Three-Dimensional Graph Matching to Identify Secondary Structure Correspondence of Medium-Resolution Cryo-EM Density Maps
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preprocessing
2.2. Construction of 3D Vectors from SSEs-A and SSEs-C
2.3. Three-Dimensional Vector Matching
Construction of Weighted Fully Connected Graphs of SSEs-A and SSEs-C
- i.
- Angle-based fully connected graph (.): This graph uses the angle of vectors for assigning weights to the edges of the graph. is defined to calculate the weights of the . graph based on the angle of every two vectors:
- ii.
- Euclidean distance-based fully connected graph (.): This graph utilizes the Euclidean distance (ED) metric for assigning weights to the edges of the . graph. The edge’s weight of the graph is computed based on the Euclidean distance of the midpoint of two vectors as follows:
- iii.
- Relative length-based fully connected graph (.): This graph determines the weight of the edge based on the relative length (RL) of two vectors. This characteristic is defined to specify the relative length between two vectors and is computed based on Equation (3).
- All entries on the main diagonal are zero ( = 0);
- All off-diagonal entries are positive ( > 0 if i ≠ j);
- The matrices are a symmetric matrix ().
2.4. Similarity-Based Voting Algorithm (SimVA)
2.4.1. Unanimous Voting
2.4.2. Majority Voting
2.4.3. Principle of Least Conflict
3. Results
3.1. Experimental and Simulated Cryo-EM Density Maps
3.2. Performance Comparison of Two Scoring Functions
3.3. Impact of the SimVA Algorithm on the SSEs Correspondence Result
3.4. Assessment of the Method
3.5. Comparison of Method with DP-TOSS
3.6. Runtime of the Method
4. Discussion and Conclusions
5. Code Availability
Author Contributions
Funding
Conflicts of Interest
References
- Xiang, Z.; Gong, W.; Li, Z.; Yang, X.; Wang, J.; Wang, H. Predicting Protein–Protein Interactions via Gated Graph Attention Signed Network. Biomolecules 2021, 11, 799. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, S.; Lin, X. Recent Advances in Computational Protocols Addressing Intrinsically Disordered Proteins. Biomolecules 2019, 9, 146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doerr, A. Single-Particle Electron Cryomicroscopy. Nat. Methods 2014, 11, 30. [Google Scholar] [CrossRef] [PubMed]
- Glaeser, R.M. How Good Can Cryo-EM Become. Nat. Methods 2016, 13, 28–32. [Google Scholar] [CrossRef] [Green Version]
- Carrasco, M.; Toledo, P.; Tischler, N.D. Macromolecule Particle Picking and Segmentation of a KLH Database by Unsupervised Cryo-EM Image Processing. Biomolecules 2019, 9, 809. [Google Scholar] [CrossRef] [Green Version]
- Baker, M.L.; Baker, M.R.; Hryc, C.F.; DiMaio, F. Analyses of Subnanometer Resolution Cryo-EM Density Maps, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2010; Volume 483. [Google Scholar]
