Acetylcholinesterase Inhibitory Potential of Various Sesquiterpene Analogues for Alzheimer’s Disease Therapy
Abstract
:1. Introduction
2. Review Methodology and Current Developments
2.1. Sesquiterpenoids
2.2. Sesquiterpene Lactones (SLs)
2.3. Miscellaneous Sesquiterpenes
2.3.1. Sesquiterpene Coumarins
2.3.2. Dihydro-β-AgarofuranSesquiterpenes
2.3.3. Sesquiterpene Alkaloids
3. Sesquiterpenes for Alternate AD Targets
4. Market Formulations to Alleviate AD Symptoms
5. Final Remarks and Future Prospects
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
AChE | Acetylcholinesterase |
AD | Alzheimer’s disease |
APP | amyloid precursor protein |
ARD | Aromadendrane-4β,10α-diol |
Aβ | Amyloid Beta |
BACE1 | Β-site APP Cleaving Enzyme1 |
BChE | Butylcholinesterase |
BuTChERK | ButyrylthiocholineExtracellular signal regulated kinase |
FPP | Farnesyl Pyrophosphate |
HDS | 13-hydroxy-8,9-dehydroshizukanolide |
ICO | Isocubebenol |
LAMI | Learning and Memory impairment |
LPS | Lipopolysaccharide |
MDA | Malondialdehyde level |
mTOR | Mammalian target of rapamycin |
MWM | Morris Water Maze |
NF-κB | Nuclear factor kappa-light-chain-enhancer of activated B cells |
NLRP3 | Nucleotide-binding domain and leucine-rich repeat protein 3 |
NMDA | N-methyl-D-aspartate |
PDA | Podoandin |
PS-1 | Presenilin-1 |
SC | Sesquiterpenecoumarins |
SLs | Sesquiterpene Lactones |
References
- Essa, M.M.; Vijayan, R.K.; Castellano-Gonzalez, G.; Memon, M.A.; Braidy, N.; Guillemin, G.J. Neuroprotective Effect of Natural Products Against Alzheimer’s Disease. Neurochem. Res. 2012, 37, 1829–1842. [Google Scholar] [CrossRef] [PubMed]
- Korczyn, A.D.; Vakhapova, V. The prevention of the dementia epidemic. J. Neurol. Sci. 2007, 257, 2–4. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Su, T.; Li, X. Natural products as sources of new lead compounds for the treatment of Alzheimer’s disease. Curr. Top. Med. Chem. 2013, 13, 1864–1878. [Google Scholar] [CrossRef] [PubMed]
- Johnson, G.; Moore, S.W. The peripheral anionic site of acetylcholinesterase: Structure, functions and potential role in rational drug design. Curr. Pharm. Des. 2006, 12, 217–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camps, P.; El-Achab, R.; Morral, J.; Torrero, D.M.; Badia, A.; Banos, J.E.; Vivas, N.M.; Barril, X.; Orozco, M.; Luque, F.J. New tacrine-huperzine A hybrids (huprines): Highly potent tight-binding acetylcholinesterase inhibitors of interest for the treatment of Alzheimer’s disease. J. Med. Chem. 2000, 43, 4657–4666. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhang, X.X.; Jiang, L.J.; Yuan, L.; Cao, T.T.; Li, X.; Dong, L.; Li, Y.; Yin, S.F. Inhibition of acetylcholinesterase (AChE): A potential therapeutic target to treat Alzheimer’s disease. Chem. Biol. Drug. Des. 2015, 86, 776–782. [Google Scholar] [CrossRef] [PubMed]
- Kumar, G.P.; Khanum, F. Neuroprotective potential of phytochemicals. Pharmacogn. Rev. 2012, 6, 81–90. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.H.; Akter, R.; Bhattacharya, T.; Abdel-Daim, M.M.; Alkahtani, S.; Arafah, M.W.; Al-Johani, N.S.; Alhoshani, N.M.; Alkeraishan, N.; Alhenaky, A.; et al. Resveratrol and neuroprotection: Impact and its therapeutic potential in Alzheimer’s disease. Front. Pharmacol. 2020, 11. [Google Scholar] [CrossRef] [PubMed]
- Kelley, B.J.; Petersen, R.C. Alzheimer’s disease and mild cognitive impairment. Neurol. Clin. 2007, 25, 577–609. [Google Scholar] [CrossRef] [Green Version]
- Chauhan, V.; Chauhan, A. Oxidative stress in Alzheimer’s disease. Pathophysiology 2006, 13, 195–208. [Google Scholar] [CrossRef] [PubMed]
- Maltsev, A.V.; Bystryak, S.; Galzitskaya, O.V. The role of β-amyloid peptide in neurodegenerative diseases. Ageing Res. Rev. 2011, 10, 440–452. [Google Scholar] [CrossRef]
- Anand, A.; Patience, A.A.; Sharma, N.; Khurana, N. The present and future of pharmacotherapy of Alzheimer’s disease: A comprehensive review. Eur. J. Pharmacol. 2017, 815, 364–375. [Google Scholar] [CrossRef] [PubMed]
- Madeo, J.; Elsayad, C. The role of oxidative stress in Alzheimer’s disease. J. Alzheimers Dis. 2013, 3, 116–121. [Google Scholar] [CrossRef]
- Godyn, J.; Jonczyk, J.; Panek, D.; Malawska, B. Therapeutic strategies for Alzheimer’s disease in clinical trials. Pharmacol. Rep. 2016, 68, 127–138. [Google Scholar] [CrossRef]
- Henstridge, C.M.; Pickett, E.; Spires-Jones, T.L. Synaptic pathology: A shared mechanism in neurological disease. Ageing Res. Rev. 2016, 28, 72–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartus, R.T. On neurodegenerative diseases, models, and treatment strategies: Lessons learned and lessons forgotten a generation following the cholinergic hypothesis. Exp. Neurol. 2000, 163, 495–529. [Google Scholar] [CrossRef]
- Bartus, R.T.; Dean, R.L.; Beer, B.; Lippa, A.S. The cholinergic hypothesis of geriatric memory dysfunction. Science 1982, 217, 408–414. [Google Scholar] [CrossRef] [PubMed]
- Hasselmo, M.E. The role of acetylcholine in learning and memory. Curr. Opin. Neurobiol. 2006, 16, 710–715. [Google Scholar] [CrossRef] [Green Version]
- Rees, T.M.; Brimijoin, S. The role of acetylcholine in the pathogenesis of Alzheimer’s disease. Drugs Today 2003, 39, 75–83. [Google Scholar] [CrossRef]
- Quinn, D.M. Acetylcholinesterase: Enzyme structure, reaction dynamics, and virtual transition states. Chem. Rev. 1987, 87, 955–979. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, C.; Zuo, Y.; Wang, Z.; Yang, B.; Kuang, H. Compounds from the roots and rhizomes of Valerianaamurensis protect against neurotoxicity in PC12 cells. Molecules 2012, 17, 15013–15021. [Google Scholar] [CrossRef] [Green Version]
- Massoulie, J.; Pezzementi, L.; Bon, S.; Krejci, E.; Vallette, F.M. Molecular and cellular biology of cholinesterases. Prog. Neurobiol. 1993, 41, 31–91. [Google Scholar] [CrossRef]
- Reid, G.A.; Chilukuri, N.; Darvesh, S. Butyrylcholinesterase and the cholinergic system. Neuroscience 2013, 234, 53–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masson, P.; Lockridge, O. Butyrylcholinesterase for protection from organophosphorus poisons: Catalytic complexities and hysteretic behavior. Arch. Biochem. Biophys. 2010, 494, 107–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mesulam, M.; Guillozet, A.; Shaw, P.; Quinn, B. Widely spread butyrylcholinesterase can hydrolyze acetylcholine in the normal and Alzheimer brain. Neurobiol. Dis. 2002, 9, 88–93. [Google Scholar] [CrossRef] [PubMed]
- Francis, P.T. The interplay of neurotransmitters in Alzheimer’s disease. CNS Spectr. 2005, 10, 6–9. [Google Scholar] [CrossRef]
