Construction of DNA Biosensors for Mercury (II) Ion Detection Based on Enzyme-Driven Signal Amplification Strategy
Abstract
:1. Introduction
2. Nucleases
2.1. Exonuclease III
2.1.1. Exo III-One Cycle
2.1.2. Exo III-Multiple Cycles
2.2. Exonuclease I
2.3. Nicking Endonuclease
2.4. Duplex-Specific Nuclease
2.5. Deoxyribonuclease I
3. DNAzyme
3.1. UO22+-Specific DNAzyme
3.2. Cu2+-Specific DNAzyme
3.3. Mg2+-Specific DNAzyme
4. Applications of Hg2+ Biosensors in Real Samples
5. Summary and Future Perspectives
Funding
Data Availability Statement
Conflicts of Interest
References
- Boening, D.W. Ecological effects, transport, and fate of mercury: A general review. Chemosphere 2000, 40, 1335–1351. [Google Scholar] [CrossRef]
- Renzoni, A.; Zino, F.; Franchi, E. Mercury levels along the food chain and risk for exposed populations. Environ. Res. 1998, 77, 68–72. [Google Scholar] [CrossRef]
- Malm, O. Gold mining as a source of mercury exposure in the Brazilian Amazon. Environ. Res. 1998, 77, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Joensuu, O.I. Fossil fuels as a source of mercury pollution. Science 1971, 172, 1027–1028. [Google Scholar] [CrossRef]
- Clarkson, T.W. Mercury: Major issues in environmental health. Environ. Health Perspect. 1993, 100, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Onyido, I.; Norris, A.R.; Buncel, E. Biomolecule--mercury interactions: Modalities of DNA base--mercury binding mechanisms. Remediation strategies. Chem. Rev. 2004, 104, 5911–5929. [Google Scholar] [CrossRef]
- Valko, M.; Morris, H.; Cronin, M.T. Metals, toxicity and oxidative stress. Curr. Med. Chem. 2005, 12, 1161–1208. [Google Scholar] [CrossRef] [Green Version]
- Nolan, E.M.; Lippard, S.J. Tools and tactics for the optical detection of mercuric ion. Chem. Rev. 2008, 108, 3443–3480. [Google Scholar] [CrossRef]
- Clarkson, T.W.; Magos, L.; Myers, G.J. The toxicology of mercury--current exposures and clinical manifestations. N. Engl. J. Med. 2003, 349, 1731–1737. [Google Scholar] [CrossRef] [Green Version]
- Aramendia, M.; Guarda, A.; Leite, D.; Resano, M. Direct mercury determination in blood and urine by means of high-resolution continuum source graphite furnace atomic absorption spectrometry using gold nanoparticles as a chemical modifier. J. Ana. Atom. Spectrom. 2017, 32, 2352–2359. [Google Scholar] [CrossRef]
- Panichev, N.A.; Panicheva, S.E. Determination of total mercury in fish and sea products by direct thermal decomposition atomic absorption spectrometry. Food Chem. 2015, 166, 432–441. [Google Scholar] [CrossRef]
- Chen, J.; Chakravarty, P.; Davidson, G.R.; Wren, D.G.; Locke, M.A.; Zhou, Y.; Brown, G.; Cizdziel, J.V. Simultaneous determination of mercury and organic carbon in sediment and soils using a direct mercury analyzer based on thermal decomposition-atomic absorption spectrophotometry. Anal. Chim. Acta 2015, 871, 9–17. [Google Scholar] [CrossRef]
- Nolan, E.M.; Lippard, S.J. A “Turn-On” fluorescent sensor for the selective detection of mercuric ion in aqueous media. J. Am. Chem. Soc. 2003, 125, 14270–14271. [Google Scholar] [CrossRef]
- Moon, S.Y.; Youn, N.J.; Park, S.M.; Chang, S.K. Diametrically disubstituted cyclam derivative having Hg2+-selective fluoroionophoric behaviors. J. Org. Chem. 2005, 70, 2394–2397. [Google Scholar] [CrossRef]
