Hormonal Regulation of Oligodendrogenesis II: Implications for Myelin Repair
Abstract
:1. Introduction
2. Steroid Hormones
2.1. Glucocorticoids (GCs)
Implications for Disorders
2.2. Sex Hormones
2.2.1. Estrogens
Implications for Disorders
2.2.2. Progestogens
Implications for Disorders
2.2.3. Androgens
Implications for Disorders
3. Amino Acid-Based Hormones (Peptides, Amines, Thyroid Hormones)
3.1. Insulin-Like Growth Factor 1 (IGF-1)
Implications for Disorders
3.2. Insulin
Implications for Disorders
3.3. Prolactin
Implications for Disorders
3.4. Melatonin
Implications for Disorders
3.5. Thyroid Hormones (THs)
Implications for Disorders
4. Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AD | Alzheimer’s disease |
AMPA | α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid |
AR | androgen receptor |
CNPase | 2’,3’-cyclic-nucleotide 3’-phosphodiesterase |
CNS | central nervous system |
Dex | dexamethasone |
DHT | dihydrotestosterone |
E2 | 17-β estradiol |
EAE | experimental autoimmune encephalomyelitis |
ER | estrogen receptor |
GC | glucocorticoid |
GR | glucocorticoid receptor |
IGF-1 | insulin-like growth factor-1 |
IGF1R | insulin-like growth factor-1 receptor |
IR | insulin receptor |
LPC | lysophosphatidylcholine |
MBP | myelin basic protein |
MP | methylprednisolone |
MS | multiple sclerosis |
NSC | neural stem cell |
OL | oligodendrocyte |
Olig1 | oligodendrocyte transcription factor 1 |
OPC | oligodendrocyte precursor cell |
OVX | ovariectomized |
PR | progesterone receptor |
PTSD | post-traumatic stress disorder |
SCI | spinal cord injury |
T3 | triiodothyronine |
TH | thyroid hormone |
TR | thyroid hormone receptor |
References
- Fields, R.D. White Matter in Learning, Cognition and Psychiatric Disorders. Trends Neurosci. 2008, 31, 361–370. [Google Scholar] [CrossRef] [Green Version]
- Love, S. Demyelinating Diseases. J. Clin. Pathol. 2006, 59, 1151–1159. [Google Scholar] [CrossRef]
- Nasrabady, S.E.; Rizvi, B.; Goldman, J.E.; Brickman, A.M. White Matter Changes in Alzheimer’s Disease: A Focus on Myelin and Oligodendrocytes. Acta Neuropathol. Commun. 2018, 6. [Google Scholar] [CrossRef]
- Zhan, X.; Jickling, C.G.C.; Ander, B.P.; Liu, D.; Stamova, B.; Cox, C.; Jin, L.-W.; DeCarli, C.; Sharp, F.R. Myelin Injury and Degraded Myelin Vesicles in Alzheimer’s Disease. Curr. Alzheimer Res. 2014, 11, 232–238. [Google Scholar] [CrossRef]
- Nave, K.-A. Myelination and the Trophic Support of Long Axons. Nat. Rev. Neurosci. 2010, 11, 275–283. [Google Scholar] [CrossRef]
- Pajevic, S.; Basser, P.J.; Fields, R.D. Role of Myelin Plasticity in Oscillations and Synchrony of Neuronal Activity. Neuroscience 2014, 276, 135–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suminaite, D.; Lyons, D.A.; Livesey, M.R. Myelinated Axon Physiology and Regulation of Neural Circuit Function. Glia 2019, 67, 2050–2062. [Google Scholar] [CrossRef] [PubMed]
- Caprariello, A.V.; Mangla, S.; Miller, R.H.; Selkirk, S.M. Apoptosis of Oligodendrocytes in the Central Nervous System Results in Rapid Focal Demyelination. Ann. Neurol. 2012, 72, 395–405. [Google Scholar] [CrossRef] [PubMed]
- Franklin, R.J.M.; ffrench-Constant, C.; Edgar, J.M.; Smith, K.J. Neuroprotection and Repair in Multiple Sclerosis. Nat. Rev. Neurol. 2012, 8, 624–634. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi, N.; Razavi, S.; Nikzad, E. Multiple Sclerosis: Pathogenesis, Symptoms, Diagnoses and Cell-Based Therapy. Cell J. Yakhteh 2017, 19, 1–10. [Google Scholar]
- Wallin, M.T.; Culpepper, W.J.; Campbell, J.D.; Nelson, L.M.; Langer-Gould, A.; Marrie, R.A.; Cutter, G.R.; Kaye, W.E.; Wagner, L.; Tremlett, H.; et al. The Prevalence of MS in the United States: A Population-Based Estimate Using Health Claims Data. Neurology 2019, 92, e1029–e1040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Czopka, T.; Ffrench-Constant, C.; Lyons, D.A. Individual Oligodendrocytes Have Only a Few Hours in Which to Generate New Myelin Sheaths In Vivo. Dev. Cell 2013, 25, 599–609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neely, S.A.; Williamson, J.M.; Klingseisen, A.; Zoupi, L.; Early, J.J.; Williams, A.; Lyons, D.A. New Oligodendrocytes Exhibit More Abundant and Accurate Myelin Regeneration than Those That Survive Demyelination. bioRxiv 2020. [Google Scholar] [CrossRef]
- Watkins, T.A.; Emery, B.; Mulinyawe, S.; Barres, B.A. Distinct Stages of Myelination Regulated by γ-Secretase and Astrocytes in a Rapidly Myelinating CNS Coculture System. Neuron 2008, 60, 555–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beattie, M.S.; Hermann, G.E.; Rogers, R.C.; Bresnahan, J.C. Chapter 4 Cell death in models of spinal cord injury. In Progress in Brain Research; Spinal Cord Trauma: Regeneration, Neural Repair and Functional Recovery; McKerracher, L., Doucet, G., Rossignol, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2002; Volume 137, pp. 37–47. [Google Scholar]
- Butts, B.D.; Houde, C.; Mehmet, H. Maturation-Dependent Sensitivity of Oligodendrocyte Lineage Cells to Apoptosis: Implications for Normal Development and Disease. Cell Death Differ. 2008, 15, 1178–1186. [Google Scholar] [CrossRef] [PubMed]
- Cui, Q.-L.; Kuhlmann, T.; Miron, V.E.; Leong, S.Y.; Fang, J.; Gris, P.; Kennedy, T.E.; Almazan, G.; Antel, J. Oligodendrocyte Progenitor Cell Susceptibility to Injury in Multiple Sclerosis. Am. J. Pathol. 2013, 183, 516–525. [Google Scholar] [CrossRef]
- Lotocki, G.; de Vaccari, J.R.; Alonso, O.; Molano, J.S.; Nixon, R.; Safavi, P.; Dietrich, W.D.; Bramlett, H.M. Oligodendrocyte Vulnerability Following Traumatic Brain Injury in Rats. Neurosci. Lett. 2011, 499, 143–148. [Google Scholar] [CrossRef] [Green Version]
- Itoh, K.; Maki, T.; Lok, J.; Arai, K. Mechanisms of Cell–Cell Interaction in Oligodendrogenesis and Remyelination after Stroke. Brain Res. 2015, 1623, 135–149. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, R.B.; Rivers, L.E.; Young, K.M.; Jamen, F.; Richardson, W.D. NG2 Glia Generate New Oligodendrocytes but Few Astrocytes in a Murine Experimental Autoimmune Encephalomyelitis Model of Demyelinating Disease. J. Neurosci. 2010, 30, 16383–16390. [Google Scholar] [CrossRef]
- Zawadzka, M.; Rivers, L.E.; Fancy, S.P.J.; Zhao, C.; Tripathi, R.; Jamen, F.; Young, K.; Goncharevich, A.; Pohl, H.; Rizzi, M.; et al. CNS-Resident Glial Progenitor/Stem Cells Produce Schwann Cells as Well as Oligodendrocytes during Repair of CNS Demyelination. Cell Stem Cell 2010, 6, 578–590. [Google Scholar] [CrossRef] [Green Version]
- Alizadeh, A.; Dyck, S.M.; Karimi-Abdolrezaee, S. Myelin Damage and Repair in Pathologic CNS: Challenges and Prospects. Front. Mol. Neurosci. 2015, 8. [Google Scholar] [CrossRef] [Green Version]
- Kuhlmann, T.; Miron, V.; Cuo, Q.; Wegner, C.; Antel, J.; Bruck, W. Differentiation Block of Oligodendroglial Progenitor Cells as a Cause for Remyelination Failure in Chronic Multiple Sclerosis. Brain 2008, 131, 1749–1758. [Google Scholar] [CrossRef] [Green Version]
- Bryce, T.N. Chapter 59—Spinal cord injury. In Spine Secrets Plus, 2nd ed.; Devlin, V.J., Ed.; Mosby: Saint Louis, MO, USA, 2012; pp. 404–410. ISBN 9780323069526. [Google Scholar]
- Chao, L.L.; Tosun, D.; Woodward, S.H.; Kaufer, D.; Neylan, T.C. Preliminary Evidence of Increased Hippocampal Myelin Content in Veterans with Posttraumatic Stress Disorder. Front. Behav. Neurosci. 2015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dulamea, A.O. Role of Oligodendrocyte Dysfunction in Demyelination, Remyelination and Neurodegeneration in Multiple Sclerosis. Adv. Exp. Med. Biol. 2017, 958, 91–127. [Google Scholar] [CrossRef]
