmgren, L.; Shing, Y.; Chen, C.; Rosenthal, R.A.; Moses, M.; Lane, W.S.; Cao, Y.; Sage, E.H.; Folkman, J. Angiostatin: A Novel Angiogenesis Inhibitor That Mediates the Suppression of Metastases by a Lewis Lung Carcinoma. Cell 1994, 79, 315–328. [Google Scholar] [CrossRef]
- Cao, Y.; Ji, R.W.; Davidson, D.; Schaller, J.; Marti, D.; Sohndel, S.; McCance, S.G.; O’Reilly, M.S.; Llinas, M.; Folkman, J. Kringle Domains of Human Angiostatin. Characterization of the Anti-Proliferative Activity on Endothelial Cells. J. Biol. Chem. 1996, 271, 29461–29467. [Google Scholar] [CrossRef] [Green Version]
- Houghton, A.M.; Grisolano, J.L.; Baumann, M.L.; Kobayashi, D.K.; Hautamaki, R.D.; Nehring, L.C.; Cornelius, L.A.; Shapiro, S.D. Macrophage Elastase (Matrix Metalloproteinase-12) Suppresses Growth of Lung Metastases. Cancer Res. 2006, 66, 6149–6155. [Google Scholar] [CrossRef] [Green Version]
- Kassam, G.; Kwon, M.; Yoon, C.S.; Graham, K.S.; Young, M.K.; Gluck, S.; Waisman, D.M. Purification and Characterization of A-61, an Angiostatin-like Plasminogen Fragment Produced by Plasmin Autodigestion in the Absence of Sulfhydryl Donors. J. Biol. Chem. 2001, 276, 8924–8933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwon, M.; Caplan, J.F.; Filipenko, N.R.; Choi, K.S.; Fitzpatrick, S.L.; Zhang, L.; Waisman, D.M. Identification of Annexin II Heterotetramer as a Plasmin Reductase. J. Biol. Chem. 2002, 277, 10903–10911. [Google Scholar] [CrossRef] [Green Version]
- Kwon, M.; Yoon, C.S.; Jeong, W.; Rhee, S.G.; Waisman, D.M. Annexin A2-S100A10 Heterotetramer, a Novel Substrate of Thioredoxin. J. Biol. Chem. 2005, 280, 23584–23592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, V.A.; Madureira, P.A.; Kamaludin, A.A.; Komar, J.; Sharma, V.; Sahni, G.; Thelwell, C.; Longstaff, C.; Waisman, D.M. Mechanism of Plasmin Generation by S100A10. Thromb. Haemost. 2017, 117, 1058–1071. [Google Scholar] [CrossRef]
- Hajjar, K.A.; Jacovina, A.T.; Chacko, J. An Endothelial Cell Receptor for Plasminogen/Tissue Plasminogen Activator. I. Identity with Annexin II. J. Biol. Chem. 1994, 269, 21191–21197. [Google Scholar] [CrossRef]
- Chung, C.Y.; Erickson, H.P. Cell Surface Annexin II Is a High Affinity Receptor for the Alternatively Spliced Segment of Tenascin-C. J. Cell Biol. 1994, 126, 539–548. [Google Scholar] [CrossRef] [PubMed]
- Römisch, J.; Heimburger, N. Purification and Characterization of Six Annexins from Human Placenta. Biol. Chem. Hoppe. Seyler 1990, 371, 383–388. [Google Scholar] [CrossRef]
- Khanna, N.C.; Helwig, E.D.; Ikebuchi, N.W.; Fitzpatrick, S.; Bajwa, R.; Waisman, D.M. Purification and Characterization of Annexin Proteins from Bovine Lung. Biochemistry 1990, 29, 4852–4862. [Google Scholar] [CrossRef]
- Regnouf, F.; Rendon, A.; Pradel, L.A. Biochemical Characterization of Annexins I and II Isolated from Pig Nervous Tissue. J. Neurochem. 1991, 56, 1985–1996. [Google Scholar] [CrossRef]
- Buhl, W.J.; García, M.T.; Zipfel, M.; Schiebler, W.; Gehring, U. A Series of Annexins from Human Placenta and Their Characterization by Use of an Endogenous Phospholipase A2. Eur. J. Cell Biol. 1991, 56, 381–390. [Google Scholar] [PubMed]