- Yang, Y.; Jiang, J.H.; Shen, G.L.; Yu, R.Q. An optical sensor for mercury ion based on the fluorescence quenching of tetra(p-dimethylaminophenyl)porphyrin. Anal. Chim. Acta 2009, 636, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Wegner, S.V.; Okesli, A.; Chen, P.; He, C. Design of an emission ratiometric biosensor from MerR family proteins: A sensitive and selective sensor for Hg2+. J. Am. Chem. Soc. 2007, 129, 3474–3475. [Google Scholar] [CrossRef]
- Liu, M.; Wang, Z.; Pan, L.; Cui, Y.; Liu, Y. A SERS/fluorescence dual-mode nanosensor based on the human telomeric G-quadruplex DNA: Application to mercury (II) detection. Biosens. Bioelectron. 2015, 69, 142–147. [Google Scholar] [CrossRef]
- Liu, J.; Lu, Y. Rational design of “turn-on” allosteric DNAzyme catalytic beacons for aqueous mercury ions with ultrahigh sensitivity and selectivity. Angew. Chem. Int. Ed. Engl. 2007, 46, 7587–7590. [Google Scholar] [CrossRef]
- Tortolini, C.; Bollella, P.; Antonelli, M.L.; Antiochia, R.; Mazzei, F.; Favero, G. DNA-based biosensors for Hg2+ determination by polythymine-methylene blue modified electrodes. Biosens. Bioelectron. 2015, 67, 524–531. [Google Scholar] [CrossRef]
- Ono, A.; Togashi, H. Highly selective oligonucleotide-based sensor for mercury(II) in aqueous solutions. Angew. Chem. Int. Ed. Engl. 2004, 43, 4300–4302. [Google Scholar] [CrossRef]
- Miyake, Y.; Togashi, H.; Tashiro, M.; Yamaguchi, H.; Oda, S.; Kudo, M.; Tanaka, Y.; Kondo, Y.; Sawa, R.; Fujimoto, T.; et al. MercuryII-mediated formation of thymine-HgII-thymine base pairs in DNA duplexes. J. Am. Chem. Soc. 2006, 128, 2172–2173. [Google Scholar] [CrossRef]
- Tanaka, Y.; Oda, S.; Yamaguchi, H.; Kondo, Y.; Kojima, C.; Ono, A. 15N-15N J-coupling across Hg(II): Direct observation of Hg(II)-mediated T-T base pairs in a DNA duplex. J. Am. Chem. Soc. 2007, 129, 244–245. [Google Scholar] [CrossRef]
- Wang, Z.; Heon Lee, J.; Lu, Y. Highly sensitive “turn-on” fluorescent sensor for Hg2+ in aqueous solution based on structure-switching DNA. Chem. Commun. (Camb.) 2008, 6005–6007. [Google Scholar] [CrossRef]
- Chen, G.H.; Chen, W.Y.; Yen, Y.C.; Wang, C.W.; Chang, H.T.; Chen, C.F. Detection of mercury(II) ions using colorimetric gold nanoparticles on paper-based analytical devices. Anal. Chem. 2014, 86, 6843–6849. [Google Scholar] [CrossRef]
- Liu, J.; Chen, L.B.; Chen, J.H.; Ge, C.C.; Fang, Z.Y.; Wang, L.; Xing, X.R.; Zeng, L.W. An autonomous T-rich DNA machine based lateral flow biosensor for amplified visual detection of mercury ions. Anal. Methods 2014, 6, 2024–2027. [Google Scholar] [CrossRef]
- Ding, B.; Liu, C.; Wu, Q.; Wang, Y.; Li, L.; Yang, H. A Label-free and Highly Sensitive Fluorescence Strategy for Mercury Ion Detection Based on Exonuclease III-aided Recycling Amplification. Anal. Sci. 2018, 34, 259–261. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Y.Q.; Ning, T.J.; Cheng, L.; Xiong, W.; Wei, G.B.; Liao, F.S.; Ma, G.Q.; Hong, N.; Cui, H.F.; Fan, H. An electrochemical Hg(2+) sensor based on signal amplification strategy of target recycling. Talanta 2021, 223, 121709. [Google Scholar] [CrossRef]
- Li, D.; Yang, F.; Li, X.; Yuan, R.; Xiang, Y. Target-mediated base-mismatch initiation of a non-enzymatic signal amplification network for highly sensitive sensing of Hg(2). Analyst 2020, 145, 507–512. [Google Scholar] [CrossRef] [PubMed]