- Dvir, H.; Silman, I.; Harel, M.; Rosenberry, T.L.; Sussman, J.L. Acetylcholinesterase: From 3D structure to function. Chem. Biol. Interact. 2010, 187, 10–22. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Sun, H.; Chen, Z.; Xu, H.; Bu, G.; Zheng, H. Implications of GABAergic neurotransmission in Alzheimer’s disease. Front. Aging Neurosci. 2016, 8, 31. [Google Scholar] [CrossRef] [Green Version]
- Del Monte-Millán, M.; García-Palomero, E.; Valenzuela, R.; Usán, P.; de Austria, C.; Muñoz-Ruiz, P.; Rubio, L.; Dorronsoro, I.; Martínez, A.; Medina, M. Dual binding site acetylcholinesterase inhibitors: Potential new disease-modifying agents for AD. J Mol. Neurosci. 2006, 30, 85–88. [Google Scholar] [CrossRef]
- Castro, A.; Martinez, A. Targeting beta-amyloid pathogenesis through acetylcholinesterase inhibitors. Curr. Pharm. Des. 2006, 12, 4377–4387. [Google Scholar] [CrossRef]
- Heinrich, M. Galanthamine from galanthus and other amaryllidaceae—Chemistry and biology based on traditional use. Alkaloids Chem. Biol. 2010, 68, 157–165. [Google Scholar] [CrossRef]
- Thomsen, T.; Kewitz, H. Selective inhibition of human acetylcholinesterase by galanthamine in vitro and in vivo. Life Sci. 1990, 46, 1553–1558. [Google Scholar] [CrossRef]
- Grossberg, G.T. Cholinesterase inhibitors for the treatment of Alzheimer’s disease: Getting on and staying on. Curr. Ther. Res. 2003, 64, 216–235. [Google Scholar] [CrossRef] [Green Version]
- Arendt, T.; Brückner, M.K.; Lange, M.; Bigl, V. Changes in acetylcholinesterase and butyrylcholinesterase in Alzheimer’s disease resemble embryonic development—A study of molecular forms. Neurochem. Int. 1992, 21, 381–396. [Google Scholar] [CrossRef]
- Schmidt, T.J. Structure–activity relationships of sesquiterpene lactones. Stud. Nat. Prod. Chem. 2006, 33, 309–392. [Google Scholar] [CrossRef]
- Melanie-Jayne, R.H.; Houghton, P.J. Plants used in Chinese and Indian traditional medicine for improvement of memory and cognitive function. Pharmacol. Biochem. Behav. 2003, 75, 513–527. [Google Scholar] [CrossRef]
- Oh, M.S.; Huh, Y.; Bae, H.; Ahn, D.K.; Park, S.K. The multi-herbal formula Guibitang enhances memory and increases cell proliferation in the rat hippocampus. Neurosci. Lett. 2005, 379, 205–208. [Google Scholar] [CrossRef]
- Das, A.; Shanker, G.; Nath, C.; Pal, R.; Singh, S.; Singh, H. A comparative study in rodents of standardized extracts of Bacopa monniera and Ginkgo biloba: Anticholinesterase and cognitive enhancing activities. Pharmacol. Biochem. Behav. 2002, 73, 893–900. [Google Scholar] [CrossRef]
- Howes, M.J.; Houghton, P.J. Ethnobotanical treatment strategies against Alzheimer’s disease. Curr. Alzheimer Res. 2012, 9, 67–85. [Google Scholar] [CrossRef]
- Bond, M.; Rogers, G.; Peters, J.; Anderson, R.; Hoyle, M.; Miners, A.; Moxham, T.; Davis, S.; Thokala, P.; Wailoo, A.; et al. The effectiveness and cost-effectiveness of donepezil, galantamine, rivastigmine and memantine for the treatment of Alzheimer’s disease (review of Technology Appraisal No. 111): A systematic review and economic model. Health Technol. Assess. 2012, 16, 1–470. [Google Scholar] [CrossRef]
- Mancuso, C.; Siciliano, R.; Barone, E.; Preziosi, P. Natural substances and Alzheimer’s disease: From preclinical studies to evidence based medicine. Biochimica Biophysica Acta (BBA) Mol. Basis Dis. 2012, 1822, 616–624. [Google Scholar] [CrossRef] [Green Version]
- Chopra, K.; Misra, S.; Kuhad, A. Current perspectives on pharmacotherapy of Alzheimer’s. Expert. Opin. Pharmacother. 2011, 12, 335–350. [Google Scholar] [CrossRef] [PubMed]
- Rao, R.V.; Descamps, O.; John, V.; Bredesen, D.E. Ayurvedic medicinal plants for Alzheimer’s disease: A review. Alzheimer’s Res. Ther. 2012, 4, 22. [Google Scholar] [CrossRef] [PubMed]
- Gliszczynska, A.; Brodelius, P.E. Sesquiterpene coumarins. Phytochem. Rev. 2012, 11, 77–96. [Google Scholar] [CrossRef]
- Chunmei, Z.; Jianbo, J.; Mei, J.; Peihong, F. Acetylcholinesterase inhibitors and compounds promoting SIRT1 expression from Curcuma xanthorrhiza. Phytochem. Lett. 2015, 12, 215–219. [Google Scholar] [CrossRef]
- Howes, M.J.R.; Perry, E. The role of phytochemicals in the treatment and prevention of dementia. Drugs Aging 2011, 28, 439–468. [Google Scholar] [CrossRef]
- Owokotomo, I.A.; Ekundayob, O.; Abayomic, T.G.; Chukwuka, A.V. In-vitro anti-cholinesterase activity of essential oil from fourtropical medicinal plants. Toxicol. Rep. 2015, 2, 850–857. [Google Scholar] [CrossRef] [Green Version]
- Shal, B.; Ding, W.; Ali, H.; Kim, Y.S.; Khan, S. Anti-neuroinflammatory potential of natural products in attenuation of Alzheimer’s disease. Front. Pharmacol. 2018, 9. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.M.; Peng, Y.; Shi, Q.W.; Xiao, P.G. Chemical constituents and bioactivities of plants of chloranthaceae. Chem. Biodivers. 2008, 5, 219–238. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.R.; Wu, H.F.; Zhang, X.P.; Yang, J.S.; Dai, Z.; Lin, R.C.; Xu, X.D. A new sesquiterpene lactone from Sarcandra glabra. Nat. Prod. Res. 2013, 27, 1197–1201. [Google Scholar] [CrossRef]
- Duan, H.Q.; Takaishi, Y.; Momota, H.; Ohmoto, Y.; Taki, T.; Jia, Y.F.; Li, D. Immunosuppressive sesquiterpene alkaloids from Tripterygium wilfordii. J. Nat. Prod. 2001, 64, 582–587. [Google Scholar] [CrossRef]
- Melikov, E.M.; Serkerov, S.V.; Movsumov, G.D.; Mir-Babaev, N.F. Antiamnesic properties of the sesquiterpene lactone Azerin. Bull. Exp. Biol. Med. 1993, 115, 163–165. [Google Scholar] [CrossRef]
- Merfort, I. Perspectives on sesquiterpene lactones in inflammation and cancer. Curr. Drug Targets 2011, 12, 1560–1573. [Google Scholar] [CrossRef]
- Foglio, M.A.; Dias, P.C.; Antônio, M.A.; Possenti, A.; Rodrigues, R.A.; Da Silva, E.F.; Rehder, V.L.; De Carvalho, J.E. Antiulcerogênic activity of some sesquiterpene lactones isolated from Artemisia annua L. Planta Medica 2002, 6, 515–518. [Google Scholar] [CrossRef] [Green Version]
- Ordonez, P.E.; Quave, C.L.; Reynolds, W.F.; Varughese, K.I.; Berry, B.; Breen, P.J.; Malagon, O.; Smeltzer, M.S.; Compadre, C.M. Sesquiterpene lactones from Gynoxysverrucosa and their anti-MRSA activity. J. Ethnopharmacol. 2011, 137, 1055–1059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.J.; Xiong, J.; Liu, S.T.; Liu, X.H.; Hu, J.F. Sesquiterpenoids from Chloranthushenryi and their anti-neuroinflammatory activities. Chem. Biodivers. 2014, 11, 919–928. [Google Scholar] [CrossRef]