- Kaetzel, M.A.; Hazarika, P.; Dedman, J.R. Differential Tissue Expression of Three 35-KDa Annexin Calcium-Dependent Phospholipid-Binding Proteins. J. Biol. Chem. 1989, 264, 14463–14470. [Google Scholar] [CrossRef]
- Shadle, P.J.; Gerke, V.; Weber, K. Three Ca2+-Binding Proteins from Porcine Liver and Intestine Differ Immunologically and Physicochemically and Are Distinct in Ca2+ Affinities. J. Biol. Chem. 1985, 260, 16354–16360. [Google Scholar] [CrossRef]
- Martin, F.; Derancourt, J.; Capony, J.P.; Watrin, A.; Cavadore, J.C. A 36 KDa Monomeric Protein and Its Complex with a 10 KDa Protein Both Isolated from Bovine Aorta Are Calpactin-like Proteins That Differ in Their Ca2+-Dependent Calmodulin-Binding and Actin-Severing Properties. Biochem. J. 1988, 251, 777–785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, K.-S.; Wallner, B.P.; Mattaliano, R.J.; Tizard, R.; Burne, C.; Frey, A.; Hession, C.; McGray, P.; Sinclair, L.K.; Chow, E.P.; et al. Two Human 35 Kd Inhibitors of Phospholipase A2 Are Related to Substrates of Pp60v-Src and of the Epidermal Growth Factor Receptor/Kinase. Cell 1986, 46, 191–199. [Google Scholar] [CrossRef]
- Kang, H.M.; Kassam, G.; Jarvis, S.E.; Fitzpatrick, S.L.; Waisman, D.M. Characterization of Human Recombinant Annexin II Tetramer Purified from Bacteria: Role of N-Terminal Acetylation. Biochemistry 1997, 36, 2041–2050. [Google Scholar] [CrossRef] [PubMed]
- Fassel, H.; Chen, H.; Ruisi, M.; Kumar, N.; DeSancho, M.; Hajjar, K.A. Reduced Expression of Annexin A2 Is Associated with Impaired Cell Surface Fibrinolysis and Venous Thromboembolism. Blood 2021, 137, 2221–2230. [Google Scholar] [CrossRef]
- Bharadwaj, A.; Bydoun, M.; Holloway, R.; Waisman, D. Annexin A2 Heterotetramer: Structure and Function. Int. J. Mol. Sci. 2013, 14, 6259–6305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puisieux, A.; Ji, J.; Ozturk, M. Annexin II Up-Regulates Cellular Levels of P11 Protein by a Post-Translational Mechanisms. Biochem. J. 1996, 313 Pt 1, 51–55. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Guo, B.; Zhang, Y.; Cao, J.; Chen, T. Silencing of the Annexin II Gene Down-Regulates the Levels of S100A10, c-Myc, and Plasmin and Inhibits Breast Cancer Cell Proliferation and Invasion. Saudi Med. J. 2010, 31, 374–381. [Google Scholar]
- Hou, Y.; Yang, L.; Mou, M.; Hou, Y.; Zhang, A.; Pan, N.; Qiang, R.; Wei, L.; Zhang, N. Annexin A2 Regulates the Levels of Plasmin, S100A10 and Fascin in L5178Y Cells. Cancer Investig. 2008, 26, 809–815. [Google Scholar] [CrossRef]
- Gladwin, M.T.; Yao, X.L.; Cowan, M.; Huang, X.L.; Schneider, R.; Grant, L.R.; Logun, C.; Shelhamer, J.H. Retinoic Acid Reduces P11 Protein Levels in Bronchial Epithelial Cells by a Posttranslational Mechanism. Am. J. Physiol. Lung Cell. Mol. Physiol. 2000, 279, L1103-9. [Google Scholar] [CrossRef]