- Xu, A.; Chao, L.; Xiao, H.; Sui, Y.; Liu, J.; Xie, Q.; Yao, S. Ultrasensitive electrochemical sensing of Hg(2+) based on thymine-Hg(2+)-thymine interaction and signal amplification of alkaline phosphatase catalyzed silver deposition. Biosens. Bioelectron. 2018, 104, 95–101. [Google Scholar] [CrossRef]
- Qi, Y.; Xiu, F.R.; Yu, G.; Huang, L.; Li, B. Simple and rapid chemiluminescence aptasensor for Hg(2+) in contaminated samples: A new signal amplification mechanism. Biosens. Bioelectron. 2017, 87, 439–446. [Google Scholar] [CrossRef]
- Chen, J.; Pan, J.; Chen, S. A naked-eye colorimetric sensor for Hg(2+) monitoring with cascade signal amplification based on target-induced conjunction of split DNAzyme fragments. Chem. Commun. (Camb.) 2017, 53, 10224–10227. [Google Scholar] [CrossRef]
- Liu, T.; Chu, Z.Y.; Jin, W.Q. Electrochemical mercury biosensors based on advanced nanomaterials. J. Mater. Chem. B 2019, 7, 3620–3632. [Google Scholar] [CrossRef]
- Li, L.Y.; Wen, Y.L.; Xu, L.; Xu, Q.; Song, S.P.; Zuo, X.L.; Yan, J.; Zhang, W.J.; Liu, G. Development of mercury (II) ion biosensors based on mercury-specific oligonucleotide probes. Biosens. Bioelectron. 2016, 75, 433–445. [Google Scholar] [CrossRef]
- Sahin, S.; Caglayan, M.O.; Ustundag, Z. A review on nanostructure-based mercury (II) detection and monitoring focusing on aptamer and oligonucleotide biosensors. Talanta 2020, 220, 121437. [Google Scholar] [CrossRef] [PubMed]
- Xia, N.; Feng, F.; Liu, C.; Li, R.Q.; Xiang, W.W.; Shi, H.X.; Gao, L. The detection of mercury ion using DNA as sensors based on fluorescence resonance energy transfer. Talanta 2019, 192, 500–507. [Google Scholar] [CrossRef]
- Qing, T.P.; He, D.G.; He, X.X.; Wang, K.M.; Xu, F.Z.; Wen, L.; Shangguan, J.F.; Mao, Z.G.; Lei, Y.L. Nucleic acid tool enzymes-aided signal amplification strategy for biochemical analysis: Status and challenges. Anal. Bioanal. Chem. 2016, 408, 2793–2811. [Google Scholar] [CrossRef]
- Yan, M.; Bai, W.; Zhu, C.; Huang, Y.; Yan, J.; Chen, A. Design of nuclease-based target recycling signal amplification in aptasensors. Biosens. Bioelectron. 2016, 77, 613–623. [Google Scholar] [CrossRef]
- Miao, P.; Tang, Y.G.; Wang, B.D.; Yin, J.; Ning, L.M. Signal amplification by enzymatic tools for nucleic acids. Trac-Trend. Anal. Chem. 2015, 67, 1–15. [Google Scholar] [CrossRef]
- Ravikumar, A.; Panneerselvam, P. Polydopamine nanotube mediated fluorescent biosensor for Hg(ii) determination through exonuclease III-assisted signal amplification. Analyst 2018, 143, 2623–2631. [Google Scholar] [CrossRef]
- Ravikumar, A.; Panneerselvam, P.; Morad, N. Metal-Polydopamine Framework as an Effective Fluorescent Quencher for Highly Sensitive Detection of Hg(II) and Ag(I) Ions through Exonuclease III Activity. ACS Appl. Mater. Interfaces 2018, 10, 20550–20558. [Google Scholar] [CrossRef] [PubMed]
- Ning, Y.; Hu, J.; Wei, K.; He, G.; Wu, T.; Lu, F. Fluorometric determination of mercury(II) via a graphene oxide-based assay using exonuclease III-assisted signal amplification and thymidine-Hg(II)-thymidine interaction. Microchim. Acta 2019, 186, 216. [Google Scholar] [CrossRef]