- Saha, M.; Morais, M.C. FOLD-EM: Automated Fold Recognition in Medium-and Low-Resolution (4–15 Å) Electron Density Maps. Bioinformatics 2012, 28, 3265–3273. [Google Scholar] [CrossRef] [Green Version]
- Si, D.; He, J. Tracing Beta Strands Using StrandTwister from Cryo-EM Density Maps at Medium Resolutions. Structure 2014, 22, 1665–1676. [Google Scholar] [CrossRef] [Green Version]
- Lindert, S.; Alexander, N.; Wötzel, N.; Karakaş, M.; LStewart, P.; Meiler, J. EM-Fold: De Novo Atomic-Detail Protein Structure Determination from Medium-Resolution Density Maps. Structure 2012, 20, 464–478. [Google Scholar] [CrossRef] [Green Version]
- Shakeel, S.; Passmore, L.A.; Casan, A.; Casañal, A.; Shakeel, S.; Passmore, L.A. Interpretation of Medium Resolution CryoEM Maps of Multi-Protein Complexes. Curr. Opin. Struct. Biol. 2019, 58, 166–174. [Google Scholar]
- Ng, A.; Si, D. Genetic Algorithm Based Beta-Barrel Detection for Medium Resolution Cryo-EM Density Maps. In Proceedings of the 13th International Symposium on Bioinformatics Research and Applications, Honolulu, HI, USA, 29 May–2 June 2017; pp. 174–185. [Google Scholar]
- Zhang, B.; Zhang, X.; Pearce, R.; Shen, H.-B.; Zhang, Y. A New Protocol for Atomic-Level Protein Structure Modeling and Refinement Using Low-to-Medium Resolution Cryo-EM Density Maps. J. Mol. Biol. 2020, 432, 5365–5377. [Google Scholar] [CrossRef]
- Behkamal, B.; Naghibzadeh, M.; Pagnani, A.; Saberi, M.R.; Al Nasr, K. Solving the α-Helix Correspondence Problem at Medium-Resolution Cryo-EM Maps through Modeling and 3D Matching. J. Mol. Graph. Model. 2020, 103, 107815. [Google Scholar] [CrossRef] [PubMed]
- Leelananda, S.P.; Lindert, S. Iterative Molecular Dynamics-Rosetta Membrane Protein Structure Refinement Guided by Cryo-EM Densities. J. Chem. Theory Comput. 2017, 13, 5131–5145. [Google Scholar] [CrossRef]
- Fàbrega-Ferrer, M.; Cuervo, A.; Fernández, F.J.; Machón, C.; Pérez-Luque, R.; Pous, J.; Vega, M.C.; Carrascosa, J.L.; Coll, M. Using a Partial Atomic Model from Medium-Resolution Cryo-EM to Solve a Large Crystal Structure. Acta Crystallogr. Sect. D Struct. Biol. 2021, 77, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Abeysinghe, S.; Ju, T.; Baker, M.L.; Chiu, W. Shape Modeling and Matching in Identifying 3D Protein Structures. CAD Comput. Aided Des. 2008, 40, 708–720. [Google Scholar] [CrossRef]
- Lindert, S.; Staritzbichler, R.; Wötzel, N.; Karakaş, M.; Stewart, P.L.; Meiler, J.; Wtzel, N.; Karaka, M.; Stewart, P.L.; Meiler, J.; et al. EM-Fold: De Novo Folding of α-Helical Proteins Guided by Intermediate-Resolution Electron Microscopy Density Maps. Structure 2009, 17, 990–1003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al Nasr, K.; Ranjan, D.; Zubair, M.; He, J. Ranking Valid Topologies of the Secondary Structure Elements Using a Constraint Graph. J. Bioinform. Comput. Biol. 2011, 9, 415–430. [Google Scholar] [CrossRef] [Green Version]