- Yang, X.; Popescu, N.C.; Zimonjic, D.B. DLC1 Interaction with S100A10 Mediates Inhibition of in Vitro Cell Invasion and Tumorigenicity of Lung Cancer Cells through a RhoGAP-Independent Mechanism. Cancer Res. 2011, 71, 2916–2925. [Google Scholar] [CrossRef] [Green Version]
- Surette, A.P.; Madureira, P.A.; Phipps, K.D.; Miller, V.A.; Svenningsson, P.; Waisman, D.M. Regulation of Fibrinolysis by S100A10 in Vivo. Blood 2011, 118, 3172–3181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, K.-L.; Deora, A.B.; Xiong, H.; Ling, Q.; Weksler, B.B.; Niesvizky, R.; Hajjar, K.A. Endothelial Cell Annexin A2 Regulates Polyubiquitination and Degradation of Its Binding Partner S100A10/P11. J. Biol. Chem. 2008, 283, 19192–19200. [Google Scholar] [CrossRef] [Green Version]
- Holloway, R.W.; Thomas, M.L.; Cohen, A.M.; Bharadwaj, A.G.; Rahman, M.; Marcato, P.; Marignani, P.A.; Waisman, D.M. Regulation of Cell Surface Protease Receptor S100A10 by Retinoic Acid Therapy in Acute Promyelocytic Leukemia (APL)☆. Cell Death Dis. 2018, 9, 920. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, C.; Li, X.; Shen, J.; Xu, Y.; Shi, H.; Mu, X.; Pan, J.; Zhao, T.; Li, M.; et al. CPT1A-Mediated Succinylation of S100A10 Increases Human Gastric Cancer Invasion. J. Cell. Mol. Med. 2019, 23, 293–305. [Google Scholar] [CrossRef]
- Wagner, S.A.; Beli, P.; Weinert, B.T.; Schölz, C.; Kelstrup, C.D.; Young, C.; Nielsen, M.L.; Olsen, J.V.; Brakebusch, C.; Choudhary, C. Proteomic Analyses Reveal Divergent Ubiquitylation Site Patterns in Murine Tissues. Mol. Cell. Proteom. MCP 2012, 11, 1578–1585. [Google Scholar] [CrossRef] [Green Version]
- Choi, K.S.; Fogg, D.K.; Yoon, C.S.; Waisman, D.M. P11 Regulates Extracellular Plasmin Production and Invasiveness of HT1080 Fibrosarcoma Cells. FASEB J. 2003, 17, 235–246. [Google Scholar] [CrossRef] [PubMed]
- Svenningsson, P.; Chergui, K.; Rachleff, I.; Flajolet, M.; Zhang, X.; El Yacoubi, M.; Vaugeois, J.M.; Nomikos, G.G.; Greengard, P. Alterations in 5-HT1B Receptor Function by P11 in Depression-like States. Science 2006, 311, 77–80. [Google Scholar] [CrossRef] [Green Version]
- Bharadwaj, A.G.; Dahn, M.L.; Liu, R.-Z.; Colp, P.; Thomas, L.N.; Holloway, R.W.; Marignani, P.A.; Too, C.K.; Barnes, P.J.; Godbout, R.; et al. S100A10 Has a Critical Regulatory Function in Mammary Tumor Growth and Metastasis: Insights Using MMTV-PyMT Oncomice and Clinical Patient Sample Analysis. Cancers 2020, 12, 3673. [Google Scholar] [CrossRef] [PubMed]
- Attalla, S.; Taifour, T.; Bui, T.; Muller, W. Insights from Transgenic Mouse Models of PyMT-Induced Breast Cancer: Recapitulating Human Breast Cancer Progression In Vivo. Oncogene 2021, 40, 475–491. [Google Scholar] [CrossRef]
- Schwarz, R.E.; McCarty, T.M.; Peralta, E.A.; Diamond, D.J.; Ellenhorn, J.D. An Orthotopic in Vivo Model of Human Pancreatic Cancer. Surgery 1999, 126, 562–567. [Google Scholar] [CrossRef]
- Melas, P.A.; Rogdaki, M.; Lennartsson, A.; Björk, K.; Qi, H.; Witasp, A.; Werme, M.; Wegener, G.; Mathé, A.A.; Svenningsson, P.; et al. Antidepressant Treatment Is Associated with Epigenetic Alterations in the Promoter of P11 in a Genetic Model of Depression. Int. J. Neuropsychopharmacol. 2012, 15, 669–679. [Google Scholar] [CrossRef] [Green Version]