- Zhang, H.; Guan, Y.; Li, X.; Lian, L.; Wang, X.; Gao, W.; Zhu, B.; Liu, X.; Lou, D. Ultrasensitive Biosensor for Detection of Mercury(II) Ions Based on DNA-Cu Nanoclusters and Exonuclease III-assisted Signal Amplification. Anal. Sci. 2018, 34, 1155–1161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, H.; Xue, N.; Wu, S.; Li, Z.; Miao, X. Fluorometric determination of mercury(II) using positively charged gold nanoparticles, DNA-templated silver nanoclusters, T-Hg(II)-T interaction and exonuclease assisted signal amplification. Microchim. Acta 2019, 186, 317. [Google Scholar] [CrossRef]
- Yang, H.L.; Zhou, Y.; Liu, J.W. G-quadruplex DNA for construction of biosensors. Trac-Trend. Anal. Chem. 2020, 132, 116060. [Google Scholar] [CrossRef]
- Zhu, Q.; Liu, L.; Xing, Y.; Zhou, X. Duplex functional G-quadruplex/NMM fluorescent probe for label-free detection of lead(II) and mercury(II) ions. J. Hazard. Mater. 2018, 355, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Hong, M.; Zeng, B.; Li, M.; Xu, X.; Chen, G. An ultrasensitive conformation-dependent colorimetric probe for the detection of mercury(II) using exonuclease III-assisted target recycling and gold nanoparticles. Microchim. Acta 2017, 185, 72. [Google Scholar] [CrossRef]
- Fu, C.; Yu, H.; Su, L.; Liu, C.; Song, Y.; Wang, S.; Lin, Z.; Chen, F. A homogeneous electrochemical sensor for Hg(2+) determination in environmental water based on the T-Hg(2+)-T structure and exonuclease III-assisted recycling amplification. Analyst 2018, 143, 2122–2127. [Google Scholar] [CrossRef]
- Zhang, H.; Lei, Z.X.; Fu, X.; Deng, X.C.; Wang, Q.; Gu, D.Y. Hg2+-triggered exonuclease III-assisted dual-cycle targets recycling amplification for label-free and ultrasensitive colorimetric detection of Hg2+. Sens. Actuators B-Chem. 2017, 246, 896–903. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Zhang, F.; He, P.; Zhang, X.R.; Song, W.L. Fluorometric determination of mercury(II) by using thymine-thymine mismatches as recognition elements, toehold binding, and enzyme-assisted signal amplification. Microchim. Acta 2019, 186, 551. [Google Scholar] [CrossRef]
- Song, X.; Wang, Y.; Liu, S.; Zhang, X.; Wang, H.; Wang, J.; Huang, J. Colorimetric and visual mercury(II) assay based on target-induced cyclic enzymatic amplification, thymine-Hg(II)-thymine interaction, and aggregation of gold nanoparticles. Microchim. Acta 2019, 186, 105. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Wang, Y.; Liu, S.; Zhang, X.; Wang, H.; Wang, J.; Huang, J. Ultrasensitive electrochemical detection of Hg(2+) based on an Hg(2+)-triggered exonuclease III-assisted target recycling strategy. Analyst 2018, 143, 5771–5778. [Google Scholar] [CrossRef]
- Zhou, D.; Zeng, L.; Pan, J.; Li, Q.; Chen, J. Autocatalytic DNA circuit for Hg(2+) detection with high sensitivity and selectivity based on exonuclease III and G-quadruplex DNAzyme. Talanta 2020, 207, 120258. [Google Scholar] [CrossRef]
- Huang, H.; Shi, S.; Zheng, X.; Yao, T. Sensitive detection for coralyne and mercury ions based on homo-A/T DNA by exonuclease signal amplification. Biosens. Bioelectron. 2015, 71, 439–444. [Google Scholar] [CrossRef]
- He, W.; Qiao, B.; Li, F.; Pan, L.; Chen, D.; Cao, Y.; Tu, J.; Wang, X.; Lv, C.; Wu, Q. A novel electrochemical biosensor for ultrasensitive Hg(2+) detection via a triple signal amplification strategy. Chem. Commun. (Camb.) 2021, 57, 619–622. [Google Scholar] [CrossRef]