- Al Nasr, K.; Ranjan, D.; Zubair, M.; Chen, L.; He, J. Solving the Secondary Structure Matching Problem in Cryo-EM De Novo Modeling Using a Constrained K-Shortest Path Graph Algorithm. IEEE/ACM Trans. Comput. Biol. Bioinform. 2014, 11, 419–430. [Google Scholar] [CrossRef] [PubMed]
- Al Nasr, K.; Yousef, F.; Jebril, R.; Jones, C. Analytical Approaches to Improve Accuracy in Solving the Protein Topology Problem. Molecules 2018, 23, 28. [Google Scholar] [CrossRef] [Green Version]
- Baker, M.L.; Abeysinghe, S.S.; Schuh, S.; Coleman, R.A.; Abrams, A.; Marsh, M.P.; Hryc, C.F.; Ruths, T.; Chiu, W.; Ju, T. Modeling Protein Structure at near Atomic Resolutions with Gorgon. J. Struct. Biol. 2011, 174, 360–373. [Google Scholar] [CrossRef] [Green Version]
- Biswas, A.; Ranjan, D.; Zubair, M.; Zeil, S.; Al Nasr, K.; He, J. An Effective Computational Method Incorporating Multiple Secondary Structure Predictions in Topology Determination for Cryo-EM Images. IEEE/ACM Trans. Comput. Biol. Bioinform. 2017, 14, 578–586. [Google Scholar] [CrossRef]
- Fabiola, F.; Chapman, M.S. Fitting of High-Resolution Structures into Electron Microscopy Reconstruction Images. Structure 2005, 13, 389–400. [Google Scholar] [CrossRef] [Green Version]
- Jiang, W.; Baker, M.L.; Ludtke, S.J.; Chiu, W. Bridging the Information Gap: Computational Tools for Intermediate Resolution Structure Interpretation. J. Mol. Biol. 2001, 308, 1033–1044. [Google Scholar] [CrossRef]
- Rossmann, M.G. Fitting Atomic Models into Electron-Microscopy Maps. Acta Crystallogr. Sect. D Biol. Crystallogr. 2000, 56, 1341–1349. [Google Scholar] [CrossRef] [Green Version]
- Wriggers, W.; Chacon, P. Modeling Tricks and Fitting Techniques for Multiresolution Structures. Structure 2001, 9, 779–788. [Google Scholar] [CrossRef] [Green Version]
- Dou, H.; Burrows, D.W.; Baker, M.L.; Ju, T. Flexible Fitting of Atomic Models into Cryo-EM Density Maps Guided by Helix Correspondences. Biophys. J. 2017, 112, 2479–2493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeil, S.; Kovacs, J.; Wriggers, W.; He, J. Comparing an Atomic Model or Structure to a Corresponding Cryo-Electron Microscopy Image at the Central Axis of a Helix. J. Comput. Biol. 2017, 24, 52–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y. I-TASSER Server for Protein 3D Structure Prediction. BMC Bioinform. 2008, 9, 40. [Google Scholar] [CrossRef] [Green Version]
- Roy, A.; Kucukural, A.; Zhang, Y. I-TASSER: A Unified Platform for Automated Protein Structure and Function Prediction. Nat. Protoc. 2010, 5, 725. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Yan, R.; Roy, A.; Xu, D.; Poisson, J.; Zhang, Y. The I-TASSER Suite: Protein Structure and Function Prediction. Nat. Methods 2015, 12, 7. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Zhang, Y. I-TASSER Server: New Development for Protein Structure and Function Predictions. Nucleic Acids Res. 2015, 43, W174–W181. [Google Scholar] [CrossRef] [Green Version]