- Aharoni, R.; Schottlender, N.; Bar-Lev, D.D.; Eilam, R.; Sela, M.; Tsoory, M.; Arnon, R. Cognitive Impairment in an Animal Model of Multiple Sclerosis and Its Amelioration by Glatiramer Acetate. Sci. Rep. 2019, 9, 4140. [Google Scholar] [CrossRef]
- Constantinescu, C.S.; Farooqi, N.; O’Brien, K.; Gran, B. Experimental Autoimmune Encephalomyelitis (EAE) as a Model for Multiple Sclerosis (MS). Br. J. Pharmacol. 2011, 164, 1079–1106. [Google Scholar] [CrossRef]
- Kotter, M.R.; Setzu, A.; Sim, F.J.; Van Rooijen, N.; Franklin, R.J. Macrophage Depletion Impairs Oligodendrocyte Remyelination Following Lysolecithin-Induced Demyelination. Glia 2001, 35, 204–212. [Google Scholar] [CrossRef]
- Torkildsen, Ø.; Brunborg, L.A.; Myhr, K.-M.; Bø, L. The Cuprizone Model for Demyelination. Acta Neurol. Scand. 2008, 117, 72–76. [Google Scholar] [CrossRef]
- Anan’ina, T.; Kisel, A.; Kudabaeva, M.; Chernysheva, G.; Smolyakova, V.; Usov, K.; Krutenkova, E.; Plotnikov, M.; Khodanovich, M. Neurodegeneration, Myelin Loss and Glial Response in the Three-Vessel Global Ischemia Model in Rat. Int. J. Mol. Sci. 2020, 21, 6246. [Google Scholar] [CrossRef]
- Plemel, J.R.; Keough, M.B.; Duncan, G.J.; Sparling, J.S.; Yong, V.W.; Stys, P.K.; Tetzlaff, W. Remyelination after Spinal Cord Injury: Is It a Target for Repair? Prog. Neurobiol. 2014, 117, 54–72. [Google Scholar] [CrossRef] [PubMed]
- Long, K.L.P.; Breton, J.M.; Barraza, M.; Litvin, O.S.; Kaufer, D. Hormonal Regulation of Oligodendrogenesis I: Effects across the Lifespan. Biomolecules 2021, 11, 283. [Google Scholar] [CrossRef]
- Confavreux, C.; Hutchinson, M.; Hours, M.M.; Cortinovis-Tourniaire, P.; Moreau, T. Rate of Pregnancy-Related Relapse in Multiple Sclerosis. Pregnancy in Multiple Sclerosis Group. N. Engl. J. Med. 1998, 339, 285–291. [Google Scholar] [CrossRef]
- Beato, M.; Klug, J. Steroid Hormone Receptors: An Update. Hum. Reprod. Update 2000, 6, 225–236. [Google Scholar] [CrossRef] [Green Version]
- Gwynne, J.T.; Strauss, J.F.I. The Role of Lipoproteins in Steroidogenesis and Cholesterol Metabolism in Steroidogenic Glands. Endocr. Rev. 1982, 3, 299–329. [Google Scholar] [CrossRef] [PubMed]
- El-Etr, M.; Vukusic, S.; Gignoux, L.; Durand-Dubief, F.; Achiti, I.; Baulieu, E.E.; Confavreux, C. Steroid Hormones in Multiple Sclerosis. J. Neurol. Sci. 2005, 233, 49–54. [Google Scholar] [CrossRef]
- Garay, L.; Gonzalez Deniselle, M.C.; Gierman, L.; Meyer, M.; Lima, A.; Roig, P.; De Nicola, A.F. Steroid Protection in the Experimental Autoimmune Encephalomyelitis Model of Multiple Sclerosis. Neuroimmunomodulation 2008, 15, 76–83. [Google Scholar] [CrossRef]
- Noorbakhsh, F.; Ellestad, K.K.; Maingat, F.; Warren, K.G.; Han, M.H.; Steinman, L.; Baker, G.B.; Power, C. Impaired Neurosteroid Synthesis in Multiple Sclerosis. Brain 2011, 134, 2703–2721. [Google Scholar] [CrossRef] [Green Version]
- Chetty, S.; Friedman, A.R.; Taravosh-Lahn, K.; Kirby, E.D.; Mirescu, C.; Guo, F.; Krupik, D.; Nicholas, A.; Geraghty, A.C.; Krishnamurthy, A.; et al. Stress and Glucocorticoids Promote Oligodendrogenesis in the Adult Hippocampus. Mol. Psychiatry 2014, 19, 1275–1283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Vellis, J. Developmental and Hormonal Regulation of Gene Expression in Oligodendrocytes. Ann. N. Y. Acad. Sci. 1990, 605, 81–89. [Google Scholar] [CrossRef]
- Kumar, S.; Cole, R.; Chiappelli, F.; de Vellis, J. Differential Regulation of Oligodendrocyte Markers by Glucocorticoids: Post-Transcriptional Regulation of Both Proteolipid Protein and Myelin Basic Protein and Transcriptional Regulation of Glycerol Phosphate Dehydrogenase. Proc. Natl. Acad. Sci. USA 1989, 86, 6807–6811. [Google Scholar] [CrossRef] [Green Version]
- Miguel-Hidalgo, J.J.; Carter, K.; Deloach, P.H.; Sanders, L.; Pang, Y. Glucocorticoid-Induced Reductions of Myelination and Connexin 43 in Mixed Central Nervous System Cell Cultures Are Prevented by Mifepristone. Neuroscience 2019, 411, 255–269. [Google Scholar] [CrossRef]
- Lee, J.M.; Yan, P.; Xiao, Q.; Chen, S.; Lee, K.Y.; Hsu, C.Y.; Xu, J. Methylprednisolone Protects Oligodendrocytes but Not Neurons after Spinal Cord Injury. J. Neurosci. 2008, 28, 3141–3149. [Google Scholar] [CrossRef]
- Sun, Y.Y.; Wang, C.Y.; Hsu, M.F.; Juan, S.H.; Chang, C.Y.; Chou, C.M.; Yang, L.Y.; Hung, K.S.; Xu, J.; Lee, Y.H.; et al. Glucocorticoid Protection of Oligodendrocytes against Excitotoxin Involving Hypoxia-Inducible Factor-1α in a Cell-Type-Specific Manner. J. Neurosci. 2010, 30, 9621–9630. [Google Scholar] [CrossRef] [Green Version]
- Schröter, A.; Lustenberger, R.M.; Obermair, F.J.; Thallmair, M. High-Dose Corticosteroids after Spinal Cord Injury Reduce Neural Progenitor Cell Proliferation. Neuroscience 2009, 161, 753–763. [Google Scholar] [CrossRef]
- Akassoglou, K.; Bauer, J.; Kassiotis, G.; Pasparakis, M.; Lassmann, H.; Kollias, G.; Probert, L. Oligodendrocyte Apoptosis and Primary Demyelination Induced by Local TNF/P55TNF Receptor Signaling in the Central Nervous System of Transgenic Mice: Models for Multiple Sclerosis with Primary Oligodendrogliopathy. Am. J. Pathol. 1998, 153, 801–813. [Google Scholar] [CrossRef]
- Valentin-Torres, A.; Savarin, C.; Barnett, J.; Bergmann, C.C. Blockade of Sustained Tumor Necrosis Factor in a Transgenic Model of Progressive Autoimmune Encephalomyelitis Limits Oligodendrocyte Apoptosis and Promotes Oligodendrocyte Maturation. J. Neuroinflamm. 2018, 15, 121. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Wu, M.; Lu, G.; Cao, T.; Chen, N.; Zhang, Y.; Jiang, Z.; Fan, H.; Yao, R. Prednisone Alleviates Demyelination through Regulation of the NLRP3 Inflammasome in a C57BL/6 Mouse Model of Cuprizone-Induced Demyelination. Brain Res. 2018, 1678, 75–84. [Google Scholar] [CrossRef]
- Feldhaus, B.; Dietzel, I.D.; Heumann, R.; Berger, B. Corticoids protect oligodentrocyte precursor cells against cytokine-induced damage. Zentralbl. Gynakol. 2004, 126, 282–285. [Google Scholar] [CrossRef]
- Melcangi, R.C.; Cavarretta, I.; Magnaghi, V.; Ciusani, E.; Salmaggi, A. Corticosteroids Protect Oligodendrocytes from Cytokine-Induced Cell Death. NeuroReport 2000, 11, 3969–3972. [Google Scholar] [CrossRef]
- Clarner, T.; Parabucki, A.; Beyer, C.; Kipp, M. Corticosteroids Impair Remyelination in the Corpus Callosum of Cuprizone-Treated Mice. J. Neuroendocrinol. 2011, 23, 601–611. [Google Scholar] [CrossRef]
- Chesik, D.; De Keyser, J. Progesterone and Dexamethasone Differentially Regulate the IGF-System in Glial Cells. Neurosci. Lett. 2010, 468, 178–182. [Google Scholar] [CrossRef]
- Yehuda, R. Post-Traumatic Stress Disorder. N. Engl. J. Med. 2002, 346, 108–114. [Google Scholar] [CrossRef]
- Young, A.H. Cortisol in Mood Disorders. Stress 2004, 7, 205–208. [Google Scholar] [CrossRef]
- Rajkowska, G.; Miguel-Hidalgo, J.J. Gliogenesis and Glial Pathology in Depression. CNS Neurol. Disord. Drug Targets 2007, 6, 219–233. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Watanabe, K.; Kakeda, S.; Yoshimura, R.; Abe, O.; Ide, S.; Hayashi, K.; Katsuki, A.; Umene-Nakano, W.; Watanabe, R.; et al. Relationship between White Matter Integrity and Serum Cortisol Levels in Drug-Naive Patients with Major Depressive Disorder: Diffusion Tensor Imaging Study Using Tract-Based Spatial Statistics. Br. J. Psychiatry J. Ment. Sci. 2016, 208, 585–590. [Google Scholar] [CrossRef] [Green Version]
- Breton, J.M.; Barraza, M.; Hu, K.Y.; Frias, S.J.; Long, K.L.P.; Kaufer, D. Juvenile Exposure to Acute Traumatic Stress Leads to Long-Lasting Alterations in Grey Matter Myelination in Adult Female but Not Male Rats. bioRxiv 2020. [Google Scholar] [CrossRef]