- Yuan, M.; Zhu, Y.; Lou, X.; Chen, C.; Wei, G.; Lan, M.; Zhao, J. Sensitive label-free oligonucleotide-based microfluidic detection of mercury (II) ion by using exonuclease I. Biosens. Bioelectron. 2012, 31, 330–336. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Q.; Chen, Z. Optical aptasensing of mercury(II) by using salt-induced and exonuclease I-induced gold nanoparticle aggregation under dark-field microscope observation. Microchim. Acta 2019, 186, 729. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; Chen, B.; He, M.; Hu, B. A Multifunctional Platform for the Capture, Release, And Enumeration of Circulating Tumor Cells Based on Aptamer Binding, Nicking Endonuclease-Assisted Amplification, And Inductively Coupled Plasma Mass Spectrometry Detection. Anal. Chem. 2020, 92, 10308–10315. [Google Scholar] [CrossRef]
- Wang, Y.; Bai, J.; Huo, B.; Yuan, S.; Zhang, M.; Sun, X.; Peng, Y.; Li, S.; Wang, J.; Ning, B.; et al. Upconversion Fluorescent Aptasensor for Polychlorinated Biphenyls Detection Based on Nicking Endonuclease and Hybridization Chain Reaction Dual-Amplification Strategy. Anal. Chem. 2018, 90, 9936–9942. [Google Scholar] [CrossRef]
- Yang, L.; Tao, Y.; Yue, G.; Li, R.; Qiu, B.; Guo, L.; Lin, Z.; Yang, H.H. Highly Selective and Sensitive Electrochemiluminescence Biosensor for p53 DNA Sequence Based on Nicking Endonuclease Assisted Target Recycling and Hyperbranched Rolling Circle Amplification. Anal. Chem. 2016, 88, 5097–5103. [Google Scholar] [CrossRef]
- Wang, G.L.; Fang, X.; Wu, X.M.; Hu, X.L.; Li, Z.J. Label-free and ratiometric detection of nuclei acids based on graphene quantum dots utilizing cascade amplification by nicking endonuclease and catalytic G-quadruplex DNAzyme. Biosens. Bioelectron. 2016, 81, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Hong, M.; Wang, M.; Wang, J.; Xu, X.; Lin, Z. Ultrasensitive and selective electrochemical biosensor for detection of mercury (II) ions by nicking endonuclease-assisted target recycling and hybridization chain reaction signal amplification. Biosens. Bioelectron. 2017, 94, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, S.; Tian, J.; Li, K.; Du, Z.; Xu, W. Universal linker Polymerase Chain Reaction-triggered Strand Displacement Amplification visual biosensor for ultra-sensitive detection of Salmonella. Talanta 2021, 222, 121575. [Google Scholar] [CrossRef] [PubMed]
- Xue, L.Y.; Zhou, X.M.; Xing, D. Sensitive and Homogeneous Protein Detection Based on Target-Triggered Aptamer Hairpin Switch and Nicking Enzyme Assisted Fluorescence Signal Amplification. Anal. Chem. 2012, 84, 3507–3513. [Google Scholar] [CrossRef]
- Li, F.; Feng, Y.; Liu, S.; Tang, B. Triggered activity of a nicking endonuclease for mercuric(II) ion-mediated duplex-like DNA cleavage. Chem. Commun. (Camb.) 2011, 47, 6347–6349. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Chen, Y.; Hou, Z.; Jiang, W.; Wang, L. Selective and sensitive mercuric (ii) ion detection based on quantum dots and nicking endonuclease assisted signal amplification. Biosens. Bioelectron. 2013, 43, 84–87. [Google Scholar] [CrossRef] [PubMed]