- Chougouo, R.D.K.; Nguekeu, Y.M.M.; Dzoyem, J.P.; Maurice, D.; Awouafack, J.K.; Pierre, T.; Lyndy, J.M.; Jacobus, N.E. Anti-inflammatory and acetylcholinesterase activity of extract, fractions and five compounds isolated from the leaves and twigs of Artemisia annua growing in Cameroon. Springer Plus 2016, 5, 1525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fraga, B.M. Natural sesquiterpenoids. Nat. Prod. Rep. 2008, 25, 1180–1209. [Google Scholar] [CrossRef]
- Bennett, M.H.; Mansfield, J.W.; Lewis, M.J.; Beale, M.H. Cloning and expression of sesquiterpene synthase genes from Lettuce (Lactuca sativa L.). Phytochemistry 2002, 60, 255–261. [Google Scholar] [CrossRef]
- Cheng, A.X.; Xiang, C.Y.; Li, J.X.; Yang, C.Q.; Hu, W.L.; Wang, L.J.; Lou, Y.; Chen, X.Y. The rice (E)-β-caryophyllene synthase (OsTPS3) accounts for the major inducible volatile sesquiterpenes. Phytochemistry 2007, 68, 1632–1641. [Google Scholar] [CrossRef] [PubMed]
- Hang, Z.; Gao, Z.H.; Wei, J.H.; Xu, Y.H.; Li, Y.; Yang, Y.; Meng, H.; Sui, C.; Wang, M.X. The mechanical wound transcriptome of three-year-old Aquilaria sinensis. Acta Pharm. Sin. 2012, 47, 1106–1110. [Google Scholar]
- Chan, W.K.; Tan, L.T.H.; Chan, K.G.; Lee, L.H.; Goh, B.H. Nerolidol: A sesquiterpene alcohol with multi-faceted pharmacological and biological activities. Molecules 2016, 21, 529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elmann, A.; Telerman, A.; Ofir, R.; Kashman, Y.; Lazarov, O. β-amyloid cytotoxicity is prevented by natural achillolide A. J. Nat. Med. 2018, 72, 626–631. [Google Scholar] [CrossRef] [Green Version]
- De Cássia Da Silveira e Sá, R.; Andrade, L.N.; De Sousa, D.P. Sesquiterpenes from essential oils and anti-inflammatory activity. Nat. Prod. Commun. 2015, 10, 1767–1774. [Google Scholar] [CrossRef] [Green Version]
- Picaud, S.; Olsson, M.E.; Brodelius, P.E. Improved conditions for production of recombinant plant sesquiterpene synthases in Escherichia coli. Prot. Expr. Purif. 2007, 51, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Little, D.B.; Croteau, R.B. Alteration of product formation by directed mutagenesis and truncation of the multiple-product sesquiterpene synthases δ-selinene synthase and γ-humulene synthase. Arch. Biochem. Biophys. 2002, 402, 120–135. [Google Scholar] [CrossRef]
- Schnee, C.; Kollner, T.G.; Gershenzon, J.; Degenhardt, J. The maize gene terpene synthase 1 encodes a sesquiterpene synthase catalyzing the formation of (E)-β-farnesene, (E)-nerolidol, and (E,E)-farnesol after herbivore damage. Plant. Physiol. 2002, 130, 2049–2060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivanescu, B.; Miron, A.; Corciova, A. Sesquiterpene lactones from Artemisia genus: Biological activities and methods of analysis. J. Anal. Methods. Chem. 2015, 21. [Google Scholar] [CrossRef] [Green Version]
- Chaturvedi, D. Sesquiterpene lactones: Structural diversity and their biological activities. In Opportunity, Challenge and Scope of Natural Products in Medicinal Chemistry; Research Signpost: Trivandrum, Kerala, India, 2011; pp. 313–334. [Google Scholar]
- Chadwick, M.; Trewin, H.; Gawthrop, F.; Wagstaff, C. Sesquiterpenoids lactones: Benefits to plants and people. Int. J. Mol. Sci. 2013, 14, 12780–12805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Houghton, P.J.; Ren, Y.; Howes, M.J. Acetylcholinesterase inhibitors from plants and fungi. Nat. Prod. Rep. 2006, 23, 181–199. [Google Scholar] [CrossRef]
- Williams, P.; Sorribas, A.; Howes, M.J. Natural products as a source of Alzheimer’s drugs leads. Nat. Prod. Rep. 2011, 28, 48–77. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, P.K.; Kumar, V.; Mal, M.; Houghton, P.J. Acetylcholinesterase inhibitors from plants. Phytomedicine 2007, 14, 289–300. [Google Scholar] [CrossRef]
- Orhan, G.; Orhan, I.; Subutay-Oztekin, N.; Ak, F.; Sener, B. Contemporary anticholinesterase pharmaceuticals of natural origin and their synthetic analogues for the treatment of Alzheimer’s disease. Recent. Pat. CNS Drug. Discov. 2009, 4, 43–51. [Google Scholar] [CrossRef]
- Cos, P.; Vlietinck, A.J.; Vanden Berghe, D.; Maes, L. Anti-infective potential of natural products: How to develop a stronger in vitro ‘proof-of-concept’. J. Ethnopharmacol. 2006, 106, 290–302. [Google Scholar] [CrossRef] [PubMed]
- Ellman, G.L.; Courtney, K.D.; Andres, V.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Lopez, S.; Bastida, J.; Viladomat, F.; Codina, C. Acetylcholinesterase inhibitory activity of some Amaryllidaceae alkaloids and Narcissus extracts. Life Sci. 2002, 71, 2521–2529. [Google Scholar] [CrossRef]
- Rhee, I.K.; van de Meent, M.; Ingkaninan, K.; Verpoorte, R. Screening for acetylcholinesterase inhibitors from Amaryllidaceae using silica gel thin-layer chromatography in combinatioin with bioactivity staining. J. Chromatogr. A 2001, 915, 217–223. [Google Scholar] [CrossRef]
- Marston, A.; Kissling, J.; Hostettmann, K. A rapid TLC bioautographic method for the detection of acetylcholinesterase and butyrylcholinesterase inhibitors in plants. Phytochem. Anal. 2002, 13, 51–54. [Google Scholar] [CrossRef]
- Di Giovanni, S.; Borloz, A.; Urbain, A.; Marston, A.; Hostettmann, K.; Carrupt, P.A.; Reist, M. In vitro screening assays to identify natural or synthetic acetylcholinesterase inhibitors: Thin layer chromatography versus microplate methods. Eur. J. Pharm. Sci. 2008, 33, 109–119. [Google Scholar] [CrossRef]
- Yang, J.L.; Dao, T.T.; Hien, T.T.; Zhao, Y.M.; Shi, Y.P. Further sesquiterpenoids from the rhizomes of Homalomena occulta and their anti-inflammatory activity. Bioorg. Med. Chem. Lett. 2019, 29, 1162–1167. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Ji, F.; Cao, X.; Ma, J.; Ohizumi, Y.; Lee, D.; Guo, Y. Sesquiterpenoids from an edible plant Petasites japonicus and their promoting effects on neurite outgrowth. J. Funct. Foods 2016, 22, 291–299. [Google Scholar] [CrossRef]
- Chen, Q.F.; Liu, Z.P.; Wang, F.P. Natural sesquiterpenoids as cytotoxic anticancer agents. Mini Rev. Med. Chem. 2011, 11, 1153–1164. [Google Scholar] [CrossRef]
- Chen, Z.; Zhong, C. Oxidative stress in Alzheimer’s disease. Neurosci. Bull. 2014, 30, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.H.; Choi, C.W.; Kim, J.K.; Jeong, W.; Park, G.H.; Hong, S.S. (−)-Pteroside N and pterosinone, new BACE1 and cholinesterase inhibitors from Pteridium aquilinum. Phytochem. Lett. 2018, 27, 63–68. [Google Scholar] [CrossRef]
- Jung, H.J.; Min, B.S.; Jung, H.A.; Choi, J.S. Sesquiterpenoids from the heartwood of Juniperus chinensis. Nat. Prod. Sci. 2017, 23, 208–212. [Google Scholar] [CrossRef] [Green Version]