- Sitek, B.; Sipos, B.; Alkatout, I.; Poschmann, G.; Stephan, C.; Schulenborg, T.; Marcus, K.; Lüttges, J.; Dittert, D.-D.; Baretton, G.; et al. Analysis of the Pancreatic Tumor Progression by a Quantitative Proteomic Approach and Immunhistochemical Validation. J. Proteome Res. 2009, 8, 1647–1656. [Google Scholar] [CrossRef]
- Yanagi, H.; Watanabe, T.; Nishimura, T.; Hayashi, T.; Kono, S.; Tsuchida, H.; Hirata, M.; Kijima, Y.; Takao, S.; Okada, S.; et al. Upregulation of S100A10 in Metastasized Breast Cancer Stem Cells. Cancer Sci. 2020, 111, 4359–4370. [Google Scholar] [CrossRef]
- McKiernan, E.; McDermott, E.W.; Evoy, D.; Crown, J.; Duffy, M.J. The Role of S100 Genes in Breast Cancer Progression. Tumour Biol. J. Int. Soc. Oncodev. Biol. Med. 2011, 32, 441–450. [Google Scholar] [CrossRef]
- Arai, K.; Iwasaki, T.; Sonoda, A.; Endo, A. Membranous Overexpression of S100A10 Is Associated with a High-Grade Cellular Status of Breast Carcinoma. Med. Mol. Morphol. 2019, 53, 104–114. [Google Scholar] [CrossRef] [PubMed]
- Gillet, J.-P.; Calcagno, A.M.; Varma, S.; Davidson, B.; Bunkholt Elstrand, M.; Ganapathi, R.; Kamat, A.A.; Sood, A.K.; Ambudkar, S.V.; Seiden, M.V.; et al. Multidrug Resistance-Linked Gene Signature Predicts Overall Survival of Patients with Primary Ovarian Serous Carcinoma. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2012, 18, 3197–3206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nymoen, D.A.; Hetland Falkenthal, T.E.; Holth, A.; Ow, G.S.; Ivshina, A.V.; Tropé, C.G.; Kuznetsov, V.A.; Staff, A.C.; Davidson, B. Expression and Clinical Role of Chemoresponse-Associated Genes in Ovarian Serous Carcinoma. Gynecol. Oncol. 2015, 139, 30–39. [Google Scholar] [CrossRef]
- Lokman, N.A.; Pyragius, C.E.; Ruszkiewicz, A.; Oehler, M.K.; Ricciardelli, C. Annexin A2 and S100A10 Are Independent Predictors of Serous Ovarian Cancer Outcome. Transl. Res. J. Lab. Clin. Med. 2016, 172, 45–60. [Google Scholar] [CrossRef]
- Christensen, M.V.; Høgdall, C.; Jensen, S.G.; Lokman, N.; Ricciardelli, C.; Christensen, I.J.; Christiansen, P.; Brask, J.; Karlsen, M.A.; Nissen, T.K.; et al. Annexin A2 and S100A10 as Candidate Prognostic Markers in Epithelial Ovarian Cancer. Anticancer Res. 2019, 39, 2475–2482. [Google Scholar] [CrossRef]
- Carlsson, H.; Petersson, S.; Enerbäck, C. Cluster Analysis of S100 Gene Expression and Genes Correlating to Psoriasin (S100A7) Expression at Different Stages of Breast Cancer Development. Int. J. Oncol. 2005, 27, 1473–1481. [Google Scholar]
- Van de Vijver, M.J.; He, Y.D.; van’t Veer, L.J.; Dai, H.; Hart, A.A.M.; Voskuil, D.W.; Schreiber, G.J.; Peterse, J.L.; Roberts, C.; Marton, M.J.; et al. A Gene-Expression Signature as a Predictor of Survival in Breast Cancer. N. Engl. J. Med. 2002, 347, 1999–2009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemjabbar-Alaoui, H.; Hassan, O.U.; Yang, Y.-W.; Buchanan, P. Lung Cancer: Biology and Treatment Options. Biochim. Biophys. Acta 2015, 1856, 189–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katono, K.; Sato, Y.; Jiang, S.