- Vijayan, A.N.; Liu, Z.; Zhao, H.; Zhang, P. Nicking enzyme-assisted signal-amplifiable Hg(2+) detection using upconversion nanoparticles. Anal. Chim. Acta 2019, 1072, 75–80. [Google Scholar] [CrossRef]
- Xie, H.; Wang, Q.; Chai, Y.Q.; Yuan, Y.L.; Yuan, R. Enzyme-assisted cycling amplification and DNA-templated in-situ deposition of silver nanoparticles for the sensitive electrochemical detection of Hg2+. Biosens. Bioelectron. 2016, 86, 630–635. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.L.; Liu, L.P.; Chen, J.; Wang, T.C.; Xu, Y.Z.; Dai, Z.; Zou, X.Y. Selective and rapid detection of mercury ion based on DNA assembly and nicking endonuclease-assisted signal amplification. Anal. Methods 2019, 11, 3073–3078. [Google Scholar] [CrossRef]
- Ou, X.; Lou, X.; Xia, F. A highly sensitive DNA-AIEgen-based “turn-on” fluorescence chemosensor for amplification analysis of Hg2+ ions in real samples and living cells. Sci. China Chem. 2017, 60, 663–669. [Google Scholar] [CrossRef]
- Wei, Y.; Li, B.; Wang, X.; Duan, Y. A nano-graphite-DNA hybrid sensor for magnified fluorescent detection of mercury(II) ions in aqueous solution. Analyst 2014, 139, 1618–1621. [Google Scholar] [CrossRef] [Green Version]
- Tang, D.; Tang, J.; Li, Q.; Su, B.; Chen, G. Ultrasensitive aptamer-based multiplexed electrochemical detection by coupling distinguishable signal tags with catalytic recycling of DNase I. Anal. Chem. 2011, 83, 7255–7259. [Google Scholar] [CrossRef]
- Song, B.; Li, D.; Qi, W.P.; Elstner, M.; Fan, C.H.; Fang, H.P. Graphene on Au(111): A Highly Conductive Material with Excellent Adsorption Properties for High-Resolution Bio/Nanodetection and Identification. Chemphyschem 2010, 11, 585–589. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Xiao, R.; Zhang, X.; Niu, J.; Zhang, X.; Wang, Y. Novel electrochemical sensing platform for quantitative monitoring of Hg(II) on DNA-assembled graphene oxide with target recycling. Biosens. Bioelectron. 2016, 85, 267–271. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.H.; Li, J.A.; Lin, M.H.; Wang, Y.W.; Yang, H.H.; Chen, X.; Chen, G.N. Amplified Aptamer-Based Assay through Catalytic Recycling of the Analyte. Angew. Chem. Int. Ed. 2010, 49, 8454–8457. [Google Scholar] [CrossRef]
- Kruger, K.; Grabowski, P.J.; Zaug, A.J.; Sands, J.; Gottschling, D.E.; Cech, T.R. Self-splicing RNA: Autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell 1982, 31, 147–157. [Google Scholar] [CrossRef]
- Breaker, R.R.; Joyce, G.F. A DNA enzyme that cleaves RNA. Chem. Biol. 1994, 1, 223–229. [Google Scholar] [CrossRef]
- Li, J.; Lu, Y. A highly sensitive and selective catalytic DNA biosensor for lead ions. J. Am. Chem. Soc. 2000, 122, 10466–10467. [Google Scholar] [CrossRef]
- Yu, T.M.; Zhou, W.H.; Liu, J.W. Screening of DNAzyme mutants for highly sensitive and selective detection of calcium in milk. Anal. Methods 2018, 10, 1740–1746. [Google Scholar] [CrossRef]
- Ren, W.; Huang, P.J.J.; de Rochambeau, D.; Moon, W.J.; Zhang, J.Y.; Lyu, M.S.; Wang, S.J.; Sleiman, H.; Liu, J.W. Selection of a metal ligand modified DNAzyme for detecting Ni2+. Biosens. Bioelectron. 2020, 165, 112285. [Google Scholar] [CrossRef]
- Huang, P.J.J.; Liu, J.W. In vitro Selection of Chemically Modified DNAzymes. Chemistryopen 2020, 9, 1046–1059. [Google Scholar] [CrossRef]