- Long, K.L.P.; Chao, L.L.; Kazama, Y.; An, A.; Hu, K.Y.; Peretz, L.; Muller, D.Y.; Roan, V.D.; Misra, R.; Toth, C.E.; et al. Region-specific maladaptive gray matter myelination is associated with differential susceptibility to stress-induced behavior in male rodents and humans. bioRxiv 2021. [Google Scholar]
- Tham, M.W.; Woon, P.S.; Sum, M.Y.; Lee, T.-S.; Sim, K. White Matter Abnormalities in Major Depression: Evidence from Post-Mortem, Neuroimaging and Genetic Studies. J. Affect. Disord. 2011, 132, 26–36. [Google Scholar] [CrossRef]
- Timmler, S.; Simons, M. Grey Matter Myelination. Glia 2019, 67, 2063–2070. [Google Scholar] [CrossRef]
- Boda, E. Myelin and Oligodendrocyte Lineage Cell Dysfunctions: New Players in the Etiology and Treatment of Depression and Stress-Related Disorders. Eur. J. Neurosci. 2021, 53, 281–297. [Google Scholar] [CrossRef]
- Lee, P.R.; Fields, R.D. Regulation of Myelin Genes Implicated in Psychiatric Disorders by Functional Activity in Axons. Front. Neuroanat. 2009, 3, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lutz, P.E.; Tanti, A.; Gasecka, A.; Barnett-Burns, S.; Kim, J.J.; Zhou, Y.; Chen, G.G.; Wakid, M.; Shaw, M.; Almeida, D.; et al. Association of a History of Child Abuse with Impaired Myelination in the Anterior Cingulate Cortex: Convergent Epigenetic, Transcriptional, and Morphological Evidence. Am. J. Psychiatry 2017, 174, 1185–1194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, N.; Li, L.; Shu, N.; Liu, J.; Gong, G.; He, Z.; Li, Z.; Tan, L.; Stone, W.S.; Zhang, Z.; et al. White Matter Abnormalities in First-Episode, Treatment-Naive Young Adults with Major Depressive Disorder. Am. J. Psychiatry 2007, 164, 823–826. [Google Scholar] [CrossRef]
- Nave, K.A.; Ehrenreich, H. Myelination and Oligodendrocyte Functions in Psychiatric Diseases. JAMA Psychiatry 2014, 71, 582–584. [Google Scholar] [CrossRef]
- Regenold, W.T.; Phatak, P.; Marano, C.M.; Gearhart, L.; Viens, C.H.; Hisley, K.C. Myelin Staining of Deep White Matter in the Dorsolateral Prefrontal Cortex in Schizophrenia, Bipolar Disorder, and Unipolar Major Depression. Psychiatry Res. 2007, 151, 179–188. [Google Scholar] [CrossRef]
- Bae, J.N.; MacFall, J.R.; Krishnan, K.R.R.; Payne, M.E.; Steffens, D.C.; Taylor, W.D. Dorsolateral Prefrontal Cortex and Anterior Cingulate Cortex White Matter Alterations in Late-Life Depression. Biol. Psychiatry 2006, 60, 1356–1363. [Google Scholar] [CrossRef]
- Rajkowska, G.; Mahajan, G.; Maciag, D.; Sathyanesan, M.; Iyo, A.H.; Moulana, M.; Kyle, P.B.; Woolverton, W.L.; Miguel-Hidalgo, J.J.; Stockmeier, C.A.; et al. Oligodendrocyte Morphometry and Expression of Myelin—Related MRNA in Ventral Prefrontal White Matter in Major Depressive Disorder. J. Psychiatr. Res. 2015, 65, 53–62. [Google Scholar] [CrossRef] [Green Version]
- Zuo, N.; Fang, J.; Lv, X.; Zhou, Y.; Hong, Y.; Li, T.; Tong, H.; Wang, X.; Wang, W.; Jiang, T. White Matter Abnormalities in Major Depression: A Tract-Based Spatial Statistics and Rumination Study. PLoS ONE 2012, 7, e37561. [Google Scholar] [CrossRef] [Green Version]
- Daniels, J.K.; Lamke, J.-P.; Gaebler, M.; Walter, H.; Scheel, M. White Matter Integrity and Its Relationship to Ptsd and Childhood Trauma—a Systematic Review and Meta-Analysis. Depress. Anxiety 2013, 30, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Jak, A.J.; Jurick, S.; Hoffman, S.; Evangelista, N.D.; Deford, N.; Keller, A.; Merritt, V.C.; Sanderson-Cimino, M.; Sorg, S.; Delano-Wood, L.; et al. PTSD, but Not History of MTBI, Is Associated with Altered Myelin in Combat-Exposed Iraq and Afghanistan Veterans. Clin. Neuropsychol. 2020, 34, 1070–1087. [Google Scholar] [CrossRef] [PubMed]
- Ghoumari, A.M.; Ghanem, C.A.; Asbelaoui, N.; Schumacher, M.; Hussain, R. Roles of Progesterone, Testosterone and Their Nuclear Receptors in Central Nervous System Myelination and Remyelination. Int. J. Mol. Sci. 2020, 21, 3163. [Google Scholar] [CrossRef]
- Marinelli, C.; Bertalot, T.; Zusso, M.; Skaper, S.D.; Giusti, P. Systematic Review of Pharmacological Properties of the Oligodendrocyte Lineage. Front. Cell. Neurosci. 2016, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arvanitis, D.N.; Wang, H.; Bagshaw, R.D.; Callahan, J.W.; Boggs, J.M. Membrane-Associated Estrogen Receptor and Caveolin-1 Are Present in Central Nervous System Myelin and Oligodendrocyte Plasma Membranes. J. Neurosci. Res. 2004, 75, 603–613. [Google Scholar] [CrossRef]
- Hirahara, Y.; Matsuda, K.I.; Gao, W.; Arvanitis, D.N.; Kawata, M.; Boggs, J.M. The Localization and Non-Genomic Function of the Membrane-Associated Estrogen Receptor in Oligodendrocytes. Glia 2009, 57, 153–165. [Google Scholar] [CrossRef]
- Marin-Husstege, M.; Muggironi, M.; Raban, D.; Skoff, R.P.; Casaccia-Bonnefil, P. Oligodendrocyte Progenitor Proliferation and Maturation Is Differentially Regulated by Male and Female Sex Steroid Hormones. Dev. Neurosci. 2004, 26, 245–254. [Google Scholar] [CrossRef]
- Mogha, A.; D’Rozario, M.; Monk, K.R. G Protein-Coupled Receptors in Myelinating Glia. Trends Pharmacol. Sci. 2016, 37, 977–987. [Google Scholar] [CrossRef] [Green Version]
- Takao, T.; Flint, N.; Lee, L.; Ying, X.; Merrill, J.; Chandross, K.J. 17beta-Estradiol Protects Oligodendrocytes from Cytotoxicity Induced Cell Death. J. Neurochem. 2004, 89, 660–673. [Google Scholar] [CrossRef]
- Zhang, Z.; Cerghet, M.; Mullins, C.; Williamson, M.; Bessert, D.; Skoff, R. Comparison of in Vivo and in Vitro Subcellular Localization of Estrogen Receptors α and β in Oligodendrocytes. J. Neurochem. 2004, 89, 674–684. [Google Scholar] [CrossRef]
- Gold, S.M.; Voskuhl, R.R. Estrogen Treatment in Multiple Sclerosis. J. Neurol. Sci. 2009, 286, 99–103. [Google Scholar] [CrossRef] [Green Version]
- Sicotte, N.L.; Liva, S.M.; Klutch, R.; Pfeiffer, P.; Bouvier, S.; Odesa, S.; Wu, T.C.J.; Voskuhl, R.R. Treatment of Multiple Sclerosis with the Pregnancy Hormone Estriol. Ann. Neurol. 2002, 52, 421–428. [Google Scholar] [CrossRef]
- Voskuhl, R. It Is Time to Conduct Phase 3 Clinical Trials of Sex Hormones in MS—Yes. Mult. Scler. J. 2018, 24, 1413–1415. [Google Scholar] [CrossRef]
- Gerstner, B.; Lee, J.; DeSilva, T.M.; Jensen, F.E.; Volpe, J.J.; Rosenberg, P.A. 17beta-Estradiol Protects against Hypoxic/Ischemic White Matter Damage in the Neonatal Rat Brain. J. Neurosci. Res. 2009, 87, 2078–2086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.Y.; Choi, S.Y.; Oh, T.H.; Yune, T.Y. 17β-Estradiol Inhibits Apoptotic Cell Death of Oligodendrocytes by Inhibiting Rhoa-JNK3 Activation after Spinal Cord Injury. Endocrinology 2012, 153, 3815–3827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kipp, M.; Beyer, C. Impact of Sex Steroids on Neuroinflammatory Processes and Experimental Multiple Sclerosis. Front. Neuroendocrinol. 2009, 30, 188–200. [Google Scholar] [CrossRef] [PubMed]
- Taylor, L.C.; Puranam, K.; Gilmore, W.; Ting, J.P.Y.; Matsushima, G.K. 17Β-Estradiol Protects Male Mice From Cuprizone-Induced Demyelination and Oligodendrocyte Loss. Neurobiol. Dis. 2010, 39, 127–137. [Google Scholar] [CrossRef] [Green Version]
- Crawford, D.K.; Mangiardi, M.; Song, B.; Patel, R.; Du, S.; Sofroniew, M.V.; Voskuhl, R.R.; Tiwari-Woodruff, S.K. Oestrogen Receptor β Ligand: A Novel Treatment to Enhance Endogenous Functional Remyelination. Brain 2010, 133, 2999–3016. [Google Scholar] [CrossRef]
- Scott, G.S.; Virág, L.; Szabó, C.; Hooper, D.C. Peroxynitrite-Induced Oligodendrocyte Toxicity Is Not Dependent on Poly(ADP-Ribose) Polymerase Activation. Glia 2003, 41, 105–116. [Google Scholar] [CrossRef]
- Torreilles, F.; Salman-Tabcheh, S.; Guérin, M.-C.; Torreilles, J. Neurodegenerative Disorders: The Role of Peroxynitrite. Brain Res. Rev. 1999, 30, 153–163. [Google Scholar] [CrossRef]