-X.; Kobayashi, M.; Saito, K.; Nagashio, R.; Ryuge, S.; Satoh, Y.; Saegusa, M.; Masuda, N. Clinicopathological Significance of S100A10 Expression in Lung Adenocarcinomas. Asian Pac. J. Cancer Prev. APJCP 2016, 17, 289–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, K.; Saiki, Y.; Arai, K.; Ishizawa, K.; Fukushige, S.; Aoki, K.; Abe, J.; Takahashi, S.; Sato, I.; Sakurada, A.; et al. S100A10 Upregulation Associates with Poor Prognosis in Lung Squamous Cell Carcinoma. Biochem. Biophys. Res. Commun. 2018, 505, 466–470. [Google Scholar] [CrossRef]
- Kato, M.; Manabe, A. Treatment and Biology of Pediatric Acute Lymphoblastic Leukemia. Pediatr. Int. Off. J. Jpn. Pediatr. Soc. 2018, 60, 4–12. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Li, J.; Chen, Y.; Jiang, P.; Wang, L.; Hu, J. Identification of Early Recurrence Factors in Childhood and Adolescent B-Cell Acute Lymphoblastic Leukemia Based on Integrated Bioinformatics Analysis. Front. Oncol. 2020, 10, 565455. [Google Scholar] [CrossRef]
- Quan, X.; Zhang, N.; Chen, Y.; Zeng, H.; Deng, J. Development of an Immune-Related Prognostic Model for Pediatric Acute Lymphoblastic Leukemia Patients. Mol. Genet. Genom. Med. 2020, 8, e1404. [Google Scholar] [CrossRef]
- Shang, J.; Zhang, Z.; Song, W.; Zhou, B.; Zhang, Y.; Li, G.; Qiu, S. S100A10 as a Novel Biomarker in Colorectal Cancer. Tumour Biol. J. Int. Soc. Oncodev. Biol. Med. 2013, 34, 3785–3790. [Google Scholar] [CrossRef] [PubMed]
- Giráldez, M.D.; Lozano, J.J.; Cuatrecasas, M.; Alonso-Espinaco, V.; Maurel, J.; Mármol, M.; Hörndler, C.; Ortego, J.; Alonso, V.; Escudero, P.; et al. Gene-Expression Signature of Tumor Recurrence in Patients with Stage II and III Colon Cancer Treated with 5′fluoruracil-Based Adjuvant Chemotherapy. Int. J. Cancer J. 2012, 132, 1090–1097. [Google Scholar] [CrossRef]
- Arai, K.; Ishimatsu, H.; Iwasaki, T.; Tsuchiya, C.; Sonoda, A.; Ohata, K. Membranous S100A10 Involvement in the Tumor Budding of Colorectal Cancer during Oncogenesis: Report of Two Cases with Immunohistochemical Analysis. World J. Surg. Oncol. 2020, 18, 289. [Google Scholar] [CrossRef]
- Zeng, M.-L.; Zhu, X.-J.; Liu, J.; Shi, P.-C.; Kang, Y.-L.; Lin, Z.; Cao, Y.-P. An Integrated Bioinformatic Analysis of the S100 Gene Family for the Prognosis of Colorectal Cancer. BioMed Res. Int. 2020, 2020, 4746929. [Google Scholar] [CrossRef]
- Ito, Y.; Arai, K.; Nozawa, R.; Yoshida, H.; Higashiyama, T.; Takamura, Y.; Miya, A.; Kobayashi, K.; Kuma, K.; Miyauchi, A. S100A10 Expression in Thyroid Neoplasms Originating from the Follicular Epithelium: Contribution to the Aggressive Characteristic of Anaplastic Carcinoma. Anticancer Res. 2007, 27, 2679–2683. [Google Scholar]
- Ji, J.; Zhao, L.; Wang, X.; Zhou, C.; Ding, F.; Su, L.; Zhang, C.; Mao, X.; Wu, M.; Liu, Z. Differential Expression of S100 Gene Family in Human Esophageal Squamous Cell Carcinoma. J. Cancer Res. Clin. Oncol. 2004, 130, 480–486. [Google Scholar] [CrossRef]