- Yang, D.L.; Wang, H.; Guo, Z.K.; Li, W.; Mei, W.L.; Dai, H.F. Fragrant agarofuran and eremophilane sesquiterpenes in agarwood ‘Qi-Nan’ from Aquilaria sinensis. Phytochem. Lett. 2014, 8, 121–125. [Google Scholar] [CrossRef]
- Chen, H.W.; He, X.H.; Yuan, R.; Wei, B.J.; Chen, Z.; Dong, J.X.; Wang, J. Sesquiterpenes and a monoterpenoid with acetylcholinesterase (AchE) inhibitory activity from Valeriana officinalis var. latiofolia in vitro and in vivo. Fitoterapia 2016, 110, 142–149. [Google Scholar] [CrossRef]
- Shi, S.H.; Zhao, X.; Liu, B.; Li, H.; Liu, A.J.; Wu, B.; Bi, K.S.; Jia, Y. The effects of sesquiterpenes-rich extract of Alpinia oxyphylla Miq. on amyloid-𝛽-induced cognitive impairment and neuronal abnormalities in the cortex and hippocampus of mice. Oxidative Med. Cell. Longev. 2014. [Google Scholar] [CrossRef] [Green Version]
- Fujiwara, M.; Yagi, N.; Miyazawa, M. Acetylcholinesterase inhibitory activity of volatile oil from Peltophorum dasyrachis Kurz ex Bakar (yellow batai) and bisabolane-type sesquiterpenoids. J. Agric. Food Chem. 2010, 58, 2824–2829. [Google Scholar] [CrossRef] [PubMed]
- Miyazawa, M.; Nakahashi, H.; Usami, A.; Matsuda, N. Chemical composition, aroma evaluation, and inhibitory activity towards acetylcholinesterase of essential oils from Gynura bicolor DC. J. Nat. Med. 2016, 70, 282–289. [Google Scholar] [CrossRef]
- Christianah, A.E.; Idowu, O.; Tiwalade, A.O.; Omolara, O.; Armando, M.D. Acetylcholinesterase inhibitory effect and characterization of the essential oil of Plectranthusa egyptiacus (Forssk.) C. Chr. growing in Nigeria. Med. Aromat. Plants 2018, 7, 1000316. [Google Scholar] [CrossRef]
- Rahali, N.; Mehdi, S.; Younsi, F.; Boussaid, M.; Messaoud, C. Antioxidant, α-amylase, and acetylcholinesterase inhibitory activities of Hertiacheiri folia essential oils: Influence of plant organs and seasonal variation. Int. J. Food Prop. 2017, 20, S1637–S1651. [Google Scholar] [CrossRef] [Green Version]
- Tel, G.; Ozturk, M.; Duru, M.E.; Harmandar, M.; Topcu, G. Chemical composition of the essential oil and hexane extract of Salvia chionantha and their antioxidant and anticholinesterase activities. Food Chem. Toxicol. 2010, 48, 3189–3193. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, P.K.; Kumar, V.; Mac, M.; Houghton, P.J. In vitro acetylcholinesterase inhibitory activity of the essential oil from Acorus calamus and its main constituents. Planta Medica 2007, 73, 283–285. [Google Scholar] [CrossRef] [Green Version]
- Olawuni, I.J.; Ndoni, S.A.; Esada, E.E.; Bamidele, F.S.; Obuotor, E.M. In vitro anti-cholinesterase and cognitive enhancing properties of essential oils from Piper nigrum L. and Monodora myristica (Gaertn) dunal. Int.J. Pharmacol. Toxicol. 2018, 6, 34–41. [Google Scholar] [CrossRef] [Green Version]
- Da Silva Barbosa, D.C.; Holanda, V.N.; Dias De Assis, C.R.; De Oliveira Farias de Aguiar, J.C.R.; do Nascimento, P.H.; da Silva, W.V.; do Amaral Ferraz Navarro, D.M.; da Silva, M.V.; de Menezes Lima, V.L.; dos Santos Correia, M.T. Chemical composition and acetylcholinesterase inhibitory potential, in silico, of Myrciaria floribunda (H. West ex Willd.) O. Berg fruit peel essential oil. Ind. Crops Prod. 2020, 151, 112372. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J.; Li, D.; Li, X.M.; Zhou, G.; Xu, K.P.; Kang, F.H.; Zou, Z.X.; Xu, P.S.; Tan, G.S. Anti-cholinesterase activities of constituents isolated from Lycopodiastrum casuarinoides. Fitoterapia 2019, 139, 104366. [Google Scholar] [CrossRef] [PubMed]
- Bendjedou, H.; Barboni, L.; Maggi, F.; Bennaceur, M.; Benamar, H. Alkaloids and sesquiterpenes from roots and leaves of Lycium europaeum L. (Solanaceae) with antioxidant and anti-acetylcholinesterase activities. Nat. Prod. Res. 2019, 23. [Google Scholar] [CrossRef] [PubMed]
- Shao, H.; Mei, W.L.; Kong, F.D.; Dong, W.H.; Gai, C.J.; Li, W.; Zhu, G.P.; Dai, H.F. Sesquiterpenes of agarwood from Gyrinopssalicifolia. Fitoterapia 2016, 113, 182–187. [Google Scholar] [CrossRef]
- Dong, F.W.; Liu, Y.; Wu, Z.K.; Gao, W.; Zi, C.T.; Dan, Y.; Luo, H.R.; Zhou, J.; Hu, J.M. Iridoids and sesquiterpenoids from the roots of Valeriana jatamansi Jones. Fitoterapia 2015, 102, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Liao, G.; Dong, W.H.; Kong, F.D.; Wang, P.; Wang, H.; Mei, W.L.; Dai, H.F. Sesquiterpenoids from Chinese agarwood induced by artificial holing. Molecules 2016, 21, 274. [Google Scholar] [CrossRef]
- Qin, X.J.; Rauwolf, T.J.; Li, P.P.; Liu, H.; McNeely, J.; Hua, Y.; Liu, H.Y.; Porco, J.A. Isolation and synthesis of novel meroterpenoids from Rhodomyrtus tomentosa: Investigation of a reactive enetrione intermediate. Angewandte Chemie 2019, 58, 4291–4296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, S.; Khan, H.; Ali, F.; Ali, N.; Khan, F.U.; Khan, S.U. Antioxidant, cholinesterase inhibition activities and essential oil analysis of Nelumbo nucifera seeds. Nat. Prod. Res. 2016, 30, 1335–1338. [Google Scholar] [CrossRef]
- Medimagh, S.; Daami-Remadi, M.; Jabnoun-Khiareddine, H.; Jannet, H.B. Chemical composition, antimicrobial and anti-acetylcholinesterase activities of essential oils from the Tunisian Asteriscusm aritimes(L.) less. Mediterr. J. Chem. 2012, 2, 459–470. [Google Scholar] [CrossRef]
- Zhou, Q.Y.; Yang, X.Q.; Zhang, Z.X.; Wang, B.Y.; Hu, M.; Yang, Y.B.; Zhou, H.; Ding, Z.T. New azaphilones and tremulane sesquiterpene from endophytic Nigrosporaoryzae cocultured with Irpexlacteus. Fitoterapia 2018, 130, 26–30. [Google Scholar] [CrossRef] [PubMed]
- Murata, K.; Matsumura, S.; Yoshioka, Y.; Ueno, Y.; Matsuda, H. Screening of β-secretase and acetylcholinesterase inhibitors from plant resources. J. Nat. Med. 2015, 69, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Miri, A.; Sharifi-Rad, J. Guaiasistanol: A new guaiane sesquiterpenoid from Teucrium persicum Boiss. Cell. Mol. Biol. 2015, 61, 64–67. [Google Scholar]
- Ma, Q.Y.; Chen, Y.C.; Huang, S.Z.; Guo, Z.K.; Dai, H.F.; Hua, Y.; Zhao, Y.X. Two new guaiane sesquiterpenoids from Daphne holosericea (Diels) Hamaya. Molecules 2014, 19, 14266–14272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, W.; Cai, C.H.; Guo, Z.K.; Wang, H.; Zuo, W.J.; Dong, W.H.; Mei, W.L.; Dai, H.F. Five new eudesmane-type sesquiterpenoids from Chinese agarwood induced by artificial holing. Fitoterapia 2015, 100, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.C.; Hamid, A.; Eldeen, I.M.S.; Asmawi, M.Z.; Baharuddin, S.; Abdillahi, H.S.; Staden, J.V. A new sesquiterpenoid from the rhizomes of Homalomenasagittifolia. Nat. Prod. Res. 2012, 26, 850–858. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.C.; Ran, X.H.; Chen, R.; Luo, H.R.; Ma, Q.Y.; Liu, Y.Q.; Hu, J.M.; Huang, S.Z.; Jiang, H.Z.; Chen, Z.Q.; et al. Sesquiterpenoids and lignans from the roots of Valeriana officinalis L. Chem. Biodivers. 2011, 8, 1908–1913. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Fan, P.; Zhu, R.; Li, R.; Lin, Z.; Sun, B.; Zhang, C.; Zhou, J.; Lou, H. Marsupellins A–F, ent-longipinane-type sesquiterpenoids from the Chinese liverwort Marsupella alpine with acetylcholinesterase inhibitory activity. J. Nat. Prod. 2014, 77, 1031–1036. [Google Scholar] [CrossRef]