- Kumar, S.; Patel, R.; Moore, S.; Crawford, D.K.; Suwanna, N.; Mangiardi, M.; Tiwari-Woodruff, S.K. Estrogen Receptor β Ligand Therapy Activates PI3K/Akt/MTOR Signaling in Oligodendrocytes and Promotes Remyelination in a Mouse Model of Multiple Sclerosis. Neurobiol. Dis. 2013, 56, 131–144. [Google Scholar] [CrossRef] [Green Version]
- Hirahara, Y.; Matsuda, K.I.; Yamada, H.; Saitou, A.; Morisaki, S.; Takanami, K.; Boggs, J.M.; Kawata, M. G Protein-Coupled Receptor 30 Contributes to Improved Remyelination after Cuprizone-Induced Demyelination. Glia 2013, 61, 420–431. [Google Scholar] [CrossRef]
- Acs, P.; Kipp, M.; Norkute, A.; Johann, S.; Clarner, T.; Braun, A.; Berente, Z.; Komoly, S.; Beyer, C. 17β-Estradiol and Progesterone Prevent Cuprizone Provoked Demyelination of Corpus Callosum in Male Mice. Glia 2009, 57, 807–814. [Google Scholar] [CrossRef]
- Jung-Testas, I.; Renoir, J.M.; Gasc, J.M.; Baulieu, E.E. Estrogen-Inducible Progesterone Receptor in Primary Cultures of Rat Glial Cells. Exp. Cell Res. 1991, 193, 12–19. [Google Scholar] [CrossRef]
- Halbreich, U.; Lumley, L.A.; Palter, S.; Manning, C.; Gengo, F.; Joe, S.H. Possible Acceleration of Age Effects on Cognition Following Menopause. J. Psychiatr. Res. 1995, 29, 153–163. [Google Scholar] [CrossRef]
- He, Q.; Luo, Y.; Lv, F.; Xiao, Q.; Chao, F.; Qiu, X.; Zhang, L.; Gao, Y.; Xiu, Y.; Huang, C.; et al. Effects of Estrogen Replacement Therapy on the Myelin Sheath Ultrastructure of Myelinated Fibers in the White Matter of Middle-Aged Ovariectomized Rats. J. Comp. Neurol. 2018, 526, 790–802. [Google Scholar] [CrossRef]
- Seo, S.K.; Jung, I.; Lee, S.M.; Cho, S.H.; Choi, Y.S.; Chung, T.S.; Lee, B.S. Relationship between Leukoaraiosis and Menopause in Healthy Middle-Aged Women. Fertil. Steril. 2013, 100, 500–504. [Google Scholar] [CrossRef]
- Luo, Y.; Xiao, Q.; Chao, F.; He, Q.; Lv, F.; Zhang, L.; Gao, Y.; Qiu, X.; Huang, C.; Li, Y.; et al. 17Β-Estradiol Replacement Therapy Protects Myelin Sheaths in the White Matter of Middle-Aged Female Ovariectomized Rats: A Stereological Study. Neurobiol. Aging 2016, 47, 139–148. [Google Scholar] [CrossRef]
- Erickson, K.I.; Colcombe, S.J.; Raz, N.; Korol, D.L.; Scalf, P.; Webb, A.; Cohen, N.J.; McAuley, E.; Kramer, A.F. Selective Sparing of Brain Tissue in Postmenopausal Women Receiving Hormone Replacement Therapy. Neurobiol. Aging 2005, 26, 1205–1213. [Google Scholar] [CrossRef]
- González-Orozco, J.C.; Moral-Morales, A.D.; Camacho-Arroyo, I. Progesterone through Progesterone Receptor B Isoform Promotes Rodent Embryonic Oligodendrogenesis. Cells 2020, 9, 960. [Google Scholar] [CrossRef]
- Meffre, D.; Labombarda, F.; Delespierre, B.; Chastre, A.; De Nicola, A.F.; Stein, D.G.; Schumacher, M.; Guennoun, R. Distribution of Membrane Progesterone Receptor Alpha in the Male Mouse and Rat Brain and Its Regulation after Traumatic Brain Injury. Neuroscience 2013, 231, 111–124. [Google Scholar] [CrossRef]
- Jure, I.; De Nicola, A.F.; Labombarda, F. Progesterone Effects on Oligodendrocyte Differentiation in Injured Spinal Cord. Brain Res. 2019, 1708, 36–46. [Google Scholar] [CrossRef]
- Labombarda, F.; Gonzalez, S.; Deniselle, M.C.G.; Garay, L.; Guennoun, R.; Schumacher, M.; De Nicola, A.F. Progesterone Increases the Expression of Myelin Basic Protein and the Number of Cells Showing NG2 Immunostaining in the Lesioned Spinal Cord. J. Neurotrauma 2006, 23, 181–192. [Google Scholar] [CrossRef]
- Labombarda, F.; González, S.L.; Lima, A.; Roig, P.; Guennoun, R.; Schumacher, M.; De Nicola, A.F. Effects of Progesterone on Oligodendrocyte Progenitors, Oligodendrocyte Transcription Factors, and Myelin Proteins Following Spinal Cord Injury. Glia 2009, 57, 884–897. [Google Scholar] [CrossRef]
- Labombarda, F.; González Deniselle, M.C.; De Nicola, A.F.; González, S.L. Progesterone and the Spinal Cord: Good Friends in Bad Times. Neuroimmunomodulation 2010, 17, 146–149. [Google Scholar] [CrossRef]
- Labombarda, F.; González, S.; Lima, A.; Roig, P.; Guennoun, R.; Schumacher, M.; De Nicola, A.F. Progesterone Attenuates Astro- and Microgliosis and Enhances Oligodendrocyte Differentiation Following Spinal Cord Injury. Exp. Neurol. 2011, 231, 135–146. [Google Scholar] [CrossRef]
- Labombarda, F.; Garcia-Ovejero, D. Give Progesterone a Chance. Neural Regen. Res. 2014, 9, 1422–1424. [Google Scholar] [CrossRef]
- Labombarda, F.; Jure, I.; Gonzalez, S.; Lima, A.; Roig, P.; Guennoun, R.; Schumacher, M.; De Nicola, A.F. A Functional Progesterone Receptor Is Required for Immunomodulation, Reduction of Reactive Gliosis and Survival of Oligodendrocyte Precursors in the Injured Spinal Cord. J. Steroid Biochem. Mol. Biol. 2015, 154, 274–284. [Google Scholar] [CrossRef]
- Garay, L.; Tüngler, V.; Deniselle, M.C.G.; Lima, A.; Roig, P.; De Nicola, A.F. Progesterone Attenuates Demyelination and Microglial Reaction in the Lysolecithin-Injured Spinal Cord. Neuroscience 2011, 192, 588–597. [Google Scholar] [CrossRef]
- Hussain, R.; El-Etr, M.; Gaci, O.; Rakotomamonjy, J.; Macklin, W.B.; Kumar, N.; Sitruk-Ware, R.; Schumacher, M.; Ghoumari, A.M. Progesterone and Nestorone Facilitate Axon Remyelination: A Role for Progesterone Receptors. Endocrinology 2011, 152, 3820–3831. [Google Scholar] [CrossRef] [Green Version]
- Ibanez, C.; Shields, S.A.; El-Etr, M.; Baulieu, E.-E.; Schumacher, M.; Franklin, R.J.M. Systemic Progesterone Administration Results in a Partial Reversal of the Age-Associated Decline in CNS Remyelination Following Toxin-Induced Demyelination in Male Rats. Neuropathol. Appl. Neurobiol. 2004, 30, 80–89. [Google Scholar] [CrossRef]
- El-Etr, M.; Rame, M.; Boucher, C.; Ghoumari, A.; Kumar, N.; Liere, P.; Pianos, A.; Schumacher, M.; Sitruk-Ware, R. Progesterone and Nestorone Promote Myelin Regeneration in Chronic Demyelinating Lesions of Corpus Callosum and Cerebral Cortex. Glia 2015, 63, 104–117. [Google Scholar] [CrossRef] [Green Version]
- Garay, L.; Gonzalez Deniselle, M.C.; Lima, A.; Roig, P.; De Nicola, A.F. Effects of Progesterone in the Spinal Cord of a Mouse Model of Multiple Sclerosis. J. Steroid Biochem. Mol. Biol. 2007, 107, 228–237. [Google Scholar] [CrossRef]
- Garay, L.; González Deniselle, M.C.; Brocca, M.E.; Lima, A.; Roig, P.; De Nicola, A.F. Progesterone Down-Regulates Spinal Cord Inflammatory Mediators and Increases Myelination in Experimental Autoimmune Encephalomyelitis. Neuroscience 2012, 226, 40–50. [Google Scholar] [CrossRef]
- Noorbakhsh, F.; Baker, G.B.; Power, C. Allopregnanolone and Neuroinflammation: A Focus on Multiple Sclerosis. Front. Cell. Neurosci. 2014, 8, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.J.; Fei, J.; Chen, X.S.; Cai, Q.Y.; Liu, H.L.; Liu, G.D.; Yao, Z.X. Progesterone Attenuates Neurological Behavioral Deficits of Experimental Autoimmune Encephalomyelitis through Remyelination with Nucleus-Sublocalized Olig1 Protein. Neurosci. Lett. 2010, 476, 42–45. [Google Scholar] [CrossRef]
- Yates, M.A.; Li, Y.; Chlebeck, P.; Proctor, T.; Vandenbark, A.A.; Offner, H. Progesterone Treatment Reduces Disease Severity and Increases IL-10 in Experimental Autoimmune Encephalomyelitis. J. Neuroimmunol. 2010, 220, 136–139. [Google Scholar] [CrossRef] [Green Version]