- Eswar, N.; Webb, B.; Marti-Renom, M.A.; Madhusudhan, M.S.; Eramian, D.; Shen, M.; Pieper, U.; Sali, A. Comparative Protein Structure Modeling Using MODELLER. Curr. Protoc. Bioinform. 2014, 47, 5–6. [Google Scholar]
- Senior, A.W.; Evans, R.; Jumper, J.; Kirkpatrick, J.; Sifre, L.; Green, T.; Qin, C.; Žídek, A.; Nelson, A.W.R.; Bridgland, A. Protein Structure Prediction Using Multiple Deep Neural Networks in the 13th Critical Assessment of Protein Structure Prediction (CASP13). Proteins Struct. Funct. Bioinform. 2019, 87, 1141–1148. [Google Scholar] [CrossRef] [Green Version]
- Senior, A.W.; Evans, R.; Jumper, J.; Kirkpatrick, J.; Sifre, L.; Green, T.; Qin, C.; Žídek, A.; Nelson, A.W.R.; Bridgland, A. Improved Protein Structure Prediction Using Potentials from Deep Learning. Nature 2020, 577, 706–710. [Google Scholar] [CrossRef]
- Wang, S.; Sun, S.; Li, Z.; Zhang, R.; Xu, J. Accurate de Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model. PLoS Comput. Biol. 2017, 13, e1005324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Li, W.; Zhang, R.; Liu, S.; Xu, J. CoinFold: A Web Server for Protein Contact Prediction and Contact-Assisted Protein Folding. Nucleic Acids Res. 2016, 44, W361–W366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, J.; Wang, S.; Wang, Z.; Xu, J. Protein Contact Prediction by Integrating Joint Evolutionary Coupling Analysis and Supervised Learning. Bioinformatics 2015, 31, 3506–3513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, S.; Zhang, Y. LOMETS: A Local Meta-Threading-Server for Protein Structure Prediction. Nucleic Acids Res. 2007, 35, 3375–3382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, W.; Zhang, C.; Wuyun, Q.; Pearce, R.; Li, Y.; Zhang, Y. LOMETS2: Improved Meta-Threading Server for Fold-Recognition and Structure-Based Function Annotation for Distant-Homology Proteins. Nucleic Acids Res. 2019, 47, W429–W436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baker, M.L.; Ju, T.; Chiu, W. Identification of Secondary Structure Elements in Intermediate-Resolution Density Maps. Structure 2007, 15, 7–19. [Google Scholar] [CrossRef] [Green Version]
- Si, D.; Ji, S.; Al Nasr, K.; He, J. A Machine Learning Approach for the Identification of Protein Secondary Structure Elements from Electron Cryo-Microscopy Density Maps. Biopolymers 2012, 97, 698–708. [Google Scholar] [CrossRef]
- Si, D.; He, J. Beta-Sheet Detection and Representation from Medium Resolution Cryo-EM Density Maps. In Proceedings of the International Conference on Bioinformatics, Computational Biology and Biomedical Informatics, Washington, DC, USA, 22–25 September 2013; pp. 764–770. [Google Scholar] [CrossRef]