- Misra, B.B.; Dey, S. TLC-bioautographic evaluation of in vitro anti-tyrosinase and anti-cholinesterase potentials of sandalwood oil. Nat. Prod. Commun. 2013, 8. [Google Scholar] [CrossRef] [Green Version]
- Arruda, M.; Viana, H.; Rainha, N.; Neng, N.R.; Rosa, J.S.; Nogueira, J.M.; Barreto, M.D.C. Anti-acetylcholinesterase and antioxidant activity of essential oils from Hedychium gardnerianum Sheppard ex Ker-Gawl. Molecules 2012, 17, 3082–3092. [Google Scholar] [CrossRef] [Green Version]
- Rasul, A.; Parveen, S.; Ma, T. Costunolide: A novel anticancer sesquiterpene lactone. Bangladesh J. Pharmacol. 2012, 7, 6–13. [Google Scholar] [CrossRef] [Green Version]
- Matejic, J.; Sarac, Z.; Randelovic, V. Pharmacological activity of sesquiterpene lactones. Biotechnol. Biotechnol. Equip. 2010, 24, 95–100. [Google Scholar] [CrossRef]
- Leitolis, A.; Amoah, S.K.; Biavatti, M.W.; da Silva-Santos, J.E. Sesquiterpene lactones from Hedyosmumbrasiliense induce in vitro relaxation of rat aorta and corpus cavernosum. Revista Brasileira de Farmacognosia 2016, 26, 363–368. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, F.C.; Ferreira, L.C.; Souza, M.R.; Grabe-Guimaraes, A.; Paula, C.A.; Rezende, S.A.; Saude-Guimaraes, D.A. Anti-inflammatory sesquiterpene lactones from Lychnophoratrichocarpha Spreng. (Brazilian Arnica). Phytother. Res. 2013, 27, 384–389. [Google Scholar] [CrossRef]
- Tholl, D. Biosynthesis and biological functions of terpenoids in plants. Adv. Biochem. Eng. Biotechnol. 2015, 148, 63–106. [Google Scholar] [CrossRef]
- Elsebaia, M.F.; Ghabbourb, H.A.; Marzouka, A.M.; Salmasd, R.E.; Orhane, I.E.; Senole, F.S. Amberboin and lipidiol: X-ray crystalographic data, absolute configuration and inhibition of cholinesterase. Phytochem. Lett. 2018, 27, 44–48. [Google Scholar] [CrossRef]
- Hegazy, M.E.; Ibrahim, A.Y.; Mohamed, T.A.; Shahat, A.A.; EI-Halawany, A.M.; Abdel-Azim, N.S.; Alsaid, M.S.; Par, W.P.W. Sesquiterpene lactones from Cynara cornigera: Acetyl cholinesterase inhibition and in silico ligand docking. Planta Medica 2016, 82, 138–146. [Google Scholar] [CrossRef] [Green Version]
- Hajimehdipoor, H.; Mosaddegh, M.; Naghibi, F.; Haeri, A.; Hamzeloo-Moghadam, M. Natural sesquiterpene lactones as acetylcholinesterase inhibitors. Anais da Academia Brasileira de Ciências 2014, 86, 801–805. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, M.; Farooq, T.; Hussain, N.; Hussain, A.; Gulzar, T.; Hussain, I.; Akash, M.S.; Rehmani, F.S. Acetyl and butyryl cholinesterase inhibitory sesquiterpene lactones from Amberboaramosa. Chem. Cent. J. 2013, 7, 116. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.B.; Amin, D. Sphaeranthus indicus flower derived constituents exhibits synergistic effect against acetylcholinesterase and possess potential antiamnestic activity. J. Complement. Integr. Med. 2012, 9. [Google Scholar] [CrossRef] [PubMed]
- Marchi, A.; Appendino, G.; Pirisi, I.; Ballero, M.; Loi, M.C. Genetic differentiation of two distinct chemotypes of Ferulacommunis (Apiaceae) in Sardinia (Italy). Biochem. Sys. Eco. 2003, 31, 1397–1408. [Google Scholar] [CrossRef]
- Iranshahi, M.; Rezaee, R.; Sahebkar, A.; Bassarello, C.; Piacente, S.; Pizza, C. Sesquiterpene coumarins from the fruits of Ferulabadrakema. Pharm. Biol. 2009, 47, 344–347. [Google Scholar] [CrossRef] [Green Version]
- Guangzhi, L.; Junchi, W.; Xiaojin, L.; Li, C.; Na, L.; Gang, C.; Jun, Z.; Jianyong, S. Two new sesquiterpene coumarins from the seeds of Ferulasinkiangensis. Phytochem. Lett. 2015, 13, 123–126. [Google Scholar] [CrossRef]
- Guvenalp, Z.; Özbek, H.; Yerdelen, K.Ö.; Yılmaz, G.; Kazaz, C.; Demirezer, L.O. Cholinesterase inhibition and molecular docking studies of sesquiterpene coumarin ethers from Heptapteracilicica. Rec. Nat. Prod. 2017, 1, 462–467. [Google Scholar] [CrossRef]
- Torres-Romero, D.; Jiménez, I.A.; Rojas, R.; Robert, H.; López, G.M.; Bazzocchi, I.L. Dihydro-β-agarofuran sesquiterpenes isolated from Celastrusvulcanicola as potential anti-Mycobacterium tuberculosis multidrug-resistant agents. Bioorg. Med. Chem. 2011, 19, 2182–2189. [Google Scholar] [CrossRef] [PubMed]
- Alarcon, J.; Cespedes, C.L.; Muñoz, E.; Balbontin, C.; Valdes, F.; Gutierrez, M.; Luis, A.; Seigler, D.S. Dihydroagarofuranoid sesquiterpenes as cetylcholinesterase inhibitors from Celastraceae plants: Maytenusdisticha and Euonymus japonicas. J. Agric. Food. Chem. 2015, 63, 10250–10256. [Google Scholar] [CrossRef]
- Alarcón, J.; Astudillo, L.; Gutierrez, M. Inhibition of acetylcholinesterase activity by dihydro-β-agarofuran sesquiterpenes isolated from Chilean Celastraceae. Zeitschriftfür Naturforschung 2008, 63, 853–856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gul, A.; Bakht, J.; Mehmood, F. Huperzine: A response to cognitive impairment and task switching deficits in patients with Alzheimer’s disease. J. Chin. Med. Assoc. 2019, 82, 40–43. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Yan, H.; Tang, X.C. Progress in studies of huperzine A, a natural cholinesterase inhibitor from Chinese herbal medicine. Acta. Pharmacol. Sin. 2006, 27, 1–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.S.; Zhou, J.; Shao, X.M.; Tang, X.C. Huperzine A attenuates cognitive deficits and brain injury in neonatal rats after hypoxia ischemia. Brain Res. 2002, 949, 62–70. [Google Scholar] [CrossRef]
- Kumar, G.P.; Anilakumar, K.R.; Naveen, S. Phytochemicals having neuroprotective properties from dietary sources and medicinal herbs. Pharmacogn. J. 2015, 7. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.Y.; Tang, X.C. Neuroprotective effects of huperzine A: New therapeutic targets for neurodegenerative disease. Trends Pharmacol. Sci. 2006, 27, 619–625. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.L.; Zhao, P.; Zhang, Y.Y.; Bai, M.; Lin, B.; Huang, X.X.; Song, S.J. Sesquiterpenes from stigma maydis (Zea mays) as a crop by-product & their potential neuroprotection and inhibitory activities of Aβ aggregation. Ind. Crops Prod. 2018, 121, 411–417. [Google Scholar] [CrossRef]