- Sozmen, E.G.; Hinman, J.D.; Carmichael, S.T. Models That Matter: White Matter Stroke Models. Neurotherapeutics 2012, 9, 349–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, J.; Zhuang, J.; Li, J.; Ooi, E.; Bloom, J.; Poon, C.; Lax, D.; Rosenbaum, D.M.; Barone, F.C. Long-Term Post-Stroke Changes Include Myelin Loss, Specific Deficits in Sensory and Motor Behaviors and Complex Cognitive Impairment Detected Using Active Place Avoidance. PLoS ONE 2013, 8, e57503. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Wang, J.M.; Irwin, R.W.; Yao, J.; Liu, L.; Brinton, R.D. Allopregnanolone Promotes Regeneration and Reduces β-Amyloid Burden in a Preclinical Model of Alzheimer’s Disease. PLoS ONE 2011, 6. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.M.; Singh, C.; Liu, L.; Irwin, R.W.; Chen, S.; Chung, E.J.; Thompson, R.F.; Brinton, R.D. Allopregnanolone Reverses Neurogenic and Cognitive Deficits in Mouse Model of Alzheimer’s Disease. Proc. Natl. Acad. Sci. USA 2010, 107, 6498–6503. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Fréchou, M.; Schumacher, M.; Guennoun, R. Cerebroprotection by Progesterone Following Ischemic Stroke: Multiple Effects and Role of the Neural Progesterone Receptors. J. Steroid Biochem. Mol. Biol. 2019, 185, 90–102. [Google Scholar] [CrossRef]
- Handelsman, D.J. Androgen Physiology, Pharmacology, Use and Misuse. In Endotext; Feingold, K.R., Anawalt, B., Boyce, A., Chrousos, G., de Herder, W.W., Dungan, K., Grossman, A., Hershman, J.M., Hofland, J., Kaltsas, G., et al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. [Google Scholar]
- Caruso, A.; Gerevini, V.D.; Castiglione, M.; Marinelli, F.; Tomassini, V.; Pozzilli, C.; Caricasole, A.; Bruno, V.; Caciagli, F.; Moretti, A.; et al. Testosterone Amplifies Excitotoxic Damage of Cultured Oligodendrocytes. J. Neurochem. 2004, 88, 1179–1185. [Google Scholar] [CrossRef] [Green Version]
- Bebo, B.F.; Zelinka-Vincent, E.; Adamus, G.; Amundson, D.; Vandenbark, A.A.; Offner, H. Gonadal Hormones Influence the Immune Response to PLP 139–151 and the Clinical Course of Relapsing Experimental Autoimmmune Encephalomyelitis. J. Neuroimmunol. 1998, 84, 122–130. [Google Scholar] [CrossRef]
- Dalal, M.; Kim, S.; Voskuhl, R.R. Testosterone Therapy Ameliorates Experimental Autoimmune Encephalomyelitis and Induces a T Helper 2 Bias in the Autoantigen-Specific T Lymphocyte Response. J. Immunol. 1997, 159, 3–6. [Google Scholar]
- Palaszynski, K.M.; Loo, K.K.; Ashouri, J.F.; Liu, H.-B.; Voskuhl, R.R. Androgens Are Protective in Experimental Autoimmune Encephalomyelitis: Implications for Multiple Sclerosis. J. Neuroimmunol. 2004, 146, 144–152. [Google Scholar] [CrossRef]
- Giatti, S.; Rigolio, R.; Romano, S.; Mitro, N.; Viviani, B.; Cavaletti, G.; Caruso, D.; Garcia-Segura, L.M.; Melcangi, R.C. Dihydrotestosterone as a Protective Agent in Chronic Experimental Autoimmune Encephalomyelitis. Neuroendocrinology 2015, 101, 296–308. [Google Scholar] [CrossRef]
- Taneja, V. Sex Hormones Determine Immune Response. Front. Immunol. 2018, 9. [Google Scholar] [CrossRef]
- Hussain, R.; Ghoumari, A.M.; Bielecki, B.; Steibel, J.; Boehm, N.; Liere, P.; MacKlin, W.B.; Kumar, N.; Habert, R.; Mhaouty-Kodja, S.; et al. The Neural Androgen Receptor: A Therapeutic Target for Myelin Repair in Chronic Demyelination. Brain 2013, 136, 132–146. [Google Scholar] [CrossRef]
- Bielecki, B.; Mattern, C.; Ghoumari, A.M.; Javaid, S.; Smietanka, K.; Ghanem, C.A.; Mhaouty-Kodja, S.; Ghandour, M.S.; Baulieu, E.E.; Franklin, R.J.M.; et al. Unexpected Central Role of the Androgen Receptor in the Spontaneous Regeneration of Myelin. Proc. Natl. Acad. Sci. USA 2016, 113, 14829–14834. [Google Scholar] [CrossRef] [Green Version]
- Weinshenker, B.G. Natural History of Multiple Sclerosis. Ann. Neurol. 1994, 36, S6–S11. [Google Scholar] [CrossRef]
- Bove, R.; Musallam, A.; Healy, B.; Raghavan, K.; Glanz, B.; Bakshi, R.; Weiner, H.; De Jager, P.; Miller, K.; Chitnis, T. Low Testosterone Is Associated with Disability in Men with Multiple Sclerosis. Mult. Scler. J. 2014, 20, 1584–1592. [Google Scholar] [CrossRef] [Green Version]
- Sicotte, N.L.; Giesser, B.S.; Tandon, V.; Klutch, R.; Steiner, B.; Drain, A.E.; Shattuck, D.W.; Hull, L.; Wang, H.-J.; Elashoff, R.M.; et al. Testosterone Treatment in Multiple Sclerosis: A Pilot Study. Arch. Neurol. 2007, 64, 683–688. [Google Scholar] [CrossRef] [Green Version]
- Gold, S.M.; Chalifoux, S.; Giesser, B.S.; Voskuhl, R.R. Immune Modulation and Increased Neurotrophic Factor Production in Multiple Sclerosis Patients Treated with Testosterone. J. Neuroinflamm. 2008, 5, 32. [Google Scholar] [CrossRef] [Green Version]
- Kurth, F.; Luders, E.; Sicotte, N.L.; Gaser, C.; Giesser, B.S.; Swerdloff, R.S.; Montag, M.J.; Voskuhl, R.R.; Mackenzie-Graham, A. Neuroprotective Effects of Testosterone Treatment in Men with Multiple Sclerosis. NeuroImage Clin. 2014, 4, 454–460. [Google Scholar] [CrossRef] [Green Version]
- McMorris, F.A.; Smith, T.M.; DeSalvo, S.; Furlanetto, R.W. Insulin-like Growth Factor I/Somatomedin C: A Potent Inducer of Oligodendrocyte Development. Proc. Natl. Acad. Sci. USA 1986, 83, 822–826. [Google Scholar] [CrossRef] [Green Version]
- Mason, J.L.; Xuan, S.; Dragatsis, I.; Efstratiadis, A.; Goldman, J.E. Insulin-Like Growth Factor (IGF) Signaling through Type 1 IGF Receptor Plays an Important Role in Remyelination. J. Neurosci. 2003, 23, 7710–7718. [Google Scholar] [CrossRef]
- Joseph D’Ercole, A.; Ye, P. Expanding the Mind: Insulin-like Growth Factor I and Brain Development. Endocrinology 2008, 149, 5958–5962. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Perez, A.I.; Borrajo, A.; Diaz-Ruiz, C.; Garrido-Gil, P.; Labandeira-Garcia, J.L. Crosstalk between Insulin-like Growth Factor-1 and Angiotensin-II in Dopaminergic Neurons and Glial Cells: Role in Neuroinflammation and Aging. Oncotarget 2016, 7, 30049–30067. [Google Scholar] [CrossRef] [Green Version]
- Ye, P.; Carson, J.; D’Ercole, A. In Vivo Actions of Insulin-like Growth Factor-I (IGF-I) on Brain Myelination: Studies of IGF-I and IGF Binding Protein-1 (IGFBP-1) Transgenic Mice. J. Neurosci. 1995, 15, 7344–7356. [Google Scholar] [CrossRef]
- Mason, J.L.; Ye, P.; Suzuki, K.; D’Ercole, A.J.; Matsushima, G.K. Insulin-Like Growth Factor-1 Inhibits Mature Oligodendrocyte Apoptosis during Primary Demyelination. J. Neurosci. 2000, 20, 5703–5708. [Google Scholar] [CrossRef] [Green Version]
- Ye, P.; Lee, K.-H.; D’Ercole, A.J. Insulin-like Growth Factor-I (IGF-I) Protects Myelination from Undernutritional Insult: Studies of Transgenic Mice Overexpressing IGF-I in Brain. J. Neurosci. Res. 2000, 62, 700–708. [Google Scholar] [CrossRef]
- Guan, J.; Bennet, L.; George, S.; Wu, D.; Waldvogel, H.J.; Gluckman, P.D.; Faull, R.L.M.; Crosier, P.S.; Gunn, A.J. Insulin-Like Growth Factor-1 Reduces Postischemic White Matter Injury in Fetal Sheep. J. Cereb. Blood Flow Metab. 2001, 21, 493–502. [Google Scholar] [CrossRef] [Green Version]
- Hlavica, M.; Delparente, A.; Good, A.; Good, N.; Plattner, P.S.; Seyedsadr, M.S.; Schwab, M.E.; Figlewicz, D.P.; Ineichen, B.V. Intrathecal Insulin-like Growth Factor 1 but Not Insulin Enhances Myelin Repair in Young and Aged Rats. Neurosci. Lett. 2017, 648, 41–46. [Google Scholar] [CrossRef] [Green Version]
- Youssef, M.I.; Zhou, Y.; Eissa, I.H.; Wang, Y.; Zhang, J.; Jiang, L.; Hu, W.; Qi, J.; Chen, Z. Tetradecyl 2,3-Dihydroxybenzoate Alleviates Oligodendrocyte Damage Following Chronic Cerebral Hypoperfusion through IGF-1 Receptor. Neurochem. Int. 2020, 138, 104749. [Google Scholar] [CrossRef] [PubMed]
- Ye, P.; D’Ercole, A.J. Insulin-Like Growth Factor I Protects Oligodendrocytes from Tumor Necrosis Factor-α-Induced Injury. Endocrinology 1999, 140, 3063–3072. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Quigley, L.; Yao, D.L.; Hudson, L.D.; Brenner, M.; Zhang, B.J.; Brocke, S.; McFarland, H.F.; Webster, H.D. Chronic Relapsing Experimental Autoimmune Encephalomyelitis: Effects of Insulin-like Growth Factor-I Treatment on Clinical Deficits, Lesion Severity, Glial Responses, and Blood Brain Barrier Defects. J. Neuropathol. Exp. Neurol. 1998, 57, 426–438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, D.-L.; Liu, X.; Hudson, L.D.; Webster, H.d.F. Insulin-like Growth Factor-I given Subcutaneously Reduces Clinical Deficits, Decreases Lesion Severity and Upregulates Synthesis of Myelin Proteins in Experimental Autoimmune Encephalomyelitis. Life Sci. 1996, 58, 1301–1306. [Google Scholar] [CrossRef]