- Hollenstein, M.; Hipolito, C.; Lam, C.; Dietrich, D.; Perrin, D.M. A highly selective DNAzyme sensor for mercuric ions. Angew. Chem. Int. Ed. Engl. 2008, 47, 4346–4350. [Google Scholar] [CrossRef]
- Shimron, S.; Elbaz, J.; Henning, A.; Willner, I. Ion-induced DNAzyme switches. Chem. Commun. 2010, 46, 3250–3252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Chang, Y.; Ma, J.; Wu, Z.; Yuan, R.; Chai, Y. Programming a Target-Initiated Bifunctional DNAzyme Nanodevice for Sensitive Ratiometric Electrochemical Biosensing. Anal. Chem. 2019, 91, 6127–6133. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Xie, J.; Jiang, B.; Yuan, R.; Xiang, Y. Metallo-Toehold-Activated Catalytic Hairpin Assembly Formation of Three-Way DNAzyme Junctions for Amplified Fluorescent Detection of Hg(2). ACS Appl. Mater. Interfaces 2017, 9, 5733–5738. [Google Scholar] [CrossRef]
- Zhang, Q.; Cai, Y.; Li, H.; Kong, D.-M.; Shen, H.-X. Sensitive dual DNAzymes-based sensors designed by grafting self-blocked G-quadruplex DNAzymes to the substrates of metal ion-triggered DNA/RNA-cleaving DNAzymes. Biosens. Bioelectron. 2012, 38, 331–336. [Google Scholar] [CrossRef]
- Qi, L.; Zhao, Y.; Yuan, H.; Bai, K.; Zhao, Y.; Chen, F.; Dong, Y.; Wu, Y. Amplified fluorescence detection of mercury(II) ions (Hg2+) using target-induced DNAzyme cascade with catalytic and molecular beacons. Analyst 2012, 137, 2799–2805. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Brown, A.K.; Meng, X.; Cropek, D.M.; Istok, J.D.; Watson, D.B.; Lu, Y. A catalytic beacon sensor for uranium with parts-per-trillion sensitivity and millionfold selectivity. Proc. Natl. Acad. Sci. USA 2007, 104, 2056–2061. [Google Scholar] [CrossRef] [Green Version]
- Travascio, P.; Li, Y.; Sen, D. DNA-enhanced peroxidase activity of a DNA aptamer-hemin complex. Chem. Biol. 1998, 5, 505–517. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Gao, G.; Zhai, K.; Xu, L.; Zhang, D. A visual Hg2+ detection strategy based on distance as readout by G-quadruplex DNAzyme on microfluidic paper. Food Chem. 2020, 127208. [Google Scholar] [CrossRef]
- Li, H.; Liu, M.; Zhao, W.; Pu, J.; Xu, J.; Wang, S.; Yu, R. Multi-channel collection of G-quadruplex transducers for amplified signaling of Pax-5 based on target-triggered split-to-intact remodeling of dual-G-rich duplex probe. Sensor. Actuat. B-Chem. 2020, 127913. [Google Scholar] [CrossRef]
- Breaker, R.R.; Joyce, G.F. A DNA enzyme with Mg(2+)-dependent RNA phosphoesterase activity. Chem. Biol. 1995, 2, 655–660. [Google Scholar] [CrossRef] [Green Version]
- Deng, P.; Zheng, S.; Yun, W.; Zhang, W.; Yang, L. A visual and sensitive Hg(2+) detection strategy based on split DNAzyme amplification and peroxidase-like activity of hemin-graphene composites. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 210, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Yun, W.; Zhong, H.; Zheng, S.; Wang, R.; Yang, L. Simple, one-step and amplified Hg2+ detection strategy based on DNAzyme motor. Sens. Actuators B-Chem. 2018, 277, 456–461. [Google Scholar] [CrossRef]
- Cai, W.; Xie, S.; Zhang, J.; Tang, D.; Tang, Y. An electrochemical impedance biosensor for Hg(2+) detection based on DNA hydrogel by coupling with DNAzyme-assisted target recycling and hybridization chain reaction. Biosens. Bioelectron. 2017, 98, 466–472. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.; Jeon, J.; Jeong, J.; Park, J.; Oh, E.T.; Park, H.J.; Lee, K.H. Fluorescent Detection of Methyl Mercury in Aqueous Solution and Live Cells Using Fluorescent Probe and Micelle Systems. Anal. Chem. 2020, 92, 4917–4925. [Google Scholar] [CrossRef]