- Huanga, S.H.; Dukea, R.D.; Chebibb, M.; Sasakic, K.; Wada, K.; Johnston, G.A. Bilobalide, a sesquiterpene trilactone from Ginkgo biloba, is an antagonist at recombinant α1β2Ƴ2L GABAA receptors. Eur. J. Pharmacol. 2003, 464, 1–8. [Google Scholar] [CrossRef]
- Amoah, S.K.; DallaVecchia, M.T.; Pedrini, B.; Carnhelutti, G.L.; Gonçalves, A.E.; Dos Santos, D.A.; Biavatti, M.W.; De Souza, M.M. Inhibitory effect of sesquiterpene lactones and these squiterpene alcohol aromadendrane-4β, 10α-diol on memory impairment in a mouse model of Alzheimer. Eur. J. Pharmacol. 2015, 769, 195–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, Z.M.; Han, Y.W.; Han, X.H.; Zhang, K.; Chang, Y.N.; Hu, Z.M.; Qi, H.X.; Ting, C.; Zhen, Z.; Hong, W. Upstream regulators and downstream effectors of NF-κB in Alzheimer’s disease. J. Neurol. Sci. 2016, 366, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, M.; Lahiri, D.K. Significance of NF-κB as a pivotal therapeutic target in the neurodegenerative pathologies of Alzheimer’s disease and multiple sclerosis. Expert Opin. Ther. Targets 2015, 19, 471–487. [Google Scholar] [CrossRef] [Green Version]
- Wanga, Y.; Wang, M.; Xua, M.; Li, T.; Fan, K.; Yan, T.; Xiao, F.; Bi, K.; Jia, Y. Nootkatone, a neuroprotective agent from AlpiniaeOxyphyllae Fructus, improves cognitive impairment in lipopolysaccharide-induced mouse model of Alzheimer’s disease. Int. Immunopharmacol. 2018, 62, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Khalil, M.N.; Choucry, M.A.; El Senousy, A.S.; Hassan, A.; El-Marasy, S.A.; El Awdan, S.A.; Omar, F.A. Ambrosin, a potent NF-κβ inhibitor, ameliorates lipopolysaccharide induced memory impairment, comparison to curcumin. PLoS ONE 2019, 14, e0219378. [Google Scholar] [CrossRef]
- Balmus, I.M.; Ciobica, A. Main plant extracts’active properties effective on scopolamine-induced memory loss. Am. J. Alzheimers Dis. Dement. 2017, 32, 418–428. [Google Scholar] [CrossRef] [PubMed]
- Joshi, H.; Parle, M. Nardostachysjatamansi improves learning and memory in mice. J. Med. Food 2006, 9, 113–118. [Google Scholar] [CrossRef]
- Huang, L.K.; Chao, S.P.; Hu, C.J. Clinical trials of new drugs for Alzheimer disease. J. Biomed. Sci. 2020, 27. [Google Scholar] [CrossRef]
- Cummings, J.; Lee, G.; Ritter, A.; Zhong, K. Alzheimer’s disease drug development pipeline: 2018. Alzheimers Dement. Transl. Res. Clin. Interv. 2018, 4, 195–214. [Google Scholar] [CrossRef] [PubMed]
- Rhee, I.K.; Van Rijn, R.M.; Verpoorte, R. Qualitative determination of false-positive effects in the acetylcholinesterase assay using thin layer chromatography. Phytochem. Anal. 2003, 14, 127–131. [Google Scholar] [CrossRef]
- Selkoe, D.J. The cell biology of β-amyloid precursor protein and presenilin in Alzheimer’s disease. Trends Cell Biol. 1998, 8, 447–453. [Google Scholar] [CrossRef]
- Hu, J.; Liu, C.C.; Chen, X.F.; Zhang, Y.W.; Xu, H.; Bu, G. Opposing effects of viral mediated brain expression of apolipoprotein E2 (apoE2) and apoE4 on apoElipidation and Aβ metabolism in apoE4- targeted replacement mice. Mol. Neurodegener. 2015, 10. [Google Scholar] [CrossRef] [Green Version]
- Stancu, I.C.; Vasconcelos, B.; Terwel, D.; Dewachter, I. Models of β-amyloid induced Tau-pathology: The long and “folded” road to understand the mechanism. Mol. Neurodegener. 2014, 9. [Google Scholar] [CrossRef] [Green Version]
- Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002, 45, 2615–2623. [Google Scholar] [CrossRef] [PubMed]
- Blanco-Silvente, L.; Castells, X.; Saez, M.; Barcelo, M.A.; Garre-Olmo, J.; Vilalta-Franch, J. Discontinuation, efficacy, and safety of cholinesterase inhibitors for Alzheimer’s disease: A meta-analysis and metaregression of 43 randomized clinical trials enrolling 16 106 patients. Int. J. Neuropsychopharmacol. 2017, 20, 519–528. [Google Scholar] [CrossRef]
- Kehrer, C.; Maziashvili, N.; Dugladze, T.; Gloveli, T. Altered excitatory-inhibitory balance in the NMDA-hypofunction model of schizophrenia. Front. Mol. Neurosci. 2008, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cummings, D.M.; André, V.M.; Uzgil, B.O.; Gee, S.M.; Fisher, Y.E.; Cepeda, C. Alterations in cortical excitation and inhibition in genetic mouse models of Huntington’s disease. J. Neurosci. 2009, 29, 10371–10386. [Google Scholar] [CrossRef] [Green Version]
- Sun, B.; Halabisky, B.; Zhou, Y.; Palop, J.J.; Yu, G.; Mucke, L.; Gan, L. Imbalance between GABAergic and glutamatergic transmission impairs adult neurogenesis in an animal model of Alzheimer’s disease. Cell Stem Cell 2009, 5, 624–633. [Google Scholar] [CrossRef] [Green Version]
- Gueli, M.C.; Taibi, G. Alzheimer’s disease: Amino acid levels and brain metabolic status. Neurol. Sci. 2013, 34, 1575–1579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhan, X.Q.; Yao, J.J.; Liu, D.D.; Ma, Q.; Mei, Y.A. A β40 modulates GABAA receptor α6 subunit expression and rat cerebellar granule neuron maturation through the ERK/mTOR pathway. J. Neurochem. 2014, 128, 350–362. [Google Scholar] [CrossRef]
- Schweizer, C.; Balsiger, S.; Bluethmann, H.; Mansuy, I.M.; Fritschy, J.M.; Mohler, H.; Lüscher, B. The γ2 subunit of GABAA receptors is required for maintenance of receptors at mature synapses. Mol. Cell. Neurosci. 2003, 24, 442–450. [Google Scholar] [CrossRef]
- Palop, J.J.; Chin, J.; Roberson, E.D.; Wang, J.; Thwin, M.T.; Bien-Ly, N.; Yoo, J.; Ho, K.O.; Yu, G.Q.; Kreitzer, A.; et al. Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer’s disease. Neuron 2007, 55, 697–711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehmet, E.A.; Hasan, T.; Adil, M. In vitro neuroprotective effects of farnesene sesquiterpene on Alzheimer’s disease model of differentiated neuroblastoma cell line. Int. J. Neurosci. 2020, 1–10. [Google Scholar] [CrossRef]
- Karunaweera, N.; Raju, R.; Gyengesi, E.; Münch, G. Plant polyphenols as inhibitors of NF-κB induced cytokine production—A potential anti-inflammatory treatment for Alzheimer’s disease? Front. Mol. Neurosci. 2015, 8, 24. [Google Scholar] [CrossRef] [Green Version]
- Van Eldik, L.J.; Carrillo, M.C.; Cole, P.E.; Feuerbach, D.; Greenberg, B.D.; Hendrix, J.A.; Kennedy, M.; Kozauer, N.; Margolin, R.A.; Molinuevo, J.L.; et al. The roles of inflammation and immune mechanisms in Alzheimer’s disease. Alzheimers Dement. Transl. Res. Clin. Interv. 2016, 2, 99–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Name of Plant | Part Used (Family) | Solvent/Method Used for Extraction | Extract/Volatile oil/Phytoconstituents | Acetyl-Cholinesterase Inhibitory/Anti-Alzheimer Potential | Ref. |
---|---|---|---|---|---|