- Cannella, B.; Pitt, D.; Capello, E.; Raine, C.S. Insulin-Like Growth Factor-1 Fails to Enhance Central Nervous System Myelin Repair during Autoimmune Demyelination. Am. J. Pathol. 2000, 157, 933–943. [Google Scholar] [CrossRef] [Green Version]
- O’Leary, M.T.; Hinks, G.L.; Charlton, H.M.; Franklin, R.J.M. Increasing Local Levels of IGF-I MRNA Expression Using Adenoviral Vectors Does Not Alter Oligodendrocyte Remyelination in the CNS of Aged Rats. Mol. Cell. Neurosci. 2002, 19, 32–42. [Google Scholar] [CrossRef] [PubMed]
- Frank, J.A.; Richert, N.; Lewis, B.; Bash, C.; Howard, T.; Civil, R.; Stone, R.; Eaton, J.; McFarland, H.; Leist, T. A Pilot Study of Recombinant Insulin-like Growth Factor-1 in Seven Multiple Sclerosis Patients. Mult. Scler. J. 2002, 8, 24–29. [Google Scholar] [CrossRef]
- Schulingkamp, R.J.; Pagano, T.C.; Hung, D.; Raffa, R.B. Insulin Receptors and Insulin Action in the Brain: Review and Clinical Implications. Neurosci. Biobehav. Rev. 2000, 24, 855–872. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, K.; Sloan, S.A.; Bennett, M.L.; Scholze, A.R.; O’Keeffe, S.; Phatnani, H.P.; Guarnieri, P.; Caneda, C.; Ruderisch, N.; et al. An RNA-Sequencing Transcriptome and Splicing Database of Glia, Neurons, and Vascular Cells of the Cerebral Cortex. J. Neurosci. 2014, 34, 11929–11947. [Google Scholar] [CrossRef]
- Boucher, J.; Tseng, Y.-H.; Kahn, C.R. Insulin and Insulin-like Growth Factor-1 Receptors Act as Ligand-Specific Amplitude Modulators of a Common Pathway Regulating Gene Transcription. J. Biol. Chem. 2010, 285, 17235–17245. [Google Scholar] [CrossRef] [Green Version]
- Barres, B.A.; Schmid, R.; Sendnter, M.; Raff, M.C. Multiple Extracellular Signals Are Required for Long-Term Oligodendrocyte Survival. Development 1993, 118, 283–295. [Google Scholar]
- Grote, C.W.; Wright, D.E. A Role for Insulin in Diabetic Neuropathy. Front. Neurosci. 2016, 10. [Google Scholar] [CrossRef] [Green Version]
- Rachana, K.S.; Manu, M.S.; Advirao, G.M. Insulin Influenced Expression of Myelin Proteins in Diabetic Peripheral Neuropathy. Neurosci. Lett. 2016, 629, 110–115. [Google Scholar] [CrossRef]
- Shettar, A.; Muttagi, G. Developmental Regulation of Insulin Receptor Gene in Sciatic Nerves and Role of Insulin on Glycoprotein P0 in the Schwann Cells. Peptides 2012, 36, 46–53. [Google Scholar] [CrossRef]
- Gong, X.; Xie, Z.; Zuo, H. Invivo Insulin Deficiency as a Potential Etiology for Demyelinating Disease. Med. Hypotheses 2008, 71, 399–403. [Google Scholar] [CrossRef]
- Barres, B.A.; Hart, I.K.; Coles, H.S.R.; Burne, J.F.; Voyvodic, J.T.; Richardson, W.D.; Raff, M.C. Cell Death and Control of Cell Survival in the Oligodendrocyte Lineage. Cell 1992, 70, 31–46. [Google Scholar] [CrossRef]
- Van der Pal, R.H.M.; Koper, J.W.; van Golde, L.M.G.; Lopes-Cardozo, M. Effects of Insulin And-like Growth Factor (IGF-I)on Oligodendrocyte-Enriched Glial Culture. J. Neurosci. Res. 1988, 19, 483–490. [Google Scholar] [CrossRef]
- Wessels, A.M.; Rombouts, S.A.R.B.; Remijnse, P.L.; Boom, Y.; Scheltens, P.; Barkhof, F.; Heine, R.J.; Snoek, F.J. Cognitive Performance in Type 1 Diabetes Patients Is Associated with Cerebral White Matter Volume. Diabetologia 2007, 50, 1763–1769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Wang, Y.; Wang, J.; Zhou, X.; Shu, N.; Wang, Y.; Zhang, Z. White Matter Integrity Disruptions Associated with Cognitive Impairments in Type 2 Diabetic Patients. Diabetes 2014, 63, 3596–3605. [Google Scholar] [CrossRef] [Green Version]
- Hoogenboom, W.S.; Marder, T.J.; Flores, V.L.; Huisman, S.; Eaton, H.P.; Schneiderman, J.S.; Bolo, N.R.; Simonson, D.C.; Jacobson, A.M.; Kubicki, M.; et al. Cerebral White Matter Integrity and Resting-State Functional Connectivity in Middle-Aged Patients with Type 2 Diabetes. Diabetes 2014, 63, 728–738. [Google Scholar] [CrossRef] [Green Version]
- O’Grady, J.P.; Dean, D.C.; Yang, K.L.; Canda, C.-M.; Hoscheidt, S.M.; Starks, E.J.; Merluzzi, A.; Hurley, S.; Davenport, N.J.; Okonkwo, O.C.; et al. Elevated Insulin and Insulin Resistance Are Associated with Altered Myelin in Cognitively Unimpaired Middle-Aged Adults. Obesity 2019, 27, 1464–1471. [Google Scholar] [CrossRef]
- Cabrera-Reyes, E.A.; Vergara-Castañeda, E.; Rivero-Segura, N.; Cerbón, M. Sex Differences in Prolactin and Its Receptor Expression in Pituitary, Hypothalamus, and Hippocampus of the Rat. Rev. Mex. Endrocrinol. Metab. Nutr. 2015, 2, 60–67. [Google Scholar]
- DeVito, W.J.; Connors, J.M.; Hedge, G.A. Immunoreactive Prolactin in the Rat Hypothalamus: In Vitro Release and Subcellular Localization. Neuroendocrinology 1987, 46, 155–161. [Google Scholar] [CrossRef]
- Emanuele, N.V.; Jurgens, J.K.; Halloran, M.M.; Tentler, J.J.; Lawrence, A.M.; Kelley, M.R. The Rat Prolactin Gene Is Expressed in Brain Tissue: Detection of Normal and Alternatively Spliced Prolactin Messenger RNA. Mol. Endocrinol. 1992, 6, 35–42. [Google Scholar] [CrossRef]
- Fields, K.; Kulig, E.; Lloyd, R. Detection of Prolactin Messenger RNA in Mammary and Other Normal and Neoplastic Tissues by Polymerase Chain Reaction. Lab. Investig. J. Tech. Methods Pathol. 1993, 68, 354–360. [Google Scholar]
- Freeman, M.E.; Kanyicska, B.; Lerant, A.; Nagy, G. Prolactin: Structure, Function, and Regulation of Secretion. Physiol. Rev. 2000, 80, 1523–1631. [Google Scholar] [CrossRef]
- Gregg, C.; Shikar, V.; Larsen, P.; Mak, G.; Chojnacki, A.; Yong, V.W.; Weiss, S. White Matter Plasticity and Enhanced Remyelination in the Maternal CNS. J. Neurosci. Off. J. Soc. Neurosci. 2007, 27, 1812–1823. [Google Scholar] [CrossRef] [Green Version]
- De Giglio, L.; Marinelli, F.; Prosperini, L.; Contessa, G.M.; Gurreri, F.; Piattella, M.C.; De Angelis, F.; Barletta, V.T.; Tomassini, V.; Pantano, P.; et al. Relationship between Prolactin Plasma Levels and White Matter Volume in Women with Multiple Sclerosis. Mediators Inflamm. 2015, 2015, 732539. [Google Scholar] [CrossRef]
- Borba, V.V.; Zandman-Goddard, G.; Shoenfeld, Y. Prolactin and Autoimmunity. Front. Immunol. 2018, 9. [Google Scholar] [CrossRef] [PubMed]
- Riskind, P.N.; Massacesi, L.; Doolittle, T.H.; Hauser, S.L. The Role of Prolactin in Autoimmune Demyelination: Suppression of Experimental Allergic Encephalomyelitis by Bromocriptine. Ann. Neurol. 1991, 29, 542–547. [Google Scholar] [CrossRef] [PubMed]
- Zhornitsky, S.; Johnson, T.A.; Metz, L.M.; Weiss, S.; Yong, V.W. Prolactin in Combination with Interferon-β Reduces Disease Severity in an Animal Model of Multiple Sclerosis. J. Neuroinflamm. 2015, 12, 55. [Google Scholar] [CrossRef] [Green Version]
- Costanza, M.; Musio, S.; Abou-Hamdan, M.; Binart, N.; Pedotti, R. Prolactin Is Not Required for the Development of Severe Chronic Experimental Autoimmune Encephalomyelitis. J. Immunol. 2013, 191, 2082–2088. [Google Scholar] [CrossRef] [Green Version]
- Jimenez-Jorge, S.; Guerrero, J.M.; Jimenez-Caliani, A.J.; Naranjo, M.C.; Lardone, P.J.; Carrillo-Vico, A.; Osuna, C.; Molinero, P. Evidence for Melatonin Synthesis in the Rat Brain during Development. J. Pineal Res. 2007, 42, 240–246. [Google Scholar] [CrossRef]
- Mauriz, J.L.; Collado, P.S.; Veneroso, C.; Reiter, R.J.; González-Gallego, J. A Review of the Molecular Aspects of Melatonin’s Anti-Inflammatory Actions: Recent Insights and New Perspectives. J. Pineal Res. 2013, 54, 1–14. [Google Scholar] [CrossRef]