- Teratani, T.; Watanabe, T.; Kuwahara, F.; Kumagai, H.; Kobayashi, S.; Aoki, U.; Ishikawa, A.; Arai, K.; Nozawa, R. Induced Transcriptional Expression of Calcium-Binding Protein S100A1 and S100A10 Genes in Human Renal Cell Carcinoma. Cancer Lett. 2002, 175, 71–77. [Google Scholar] [CrossRef]
- Domoto, T.; Miyama, Y.; Suzuki, H.; Teratani, T.; Arai, K.; Sugiyama, T.; Takayama, T.; Mugiya, S.; Ozono, S.; Nozawa, R. Evaluation of S100A10, Annexin II and B-FABP Expression as Markers for Renal Cell Carcinoma. Cancer Sci. 2007, 98, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yang, X.; Zhu, X.-L.; Bai, H.; Wang, Z.-Z.; Zhang, J.-J.; Hao, C.-Y.; Duan, H.-B. S100A Gene Family: Immune-Related Prognostic Biomarkers and Therapeutic Targets for Low-Grade Glioma. Aging 2021, 13, 15459–15478. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, H.; Chen, X.; Dong, F.; Zhang, Z.; Zhou, Z.; Ma, Z.; Huang, S.; Chen, B.; Zhang, C.; Hou, B. Prognostic Values and Immune Suppression of the S100A Family in Pancreatic Cancer. J. Cell. Mol. Med. 2021, 25, 3006–3018. [Google Scholar] [CrossRef]
- Tan, Y.; Ma, S.-Y.; Wang, F.-Q.; Meng, H.-P.; Mei, C.; Liu, A.; Wu, H.-R. Proteomic-Based Analysis for Identification of Potential Serum Biomarkers in Gallbladder Cancer. Oncol. Rep. 2011, 26, 853–859. [Google Scholar] [CrossRef] [Green Version]
- Xiong, T.-F.; Pan, F.-Q.; Li, D. Expression and Clinical Significance of S100 Family Genes in Patients with Melanoma. Melanoma Res. 2019, 29, 23–29. [Google Scholar] [CrossRef]
- El-Rifai, W.; Moskaluk, C.A.; Abdrabbo, M.K.; Harper, J.; Yoshida, C.; Riggins, G.J.; Frierson, H.F., Jr.; Powell, S.M. Gastric Cancers Overexpress S100A Calcium-Binding Proteins. Cancer Res. 2002, 62, 6823–6826. [Google Scholar] [PubMed]
- Li, Y.; Li, X.-Y.; Li, L.-X.; Zhou, R.-C.; Sikong, Y.; Gu, X.; Jin, B.-Y.; Li, B.; Li, Y.-Q.; Zuo, X.-L. S100A10 Accelerates Aerobic Glycolysis and Malignant Growth by Activating MTOR-Signaling Pathway in Gastric Cancer. Front. Cell Dev. Biol. 2020, 8, 559486. [Google Scholar] [CrossRef]
- Liu, J.; Li, X.; Dong, G.-L.; Zhang, H.-W.; Chen, D.-L.; Du, J.-J.; Zheng, J.-Y.; Li, J.-P.; Wang, W.-Z. In Silico Analysis and Verification of S100 Gene Expression in Gastric Cancer. BMC Cancer 2008, 8, 261. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bharadwaj, A.G.; Kempster, E.; Waisman, D.M. The ANXA2/S100A10 Complex—Regulation of the Oncogenic Plasminogen Receptor. Biomolecules 2021, 11, 1772. https://doi.org/10.3390/biom11121772
Bharadwaj AG, Kempster E, Waisman DM. The ANXA2/S100A10 Complex—Regulation of the Oncogenic Plasminogen Receptor. Biomolecules. 2021; 11(12):1772. https://doi.org/10.3390/biom11121772
Chicago/Turabian StyleBharadwaj, Alamelu G., Emma Kempster, and David M. Waisman. 2021. "The ANXA2/S100A10 Complex—Regulation of the Oncogenic Plasminogen Receptor" Biomolecules 11, no. 12: 1772. https://doi.org/10.3390/biom11121772
APA StyleBharadwaj, A. G., Kempster, E., & Waisman, D. M. (2021). The ANXA2/S100A10 Complex—Regulation of the Oncogenic Plasminogen Receptor. Biomolecules, 11(12), 1772. https://doi.org/10.3390/biom11121772