Lycopodiastrum casuarinoides | Whole plants (Lycopodiaceae) | EtOH (75%) | 7, 9 -diene -1,4 -epoxy-2 -hydroxy -10 -carboxylic acid [13] | Potential inhibitory effects against AChE and BuChE with an IC50 = 9 ± 1 μM and 9 ± 1 μM respectively | [98] |
Lycium europaeum Linn. | Roots and leaves (Solanaceae) | Ethanol | Ethanolic fraction | Ethanolic fraction of leaves (at 15 mg/kg) exhibited effect on learning and memory of experimental animals with IC50 = 76 ± 2 mg/mL | [99] |
Aquilaria or Gyrinops | Roots and resinous heartwood (Thymelaeaceae) | 95% EtOH | 2-oxoguaia-1(10),3,5,7(11), 8-pentaen-12,8-olide (14) (Sesquiterpenoids) 4β,7α-H-eremophil-9(10)-ene-12,13-diol (15) (Eremophilane- sesquiterpenoid) 4β,5α,7α,8α-H-3β-hydroxy-1(10)-ene-8,12-epoxy-guaia-12-one (16) (−)Gweicurculactone (17) (Guaiane-sesquiterpenoid) | The isolated compounds showed the AChE inhibitory activity at 50 μg/mL ((IC50) IC50 (14) = 226 μM IC50 (15) = 140 μM IC50 (16) = 141 μM IC50 (17) = 202 μM Tacrine ( + ve control) = 65 ± 1 μg/mL | [100] |
Valeriana jatamansi Jones | Roots and rhizomes (Valerianaceae) | EtOH (95%) | Valeriananoids D (18) Valeriananoids E (19) | At the conc. of 50 μM showed AChE inhibition potential activity | [101] |
Aquilaria sinensis (Lour.) | (Thymelaeaceae) | EtOH (95%) | 3-oxo-7-hydroxyl holosericin A (20) 1,5;8,12-diepoxy-guaia-12-one (21) 8αβ)-octahydro-7-[1-(hydroxymethyl (22) 7α H- ethenyl]-1,8α-dimethyl naphthalen-4α(2H)-o (23) Neopetasane (24) | Moderate inhibitory activities against Acetylcholinesterase (AChE) at 50 µg/mL, IC50 (20) = 75 μM IC50 (21) = 53 μM IC50 (22) = 71 μM IC50 (23) = 87 μM IC50 (24) = 324 μM | [102] |
Rhodomyrtus tomentosa | leaves and stems (Myrtaceae) | Petroleum ether (PE) extract | (Triketone-sesquiterpene meroterpenoids) | AChE inhibition rate is 81% at 500 μg/mL) | [103] |
Nelumbo nucifera | Seeds (Nelumbonaceae) | essential oil (EO), crude extract, and subsequent fractions | Essential oil mainly comprised of oxygenated mono and sesquiterpenes | The ethyl acetate fraction and EO caused significant inhibition of acetyl-cholinesterase and butyryl-cholinesterase with IC50 = 70 ± 1, 64 ± 1 and 75 ± 0.3, 58 ± 0.2, respectively in a dose-dependent manner. EO was found to be non-competitive inhibitor of AChE. | [104] |
Asteriscus maritimus (Linn.) Less | Different parts of the plant (Asteraceae) | Hydrodistillation | Oxygenated sesquiterpenes of Essential oil | Among the essential oils obtained from flowers, leaves, and stems, the flower oil was found to exhibit the highest anti-acetylcholinesterase activity (IC50 = 95 µg/mL) | [105] |
Myrciaria floribunda (H. West ex Willd.) | Essential oil of fruit peel (Myrtaceae) | Hydrodistillation method | Essential oil with different sesquiterpenes | Essential oil exhibited the AChE inhibitory potential with IC50 = (0.08 μg/mL and 23 μg/mL). Neostigmine (as the standard used) had an IC50 of 23 μg/mL and 6 μg/mL). | [97] |
Nigrospora oryzae and Irpex lacteus (Fungus on plant ) | Culture | Acetone | Tremulanesesquiterpenes | AChE inhibitory potential concentration of 50 μM. | [106] |
Curry Leaf | Murraya koenigii (Rutaceae) | Hexane and methanol | Essential oil | Inhibitory activities of active compounds of curry leaves against β-secretase were found and hence reported to be helpful in preventing dementia (AD). methanolic extract (70%) also showed weak inhibitory activity at 500 μg/mL against AChE | [107] |
Teucrium persicum Boiss | Aerial parts (Labiatae) | Methanol (85%) | Guaiasistanol (25) (Guaianesesquiterpenoid) | Moderate inhibition of AChE (28%) by the isolated compound. | [108] |
Daphne holosericea (Diels) Hamaya | Dry stems (Thymelaeaceae) | Extracted with EtOH (95%) under reflux three times | Holosericin B (26) (Guaiane Sesquiterpenoids) | The isolated compound showed a moderateAChE Inhibitory Activity with 31% inhibition. | [109] |
Aquilaria sinensis (Lour.) Gilg | Heartwood (Thymelaeaceae) | Refluxed with Ethanol (95%) | Extract | EtOAc extract showed weak AChE inhibitory activity | [110] |
Homalomena sagittifolia | Rhizomes (Araceae) | Macerated with aqueous methanol | 1α,4β,7β- eudesmanetriol (27) 1β, 4β, 7β-eudesmanetriol (28) (Sesquiterpenoids) | Inhibition of acetylcholinesterase with IC50 (I) = 26 ± 4; (II) = 250 ± 8 μM | [111] |
Valeriana officinalis | Roots (Caprifoliaceae) | EtOH (95%) | Spatulenol (29) (Sesquiterpenoids) | AChE was inhibited at 100 mM (49%) | [112] |
Marsupella alpine (Chinese liverwort) | Whole plants (Gymnomitriaceae) | 95% EtOH (95%) | Marsupellin A (30) Marsupellin B (31) (ent-Longipinane-Type Sesquiterpenoids) | A bioautographic TLC assayforAChE inhibition was performed and compound showed moderate inhibition at 5 μM (28% and 26% respectively). | [113] |
Santalum album | Heartwood (Santalaceae) | Steam distillation | α-santalol (32), Sandalwood oil (rich in sesquiterpenoid alcohols) the major constituent of the oil | TLC-bioautographic and colorimetric methods are used. Essential oil is found to be a potent inhibitor of tyrosinase IC50 = 171 µg/mL) and cholinesterase IC50 = 5–58 µg/mL. For α-santalol, AChE Inhibition Zone (mm2) and BChE Inhibition Zone (mm2) were reported as 326 ± 19 and 425 ± 27 respectively. | [114] |
Hedychium gardnerianum Sheppard ex Ker-Gawl | Leaf essential oil (Zingiberaceae) | Hydrodistillation | Sesquiterpene hydrocarbons (47.8 to 52.7%) and oxygenated sesquiterpenes (15.2 to 16.3%) are main constituents of oil | Microplate Assay was performed and the strongest inhibition against AChE was displayed by the sample collected from Furnas (FU) at IC50 = 1 mg/mL. | [115] |
Phytoconstituents | Marketed Formulation | Dose and Form | Manufacturing Company |
---|---|---|---|
Huperzine A | Huperzine A Dietary supplements | 200 MCG 120 tablets | National INC., P.O 2118, Santa Cruz CA 95062. |
Huperzine-A | Huperzine Rx Brain R | 50 MCG | National Organics Lab. INC. Nature Plus, USA |
Bilobalide | HAVASU NUTRITION Neuro IGNITE | Capsule Ginkgo biloba extract 50 mg Huperzine A (Huperzia serrata extract/leaf) 10 mcg | Havasu Nutrition, LLC19,046Bruce B, Downs Blvd#1090, Tampa, FL 33647 |
Bilobalide | Healthy Hey Ginseng with Ginkgo Extract Support memory and concentration | 160 MG capsule Ginkgo biloba 60 mg + Ginseg panax 100 mg | Healthy Hey foods LLP. 227, Building No-58, Mittal Ind, Estate Andheri (E), Mumbai, 400059. |
Bilobalide | Vitamin Ginkgo biloba (for brain support) | 500 mg Capsule | Plot No-57/1, Phase -1, G.I.D.C, vapi, Gujrat-396 195, India |