- Subramaniya, S.; Terashi, G.; Kihara, D. Protein Secondary Structure Detection in Intermediate-Resolution Cryo-EM Maps Using Deep Learning. Nat. Methods 2019, 16, 911–917. [Google Scholar] [CrossRef] [PubMed]
- Aherne, F.J.; Thacker, N.A.; Rockett, P.I. The Bhattacharyya Metric as an Absolute Similarity Measure for Frequency Coded Data. Kybernetika 1998, 34, 363–368. [Google Scholar]
- Kailath, T. The Divergence and Bhattacharyya Distance Measures in Signal Selection. IEEE Trans. Commun. Technol. 1967, 15, 52–60. [Google Scholar] [CrossRef]
- Goudail, F.; Réfrégier, P.; Delyon, G. Bhattacharyya Distance as a Contrast Parameter for Statistical Processing of Noisy Optical Images. JOSA A 2004, 21, 1231–1240. [Google Scholar] [CrossRef]
- You, C.H.; Lee, K.A.; Li, H. An SVM Kernel with GMM-Supervector Based on the Bhattacharyya Distance for Speaker Recognition. IEEE Signal. Process. Lett. 2008, 16, 49–52. [Google Scholar]
- Patra, B.K.; Launonen, R.; Ollikainen, V.; Nandi, S. A New Similarity Measure Using Bhattacharyya Coefficient for Collaborative Filtering in Sparse Data. Knowl.-Based Syst. 2015, 82, 163–177. [Google Scholar] [CrossRef]
- Allemang, R.; Modal, D.B. A Correlation Coefficient for Modal Vector Analysis. In Proceedings of the 1st International Modal Analysis Conference, Orlando, FL, USA, 8–10 November 1982; Volume 1, pp. 110–116. [Google Scholar]
- Pastor, M.; Binda, M.; Harčarik, T. Modal Assurance Criterion. Procedia Eng. 2012, 48, 543–548. [Google Scholar] [CrossRef]
- Lawson, C.; Patwardhan, A.; Pintilie, G.D.; Garcia, E.S.; Lagerstedt, I.; Baker, M.L.; Sala, R.; Ludtke, S.J.; Berman, H.M.; Kleywegt, G. Emdatabank: Unified Data Resource for 3DEM. Biophys. J. 2013, 104, 351. [Google Scholar] [CrossRef] [Green Version]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef] [Green Version]
No | EMDB ID a | PDB ID b | Chain c | # Length d | # SSEs-A e | # SSEs-C f | Resolution g |
---|---|---|---|---|---|---|---|
1 | 5030 | 3FIN * | R | 117 | 7 | 7 | 6.4 |
2 | 3888 | 6EM3 * | A | 291 | 11 | 9 | 4.2 |
3 | 8625 | 5UZB * | A | 177 | 13 | 9 | 7 |
4 | 4176 | 6F36 * | M | 327 | 13 | 11 | 3.7 |
5 | 1733 | 3C91 * | A | 233 | 18 | 15 | 6.8 |
6 | 8070 | 5I1M * | V | 458 | 19 | 17 | 7 |
7 | 2526 | 4CHV * | A | 361 | 23 | 22 | 7 |
8 | 3761 | 5O8O * | A | 349 | 24 | 22 | 6.8 |
9 | 20934 | 6UXW * | A | 1703 | 43 | 35 | 8.9 |
10 | 8231 | 5KBU * | A | 1034 | 65 | 54 | 7.8 |
No | Name a | PDB ID b | Uniprot ID c | Chain d | Length e | #SSEs-A f | #SSEs-C g |
---|---|---|---|---|---|---|---|
1 | Apolipoprotein E | 1BZ4 | P02649 | A | 144 | 5 | 5 |
2 | Hemoglobin-1 | 1FLP | P41260 | A | 142 | 7 | 7 |
3 | Gag polyprotein | 2Y4Z * | P03336 | A | 140 | 8 | 8 |
4 | Uncharacterized protein YqeY | 1NG6 | P54464 | A | 148 | 9 | 7 |