- Tarocco, A.; Caroccia, N.; Morciano, G.; Wieckowski, M.R.; Ancora, G.; Garani, G.; Pinton, P. Melatonin as a Master Regulator of Cell Death and Inflammation: Molecular Mechanisms and Clinical Implications for Newborn Care. Cell Death Dis. 2019, 10, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Olivier, P.; Fontaine, R.H.; Loron, G.; Steenwinckel, J.V.; Biran, V.; Massonneau, V.; Kaindl, A.; Dalous, J.; Charriaut-Marlangue, C.; Aigrot, M.-S.; et al. Melatonin Promotes Oligodendroglial Maturation of Injured White Matter in Neonatal Rats. PLoS ONE 2009, 4, e7128. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, H.; Chen, W.; Chen, L.; Liu, D.; Wang, X.; Wang, X. Melatonin Attenuates White Matter Damage after Focal Brain Ischemia in Rats by Regulating the TLR4/NF-ΚB Pathway. Brain Res. Bull. 2019, 150, 168–178. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.H.; Park, J.H.; Lee, Y.L.; Kang, I.J.; Kim, D.W.; Hwang, I.K.; Lee, C.-H.; Yan, B.C.; Kim, Y.-M.; Lee, T.-K.; et al. Melatonin Improves Vascular Cognitive Impairment Induced by Ischemic Stroke by Remyelination via Activation of ERK1/2 Signaling and Restoration of Glutamatergic Synapses in the Gerbil Hippocampus. Biomed. Pharmacother. 2018, 108, 687–697. [Google Scholar] [CrossRef] [PubMed]
- Villapol, S.; Fau, S.; Renolleau, S.; Biran, V.; Charriaut-Marlangue, C.; Baud, O. Melatonin Promotes Myelination by Decreasing White Matter Inflammation After Neonatal Stroke. Pediatr. Res. 2011, 69, 51–55. [Google Scholar] [CrossRef] [Green Version]
- Wen, J.; Ariyannur, P.S.; Ribeiro, R.; Tanaka, M.; Moffett, J.R.; Kirmani, B.F.; Namboodiri, A.M.A.; Zhang, Y. Efficacy of N-Acetylserotonin and Melatonin in the EAE Model of Multiple Sclerosis. J. Neuroimmune Pharmacol. 2016, 11, 763–773. [Google Scholar] [CrossRef]
- Ghareghani, M.; Scavo, L.; Jand, Y.; Farhadi, N.; Sadeghi, H.; Ghanbari, A.; Mondello, S.; Arnoult, D.; Gharaghani, S.; Zibara, K. Melatonin Therapy Modulates Cerebral Metabolism and Enhances Remyelination by Increasing PDK4 in a Mouse Model of Multiple Sclerosis. Front. Pharmacol. 2019, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vakilzadeh, G.; Khodagholi, F.; Ghadiri, T.; Ghaemi, A.; Noorbakhsh, F.; Sharifzadeh, M.; Gorji, A. The Effect of Melatonin on Behavioral, Molecular, and Histopathological Changes in Cuprizone Model of Demyelination. Mol. Neurobiol. 2016, 53, 4675–4684. [Google Scholar] [CrossRef]
- Ghareghani, M.; Dokoohaki, S.; Ghanbari, A.; Farhadi, N.; Zibara, K.; Khodadoust, S.; Parishani, M.; Ghavamizadeh, M.; Sadeghi, H. Melatonin Exacerbates Acute Experimental Autoimmune Encephalomyelitis by Enhancing the Serum Levels of Lactate: A Potential Biomarker of Multiple Sclerosis Progression. Clin. Exp. Pharmacol. Physiol. 2017, 44, 52–61. [Google Scholar] [CrossRef]
- Abo Taleb, H.A.; Alghamdi, B.S. Neuroprotective Effects of Melatonin during Demyelination and Remyelination Stages in a Mouse Model of Multiple Sclerosis. J. Mol. Neurosci. 2020, 70, 386–402. [Google Scholar] [CrossRef]
- Kinker, G.S.; Ostrowski, L.H.; Ribeiro, P.A.C.; Chanoch, R.; Muxel, S.M.; Tirosh, I.; Spadoni, G.; Rivara, S.; Martins, V.R.; Santos, T.G.; et al. MT1 and MT2 Melatonin Receptors Play Opposite Roles in Brain Cancer Progression. J. Mol. Med. 2021, 99, 289–301. [Google Scholar] [CrossRef]
- García-Navarro, A.; González-Puga, C.; Escames, G.; López, L.C.; López, A.; López-Cantarero, M.; Camacho, E.; Espinosa, A.; Gallo, M.A.; Acuña-Castroviejo, D. Cellular Mechanisms Involved in the Melatonin Inhibition of HT-29 Human Colon Cancer Cell Proliferation in Culture. J. Pineal Res. 2007, 43, 195–205. [Google Scholar] [CrossRef]
- Moretti, E.; Favero, G.; Rodella, L.F.; Rezzani, R. Melatonin’s Antineoplastic Potential Against Glioblastoma. Cells 2020, 9, 599. [Google Scholar] [CrossRef] [Green Version]
- Martín, V.; Sanchez-Sanchez, A.M.; Puente-Moncada, N.; Gomez-Lobo, M.; Alvarez-Vega, M.A.; Antolín, I.; Rodriguez, C. Involvement of Autophagy in Melatonin-Induced Cytotoxicity in Glioma-Initiating Cells. J. Pineal Res. 2014, 57, 308–316. [Google Scholar] [CrossRef]
- Sun, F.-Y.; Lin, X.; Mao, L.-Z.; Ge, W.-H.; Zhang, L.-M.; Huang, Y.-L.; Gu, J. Neuroprotection by Melatonin against Ischemic Neuronal Injury Associated with Modulation of DNA Damage and Repair in the Rat Following a Transient Cerebral Ischemia. J. Pineal Res. 2002, 33, 48–56. [Google Scholar] [CrossRef]
- Tomás-Zapico, C.; Coto-Montes, A. A Proposed Mechanism to Explain the Stimulatory Effect of Melatonin on Antioxidative Enzymes. J. Pineal Res. 2005, 39, 99–104. [Google Scholar] [CrossRef]
- Krestinina, O.V.; Baburina, Y.L.; Azarashvili, T.S. Effect of Melatonin on Stress-Induced Opening of Non-Selective Pore in Mitochondria from Brain of Young and Old Rats. Biochem. Moscow Suppl. Ser. A 2015, 9, 116–123. [Google Scholar] [CrossRef]
- Franco, D.G.; Moretti, I.F.; Marie, S.K.N. Mitochondria Transcription Factor A: A Putative Target for the Effect of Melatonin on U87MG Malignant Glioma Cell Line. Molecules 2018, 23, 1129. [Google Scholar] [CrossRef] [Green Version]
- Baburina, Y.L.; Odinokova, I.V.; Krestinina, O.V. The Proapoptotic Effect of Melatonin on the Functioning of the Nonspecific Mitochondrial Pore (MPTP) in Rat Mitochondria. Neurochem. J. 2019, 13, 156–163. [Google Scholar] [CrossRef]
- Bernal, J.; Nunez, J. Thyroid Hormones and Brain Development. Eur. J. Endocrinol. 1995, 133, 390–398. [Google Scholar] [CrossRef]
- Braverman, L.E.; Cooper, D.S. Werner & Ingbar’s The Thyroid: A Fundamental and Clinical Text; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2012; ISBN 9781451120639. [Google Scholar]
- Harvey, C.B.; Williams, G.R. Mechanism of Thyroid Hormone Action. Thyroid 2002, 12, 441–446. [Google Scholar] [CrossRef]
- Barres, B.A.; Lazar, M.A.; Raff, M.C. A Novel Role for Thyroid Hormone, Glucocorticoids and Retinoic Acid in Timing Oligodendrocyte Development. Dev. Camb. Engl. 1994, 120, 1097–1108. [Google Scholar]
- Rodríguez-Peña, A. Oligodendrocyte Development and Thyroid Hormone. J. Neurobiol. 1999, 40, 497–512. [Google Scholar] [CrossRef]
- Zhang, J.; Lazar, M.A. The Mechanism of Action of Thyroid Hormones. Annu. Rev. Physiol. 2000, 62, 439–466. [Google Scholar] [CrossRef]
- Lee, S.; Privalsky, M.L. Heterodimers of Retinoic Acid Receptors and Thyroid Hormone Receptors Display Unique Combinatorial Regulatory Properties. Mol. Endocrinol. 2005, 19, 863–878. [Google Scholar] [CrossRef] [Green Version]
- Baas, D.; Prüfer, K.; Ittel, M.E.; Kuchler-Bopp, S.; Labourdette, G.; Sarliève, L.L.; Brachet, P. Rat Oligodendrocytes Express the Vitamin D3 Receptor and Respond to 1,25-Dihydroxyvitamin D3. Glia 2000, 31, 59–68. [Google Scholar] [CrossRef]
- Baldassarro, V.A.; Krężel, W.; Fernández, M.; Schuhbaur, B.; Giardino, L.; Calzà, L. The Role of Nuclear Receptors in the Differentiation of Oligodendrocyte Precursor Cells Derived from Fetal and Adult Neural Stem Cells. Stem Cell Res. 2019, 37, 101443. [Google Scholar] [CrossRef]
- Pombo, P.M.; Barettino, D.; Ibarrola, N.; Vega, S.; Rodríguez-Peña, A. Stimulation of the Myelin Basic Protein Gene Expression by 9-Cis-Retinoic Acid and Thyroid Hormone: Activation in the Context of Its Native Promoter. Brain Res. Mol. Brain Res. 1999, 64, 92–100. [Google Scholar] [CrossRef]
- Rosman, N.P.; Malone, M.J.; Helfenstein, M.; Kraft, E. The Effect of Thyroid Deficiency on Myelination of Brain: A Inorphological and Biochemical Study. Neurology 1972, 22, 99. [Google Scholar] [CrossRef]