Bilobalide | Ginkgo biloba | 500 mg Ginkgo biloba 120 mg Bacopa monnieri extract 380 mg | Herbal farm Lifecare Pvt. Ltd., C-86, Pocket C, 2nd Floor, Okhla Industrial Area, Phase-I, New Delhi-110020. |
Bilobalide | Natures velvet Ginkgo Biloba | Capsule, 80 mg | Natures Velvet Lifecare, 103, Liberty Plaza, himayat Nagar, Hyderabad, Pin-500029, Telangana, India. |
Bilobalide | Simply Nutra Ginkgo Biloba with Brahmi | Capsule, 500 mg 120 mg + 380 mg, | Soulager Healthcare Private Limited., Scheme 53, Plot No-100, India, M.P 452010. |
Bilobalide | Ginkgo biloba | Capsule (60 mg) | Sanathal Ring road, Opp GEB station, Sanathal Ahmedabad, Gujarat. |
Bilobalide | Nutriosys Ginkgo biloba | Capsule (360 mg) | Sanathal Ring road, Opp GEB station, Sanathal Ahmedabad, Gujrat. |
Bilobalide | iAYUR Ginkgo Biloba | Capsule (500 m) | Suimabhan Commerce Private Limited A-1/224, Janakpuri, New Delhi 110058 |
Bilobalide | Vita green Ginkgo biloba | Capsule, 500 mg | Green cross, health Innovation, Plot No-57/1, Phase 1, GIDC, Vapi -396195. |
Bilobalide | CoreFX Labs | Capsule Ginkgo biloba leaf (24% extract) 50 mg, Bacopa monnieri leaf extract (20% bacosides ) 120 mg, Huperzine A (aerial plant) 10 mcg | Xtreme Ai, 100 Orandorf, Dr# 775, Brighton MI 48116. |
Bilobalide | Body BRAIN SUPPORT Dietary Supplements | Capsule Bacopa monnieri whole plant extract 200 mg, Ginkgo biloba leaf extract 100mg, Huperzine A ( Huperiza serrata leaf standard extract) 250 mcg and others | 1 Body 5940 S. Rainbow Blvd, Las Vegas, NV 89118 |
Huperzine A | FOCUS ELITE Support Brain’s Focus, Memory and clarity | Capsule Huperzine A complex ( Huperzia serrata 25 mcg), Ginkgo biloba leaf extract 50 mg, Bacopa monneri extract of whole herb 75 mg and others | Elite source labs 130 Corridor Rd,# 3259, Ponte Vedra, FL 32004, USA |
Bilobalide | NOW Brain Elevate Cognitive functions With Ginkgo Biloba, Rose OX and Phosphatidyl Serine | Capsule Ginkgo Extract (Ginkgo biloba leaf ) 60 mg, Huperzine complex ( Huperzia serrata/Moss) 25 mcg and others | NOW FOODS, 395 S Glen Ellyn Rd, Bloomingdale, IL 60108, USA |
Bilobalide | NEURA–SPARK | Capsule, Ginkgo biloba 50 mg, Huperzine A 10 mcg, Bacopa monnieri ( 20% bacosides, herb) 300 mcg and others | NUTRACHAMPS Inc. AURORA, ON, L4G1M2 |
Bilobalide | Vitacern BRAIN FUEL | Capsule Ginkgo Biloba leaf ( 24% extract) 50 mg, Bacopa monnieri leaf extract 120 mg, Huperzine A ( aerial plant ) 10 mcg and others | Vitacerna, Suite #7004, 3422 SW, 15 street, Deerfield Beach, FL33,442USA |
Huperzine –A | Double Woods Supplements HUPERZINE –A | Tablet Huperzine-A 200 mcg | Double Woods LLC, 3510 SCOOTS LN STE 219, PHILADELPHIA, PA 19129, United States |
Jatamansone Celastrine | Ayukriti HERBALS Memokriti R capsule | Brahmi (Bacopa monnieri ) Pl Ext. 100 mg, Jatamansi (Nardostachys jatamansi) Rt. 60 mg. Jyotishmati (Celastrus paniculatus) Rt. 60 mg and others. | HARASHA PHARMA Private Limited. PiyauManihariNarela road, Kundli, Distt. Sonepat (Haryana) Harasha Pharma Pvt Ltd 159 A DG II D BLOCK VIKASPURI NEW DELHI |
Jatamansone | Indiveda Ayurvedic Herbs Organic Jatamansi Root Powder (Nardostatchysjatamansi) | 100 g powder, Pure organic Jatamansi Root Powder | Ayuish Biotech &lifescience Company, Chanarthal road, Kurukshetra, Haryana-136119 |
Jatamansone | Ayurvedic Proprietary Medicine Nurayurich Capsule | Capsule Nardostachys jatamansi 75 mg each Others 67 mg | Saived Pharma Private Limited, C 4/35, MIDC, Jejuri, Tal-Purandar, Distt-Pune-412303 |
Jatamansone | VitaGreen Jatamansi | Capsule Jatamansi Extract (Nardostachys jatamansi) 500 mg | Manufacturing LicenceNo GA/1736, Green Cross Health Innovation, Plot No- 57/1, Phase 1, G.I.D.C, Vapi-396195. |
Jatamansone | HealthVit Jatamansi Powder Nardostachys jatamansi | 100 g Jatamansi root powder (Nardostachy s jatamansi) 100% w/w | West-Coast Pharmaceutical Works Ltd., Ahmedabad -382 481, Gujrat. |
Jatamansone | Himalaya Herbal Health care Mentat DS | 100 mL Syurp Bacopa monnieri 288 mg, Jatamansi 104 mg, Celastrus paniculatus 64 mg | Himalaya Drug company, Makali, Bengaluru |
Jatamansone | Herbal Hills Jatamansi Powder Nardostachys jatamansi | 100 g powder Jatamansi Powder | Isha Agro Developers PVT.LTD. Unit No- 36 A/55AB, LonavalaCo.op. Indl. Est. Ltd, Village- Nangargaon, Lonavala, Taluka-Maval, Distt Pune-410401, Maharashtra, India. |
Jatamansone | Amalath Jatamansi Extract | Jatamansi root extract, 5:1 (Capsule 500 mg) | Devki Pharmacy, Kakheri, Kaithal -136033, Haryana, India. |
Jatamansone | Kerala aurveda™ GANDHA THAILAM | GANDHA THAILAM Capsule 300 mg Jatamansi (Nardostachys jatamansi) 0.5 mg and others | Kerala Ayurveda, Ltd, Athani 683585, Aluva, Kerala, India. |
Bilobalide | Standardized Ginkgo Biloba Extract as Herbal Supplement | Capsule Ginkgo Biloba Extract (leaf) 60 mg (50:1) | 21st Century Healthcare, Inc. 2119 S. Wilson St. Tempe, AZ 85282, USA. |
Bilobalide | MRM GINKGO B Supports circulation and mental functions Dietary Supplements | Capsule Ginkgo Biloba Extract (60 mg) | MRM 2665 Vista Pacific Dr. Oceanside CA 92056, USA |
Bilobalide | Ginkgo+Bilbery+Lutein | Ginkgo Biloba 60 mg (capsule) | Biotrex Nutraceutical, Sanathal ring Road, Opp GEB Station, Sanathal, Ahmedabad, Gujrat. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arya, A.; Chahal, R.; Rao, R.; Rahman, M.H.; Kaushik, D.; Akhtar, M.F.; Saleem, A.; Khalifa, S.M.A.; El-Seedi, H.R.; Kamel, M.; et al. Acetylcholinesterase Inhibitory Potential of Various Sesquiterpene Analogues for Alzheimer’s Disease Therapy. Biomolecules 2021, 11, 350. https://doi.org/10.3390/biom11030350
Arya A, Chahal R, Rao R, Rahman MH, Kaushik D, Akhtar MF, Saleem A, Khalifa SMA, El-Seedi HR, Kamel M, et al. Acetylcholinesterase Inhibitory Potential of Various Sesquiterpene Analogues for Alzheimer’s Disease Therapy. Biomolecules. 2021; 11(3):350. https://doi.org/10.3390/biom11030350
Chicago/Turabian StyleArya, Ashwani, Rubal Chahal, Rekha Rao, Md. Habibur Rahman, Deepak Kaushik, Muhammad Furqan Akhtar, Ammara Saleem, Shaden M. A. Khalifa, Hesham R. El-Seedi, Mohamed Kamel, and et al. 2021. "Acetylcholinesterase Inhibitory Potential of Various Sesquiterpene Analogues for Alzheimer’s Disease Therapy" Biomolecules 11, no. 3: 350. https://doi.org/10.3390/biom11030350
APA StyleArya, A., Chahal, R., Rao, R., Rahman, M. H., Kaushik, D., Akhtar, M. F., Saleem, A., Khalifa, S. M. A., El-Seedi, H. R., Kamel, M., Albadrani, G. M., Abdel-Daim, M. M., & Mittal, V. (2021). Acetylcholinesterase Inhibitory Potential of Various Sesquiterpene Analogues for Alzheimer’s Disease Therapy. Biomolecules, 11(3), 350. https://doi.org/10.3390/biom11030350