5 | Phosphatidylinositol | 1HG5 | O55012 | A | 289 | 11 | 9 |
6 | Class IV chitinase Chia4-Pa2 | 3HBE | Q6WSR8 | X | 204 | 11 | 7 |
7 | Phospholipase C | 1P5X | P09598 | A | 245 | 13 | 9 |
8 | Tetracycline repressor protein class D | 2XB5 | P0ACT4 | A | 207 | 13 | 9 |
9 | Protein LlR18A | 1ICX * | P52778 | A | 155 | 13 | 11 |
10 | N-glycosylase/DNA lyase | 1XQO | Q8ZVK6 | A | 256 | 14 | 14 |
11 | AlphaRep-4 | 3LTJ | __ | A | 201 | 16 | 12 |
12 | 4,4’-diapophytoene synthases | 3ACW | A9JQL9 | A | 293 | 17 | 14 |
13 | Flagellar motor switch protein FliG | 3HJL | O66891 | A | 329 | 20 | 20 |
14 | Symplekin | 3ODS | Q92797 | A | 415 | 21 | 16 |
15 | Albumin | 2XVV | P02768 | A | 585 | 33 | 19 |
BD | MAC | ||||||
---|---|---|---|---|---|---|---|
NO | PDB ID | Angle | ED | RL | Angle | ED | RL |
1 | 1BZ4 | 80 | 80 | 80 | 80 | 60 | 80 |
2 | 1FLP | 42.85 | 57.14 | 28.57 | 57.14 | 71.42 | 57.14 |
3 | 2Y4Z | 50 | 58.33 | 58.33 | 58.33 | 50 | 50 |
4 | 1NG6 | 44.44 | 88.88 | 66.66 | 44.44 | 88.88 | 77.77 |
5 | 1HG5 | 72.72 | 36.36 | 36.36 | 54.54 | 45.45 | 54.54 |
6 | 3HBE | 81.81 | 90.9 | 81.81 | 81.81 | 90.9 | 72.72 |
7 | 1P5X | 69.23 | 84.16 | 61.53 | 76.92 | 100 | 69.23 |
8 | 2XB5 | 38.46 | 76.92 | 69.23 | 46.15 | 53.84 | 69.23 |
9 | 1ICX | 76.19 | 77.38 | 53.57 | 84.52 | 70.23 | 63.09 |
10 | 1XQO | 64.28 | 57.14 | 50 | 71.42 | 78.57 | 28.57 |
11 | 3LTJ | 43.75 | 93.75 | 37.5 | 100 | 43.75 | 62.5 |
12 | 3ACW | 35.29 | 64.7 | 47.05 | 35.29 | 52.94 | 35.29 |
13 | 3HJL | 20 | 90 | 30 | 40 | 95 | 30 |
14 | 3ODS | 33.33 | 52.38 | 33.33 | 23.8 | 57.14 | 42.58 |
15 | 2XVV | 60.6 | 78.78 | 45.45 | 63.63 | 78.78 | 54.54 |
16 | 3FIN | 58.33 | 58.33 | 29.16 | 45.83 | 87.5 | 58.33 |
17 | 6EM3 | 70.83 | 47.91 | 58.33 | 81.25 | 54.16 | 52.08 |
18 | 5UZB | 55.55 | 66.66 | 44.44 | 55.55 | 66.66 | 55.55 |
19 | 6F36 | 38.46 | 92.3 | 53.84 | 38.46 | 100 | 53.84 |
20 | 3C91 | 62.5 | 63.75 | 60 | 62.5 | 68.75 | 45 |
21 | 5I1M | 36.84 | 52.63 | 57.89 | 31.57 | 47.36 | 36.84 |
22 | 4CHV | 53.33 | 73.33 | 46.66 | 53.33 | 93.33 | 66.66 |
23 | 5O8O | 52.38 | 66.66 | 52.38 | 50 | 92.85 | 50 |
24 | 6UXW | 41.21 | 79.84 | 48.18 | 49.69 | 67.27 | 41.66 |
25 | 5KBU | 47.63 | 46.59 | 35.51 | 53.78 | 49.76 | 36.97 |
Average | 53.20 | 69.39 | 50.63 | 57.59 | 70.58 | 53.76 |
No | PDB ID a | BD b | SimVA_BD c | MAC d | SimVA_MAC e |
---|---|---|---|---|---|
1 | 1BZ4 | 80 | 80 | 73.33 | 80 |
2 | 1FLP | 42.85 | 57.14 | 61.9 | 85.71 |
3 | 2Y4Z | 55.55 | 66.66 | 55.55 | 66.66 |
4 | 1NG6 | 66.66 | 100 | 70.37 | 77.77 |
5 | 1HG5 | 48.48 | 54.54 | 51.51 | 72.72 |
6 | 3HBE | 84.84 | 90.9 | 81.81 | 90.9 |
7 | 1P5X | 71.79 | 92.3 | 82.05 | 84.61 |
8 | 2XB5 | 61.53 | 76.92 | 56.4 | 69.23 |
9 | 1ICX | 69.04 | 84.52 | 72.61 | 91.66 |
10 | 1XQO | 57.14 | 78.57 | 59.52 | 64.28 |
11 | 3LTJ | 58.33 | 100 | 62.5 | 56.25 |