- Berbel, P.; Guadaño-Ferraz, A.; Angulo, A.; Ramón Cerezo, J. Role of Thyroid Hormones in the Maturation of Interhemispheric Connections in Rats. Behav. Brain Res. 1994, 64, 9–14. [Google Scholar] [CrossRef]
- Schoonover, C.M.; Seibel, M.M.; Jolson, D.M.; Stack, M.J.; Rahman, R.J.; Jones, S.A.; Mariash, C.N.; Anderson, G.W. Thyroid Hormone Regulates Oligodendrocyte Accumulation in Developing Rat Brain White Matter Tracts. Endocrinology 2004, 145, 5013–5020. [Google Scholar] [CrossRef] [Green Version]
- Bernal, J. Thyroid Hormones and Brain Development. Vitam. Horm. 2005, 71, 95–122. [Google Scholar] [CrossRef] [PubMed]
- Pettigrew, R.; Fyfe, J.C.; Gregory, B.L.; Lipsitz, D.; Delahunta, A.; Summers, B.A.; Shelton, G.D. CNS Hypomyelination in Rat Terrier Dogs with Congenital Goiter and a Mutation in the Thyroid Peroxidase Gene. Vet. Pathol. 2007, 44, 50–56. [Google Scholar] [CrossRef]
- Noguchi, T.; Sugisaki, T.; Satoh, I.; Kudo, M. Partial Restoration of Cerebral Myelination of the Congenitally Hypothyroid Mouse by Parenteral or Breast Milk Administration of Thyroxine. J. Neurochem. 1985, 45, 1419–1426. [Google Scholar] [CrossRef] [PubMed]
- Obregon, M.J.; Calvo, R.M.; Escobar Del Rey, F.; Morreale de Escobar, G. Ontogenesis of Thyroid Function and Interactions with Maternal Function. Endocr. Dev. 2007, 10, 86–98. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Zhan, X.L.; Ma, Z.Y.; Chen, X.S.; Cai, Q.Y.; Yao, Z.X. Thyroid Hormone Alleviates Demyelination Induced by Cuprizone through Its Role in Remyelination during the Remission Period. Exp. Biol. Med. 2015, 240, 1183–1196. [Google Scholar] [CrossRef] [Green Version]
- Shultz, R.B.; Wang, Z.; Nong, J.; Zhang, Z.; Zhong, Y. Local Delivery of Thyroid Hormone Enhances Oligodendrogenesis and Myelination after Spinal Cord Injury. J. Neural Eng. 2017, 14, 036014. [Google Scholar] [CrossRef]
- Franco, P.G.; Silvestroff, L.; Soto, E.F.; Pasquini, J.M. Thyroid Hormones Promote Differentiation of Oligodendrocyte Progenitor Cells and Improve Remyelination after Cuprizone-Induced Demyelination. Exp. Neurol. 2008, 212, 458–467. [Google Scholar] [CrossRef]
- Harsan, L.-A.; Steibel, J.; Zaremba, A.; Agin, A.; Sapin, R.; Poulet, P.; Guignard, B.; Parizel, N.; Grucker, D.; Boehm, N.; et al. Recovery from Chronic Demyelination by Thyroid Hormone Therapy: Myelinogenesis Induction and Assessment by Diffusion Tensor Magnetic Resonance Imaging. J. Neurosci. Off. J. Soc. Neurosci. 2008, 28, 14189–14201. [Google Scholar] [CrossRef]
- Dugas, J.C.; Ibrahim, A.; Barres, B.A. The T3-Induced Gene KLF9 Regulates Oligodendrocyte Differentiation and Myelin Regeneration. Mol. Cell. Neurosci. 2012, 50, 45–57. [Google Scholar] [CrossRef] [Green Version]
- Fernandez, M.; Pirondi, S.; Manservigi, M.; Giardino, L.; Calzà, L. Thyroid Hormone Participates in the Regulation of Neural Stem Cells and Oligodendrocyte Precursor Cells in the Central Nervous System of Adult Rat. Eur. J. Neurosci. 2004, 20, 2059–2070. [Google Scholar] [CrossRef]
- Fernandez, M.; Paradisi, M.; Del Vecchio, G.; Giardino, L.; Calzà, L. Thyroid Hormone Induces Glial Lineage of Primary Neurospheres Derived from Non-Pathological and Pathological Rat Brain: Implications for Remyelination-Enhancing Therapies. Int. J. Dev. Neurosci. 2009. [Google Scholar] [CrossRef]
- Calzà, L.; Fernandez, M.; Giuliani, A.; Aloe, L.; Giardino, L. Thyroid Hormone Activates Oligodendrocyte Precursors and Increases a Myelin-Forming Protein and NGF Content in the Spinal Cord during Experimental Allergic Encephalomyelitis. Proc. Natl. Acad. Sci. USA 2002, 99, 3258–3263. [Google Scholar] [CrossRef] [Green Version]
- Calzà, L.; Fernandez, M.; Giuliani, A.; D’Intino, G.; Pirondi, S.; Sivilia, S.; Paradisi, M.; DeSordi, N.; Giardino, L. Thyroid Hormone and Remyelination in Adult Central Nervous System: A Lesson from an Inflammatory-Demyelinating Disease. Brain Res. Rev. 2005, 2, 339–346. [Google Scholar] [CrossRef]
- D’Intino, G.; Lorenzini, L.; Fernandez, M.; Taglioni, A.; Perretta, G.; Vecchio, G.D.; Villoslada, P.; Giardino, L.; Calzà, L. Triiodothyronine Administration Ameliorates the Demyelination/Remyelination Ratio in a Non-Human Primate Model of Multiple Sclerosis by Correcting Tissue Hypothyroidism. J. Neuroendocrinol. 2011, 23, 778–790. [Google Scholar] [CrossRef]
- Huang, J.K.; Jarjour, A.A.; Nait Oumesmar, B.; Kerninon, C.; Williams, A.; Krezel, W.; Kagechika, H.; Bauer, J.; Zhao, C.; Evercooren, A.B.-V.; et al. Retinoid X Receptor Gamma Signaling Accelerates CNS Remyelination. Nat. Neurosci. 2011, 14, 45–53. [Google Scholar] [CrossRef]
- De Vito, P.; Incerpi, S.; Pedersen, J.Z.; Luly, P.; Davis, F.B.; Davis, P.J. Thyroid Hormones as Modulators of Immune Activities at the Cellular Level. Thyroid 2011, 21, 879–890. [Google Scholar] [CrossRef]
- Castelo-Branco, G.; Stridh, P.; Guerreiro-Cacais, A.O.; Adzemovic, M.Z.; Falcão, A.M.; Marta, M.; Berglund, R.; Gillett, A.; Hamza, K.H.; Lassmann, H.; et al. Acute Treatment with Valproic Acid and L-Thyroxine Ameliorates Clinical Signs of Experimental Autoimmune Encephalomyelitis and Prevents Brain Pathology in DA Rats. Neurobiol. Dis. 2014, 71, 220–233. [Google Scholar] [CrossRef] [Green Version]
- Fernandez, M.; Baldassarro, V.A.; Sivilia, S.; Giardino, L.; Calzà, L. Inflammation Severely Alters Thyroid Hormone Signaling in the Central Nervous System during Experimental Allergic Encephalomyelitis in Rat: Direct Impact on OPCs Differentiation Failure. Glia 2016, 64, 1573–1589. [Google Scholar] [CrossRef]
- Wooliscroft, L.; Altowaijri, G.; Hildebrand, A.; Samuels, M.; Oken, B.; Bourdette, D.; Cameron, M. Phase I Randomized Trial of Liothyronine for Remyelination in Multiple Sclerosis: A Dose-Ranging Study with Assessment of Reliability of Visual Outcomes. Mult. Scler. Relat. Disord. 2020, 41, 102015. [Google Scholar] [CrossRef]
- Gunning-Dixon, F.M.; Brickman, A.M.; Cheng, J.C.; Alexopoulos, G.S. Aging of Cerebral White Matter: A Review of MRI Findings. Int. J. Geriatr. Psychiatry 2009, 24, 109–117. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Yang, Y.; Xia, Y.; Zhu, W.; Leak, R.K.; Wei, Z.; Wang, J.; Hu, X. Aging of Cerebral White Matter. Ageing Res. Rev. 2017, 34, 64–76. [Google Scholar] [CrossRef] [Green Version]
- Salat, D.H.; Greve, D.N.; Pacheco, J.L.; Quinn, B.T.; Helmer, K.G.; Buckner, R.L.; Fischl, B. Regional White Matter Volume Differences in Nondemented Aging and Alzheimer’s Disease. NeuroImage 2009, 44, 1247–1258. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Rey, E.; Fernandez-Martin, A.; Chorny, A.; Martin, J.; Pozo, D.; Ganea, D.; Delgado, M. Therapeutic Effect of Vasoactive Intestinal Peptide on Experimental Autoimmune Encephalomyelitis: Down-Regulation of Inflammatory and Autoimmune Responses. Am. J. Pathol. 2006. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Breton, J.M.; Long, K.L.P.; Barraza, M.K.; Perloff, O.S.; Kaufer, D. Hormonal Regulation of Oligodendrogenesis II: Implications for Myelin Repair. Biomolecules 2021, 11, 290. https://doi.org/10.3390/biom11020290
Breton JM, Long KLP, Barraza MK, Perloff OS, Kaufer D. Hormonal Regulation of Oligodendrogenesis II: Implications for Myelin Repair. Biomolecules. 2021; 11(2):290. https://doi.org/10.3390/biom11020290
Chicago/Turabian StyleBreton, Jocelyn M., Kimberly L. P. Long, Matthew K. Barraza, Olga S. Perloff, and Daniela Kaufer. 2021. "Hormonal Regulation of Oligodendrogenesis II: Implications for Myelin Repair" Biomolecules 11, no. 2: 290. https://doi.org/10.3390/biom11020290
APA StyleBreton, J. M., Long, K. L. P., Barraza, M. K., Perloff, O. S., & Kaufer, D. (2021). Hormonal Regulation of Oligodendrogenesis II: Implications for Myelin Repair. Biomolecules, 11(2), 290. https://doi.org/10.3390/biom11020290