12 | 3ACW | 49.01 | 70.58 | 41.17 | 70.58 |
13 | 3HJL | 46.66 | 85 | 55 | 75 |
14 | 3ODS | 39.68 | 61.9 | 41.26 | 66.66 |
15 | 2XVV | 61.61 | 66.66 | 65.65 | 63.63 |
16 | 3FIN | 48.61 | 70.83 | 63.88 | 70.83 |
17 | 6EM3 | 59.02 | 64.58 | 62.5 | 87.5 |
18 | 5UZB | 55.55 | 77.77 | 59.25 | 66.66 |
19 | 6F36 | 61.53 | 69.23 | 64.1 | 76.92 |
20 | 3C91 | 62.08 | 87.5 | 58.75 | 78.75 |
21 | 5I1M | 49.12 | 78.94 | 38.59 | 84.21 |
22 | 4CHV | 57.77 | 86.66 | 71.11 | 86.66 |
23 | 5O8O | 57.14 | 47.61 | 64.28 | 85.71 |
24 | 6UXW | 56.41 | 84.84 | 52.87 | 67.87 |
25 | 5KBU | 43.24 | 70.73 | 46.84 | 81.62 |
Average | 57.74 | 76.17 | 61.51 | 76.09 |
No | PDB ID a | DP-TOSS b | SimVA_BD c | SimVA_MAC d |
---|---|---|---|---|
1 | 1BZ4 | 100 | 80 | 80 |
2 | 1FLP | 100 | 57.14 | 85.71 |
3 | 2Y4Z | 50 | 66.66 | 66.66 |
4 | 1NG6 | 71.40 | 100 | 77.77 |
5 | 1HG5 | 55.60 | 54.54 | 72.72 |
6 | 3HBE | 57.10 | 90.9 | 90.9 |
7 | 1P5X | 55.60 | 92.3 | 84.61 |
8 | 2XB5 | 66.70 | 76.92 | 69.23 |
9 | 1ICX | 45.50 | 84.52 | 91.66 |
10 | 1XQO | 71.4 | 78.57 | 64.28 |
11 | 3LTJ | 83.30 | 100 | 56.25 |
12 | 3ACW | 100 | 70.58 | 70.58 |
13 | 3HJL | 100 | 85 | 75 |
14 | 3ODS | 100 | 61.9 | 66.66 |
15 | 2XVV | 89.40 | 66.66 | 63.63 |
16 | 3FIN | 100 | 70.83 | 70.83 |
17 | 6EM3 | 44.40 | 64.58 | 87.5 |
18 | 5UZB | 55.50 | 77.77 | 66.66 |
19 | 6F36 | 100 | 69.23 | 76.92 |
20 | 3C91 | 46.70 | 87.5 | 78.75 |
21 | 5I1M | 41.20 | 78.94 | 84.21 |
22 | 4CHV | 0 | 86.66 | 86.66 |
23 | 5O8O | 0 | 47.61 | 85.71 |
24 | 6UXW | 0 | 84.84 | 67.87 |
25 | 5KBU | 0 | 70.73 | 81.62 |
Average | 61.35 | 76.17 | 76.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Behkamal, B.; Naghibzadeh, M.; Saberi, M.R.; Tehranizadeh, Z.A.; Pagnani, A.; Al Nasr, K. Three-Dimensional Graph Matching to Identify Secondary Structure Correspondence of Medium-Resolution Cryo-EM Density Maps. Biomolecules 2021, 11, 1773. https://doi.org/10.3390/biom11121773
Behkamal B, Naghibzadeh M, Saberi MR, Tehranizadeh ZA, Pagnani A, Al Nasr K. Three-Dimensional Graph Matching to Identify Secondary Structure Correspondence of Medium-Resolution Cryo-EM Density Maps. Biomolecules. 2021; 11(12):1773. https://doi.org/10.3390/biom11121773
Chicago/Turabian StyleBehkamal, Bahareh, Mahmoud Naghibzadeh, Mohammad Reza Saberi, Zeinab Amiri Tehranizadeh, Andrea Pagnani, and Kamal Al Nasr. 2021. "Three-Dimensional Graph Matching to Identify Secondary Structure Correspondence of Medium-Resolution Cryo-EM Density Maps" Biomolecules 11, no. 12: 1773. https://doi.org/10.3390/biom11121773
APA StyleBehkamal, B., Naghibzadeh, M., Saberi, M. R., Tehranizadeh, Z. A., Pagnani, A., & Al Nasr, K. (2021). Three-Dimensional Graph Matching to Identify Secondary Structure Correspondence of Medium-Resolution Cryo-EM Density Maps. Biomolecules, 11(12), 1773. https://doi.org/10.3390/biom11121773