- Chen, Z.; Li, P.; Cheng, X.; Yang, W.; Wu, Y.; Chen, Q.; Fu, F. Multicolor Aptasensor Based on DNA-Induced Au-Ag Nanorods for Simultaneous and Visual Detection of Inorganic and Organic Mercury. ACS Omega 2019, 4, 15112–15119. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Wang, X.; Cheng, X.; Yang, W.; Wu, Y.; Fu, F. Specifically and Visually Detect Methyl-Mercury and Ethyl-Mercury in Fish Sample Based on DNA-Templated Alloy Ag-Au Nanoparticles. Anal. Chem. 2018, 90, 5489–5495. [Google Scholar] [CrossRef]
- Xia, J.; Lin, M.; Zuo, X.; Su, S.; Wang, L.; Huang, W.; Fan, C.; Huang, Q. Metal ion-mediated assembly of DNA nanostructures for cascade fluorescence resonance energy transfer-based fingerprint analysis. Anal. Chem. 2014, 86, 7084–7087. [Google Scholar] [CrossRef] [PubMed]
- Sener, G.; Uzun, L.; Denizli, A. Colorimetric sensor array based on gold nanoparticles and amino acids for identification of toxic metal ions in water. ACS Appl. Mater. Interfaces 2014, 6, 18395–18400. [Google Scholar] [CrossRef]
- Yin, H.; Truskewycz, A.; Cole, I.S. Quantum dot (QD)-based probes for multiplexed determination of heavy metal ions. Microchim. Acta 2020, 187, 336. [Google Scholar] [CrossRef]
Type | Nuclease | Substrate | Degradation Direction | References |
---|---|---|---|---|
Exonuclease | Exo III | dsDNA | Form 3′ to 5′ | [37,38] |
Exonuclease | Exo I | ssDNA | Form 3′ to 5′ | [37,38] |
Endonuclease | Nickase | One stand of DNA on dsDNA | Not Applicable | [37] |
Endonuclease | DSN | dsDNA | Not Applicable | [38] |
Endonuclease | DNase I | ssDNA/dsDNA | Not Applicable | [37] |
Enzyme | Detection Limit | Linear Range | Ion Specificity | Recovery in Real Samples | References |
---|---|---|---|---|---|
Exo III-one cycle | 2.3 pM | 5 pM–10 nM | High | 95.7–102% | [43] |
Exo III-one cycle | 1 pM | 1 pM–500 nM | High | Not given | [26] |
Exo III-one cycle | 3.2 pM | 10 pM–100 nM | High | 92–106% | [46] |
Exo III-one cycle | 380 pM | 1 nM–500 nM | High | 97.16–106.61% | [47] |
Exo III-Two cycles | 0.9 nM | 1 nM–10 μM | High | 91.2–105.9% | [50] |
Exo III-Two cycles | 227 pM | 500 pM–5 μM | High | Not given | [51] |
Exo III-Two cycles | 10 fM | 10 fM–100 nM | High | 88–105% | [52] |
Exo III combination with nanoflowers | 0.19 fM | 1 fM–10 nM | High | 94.30–106.91% | [54] |
Exo I | 15 nM | Not given | High | Not given | [55] |
Exo I combination with microscope | 36 fM | 83 fM–8.3 μM | High | 96–104% | [56] |
Nickase | 0.8 nM | 1 nM–15 nM | High | 93.3–103.8% | [65] |
Nickase | 0.14 nM | 0–2.0 nM | High | Not given | [66] |
Nickase | 1.7 nM | 5 nM–250 nM | High | 94.2–111.4% | [68] |
Nickase combination with TdTase | 3 pM | 10 pM–100 nM | High | 91.5–108.8% | [67] |
DSN | 10 fM | 10 fM to 1 nM | High | 97.4–106.8% | [69] |
DNase I | 0.5 nM | 0–200 nM | High | Not given | [70] |
DNase I | 0.12 nM | 0.5 nM–50 nM | High | Not given | [73] |
UO22+-specific DNAzyme | 2.4 nM | 0–20 nM | High | Not given | [18] |
Cu2+-specific DNAzyme | 4 nM | 0–20 nM | Good | 91.3–109.5% | [85] |
Mg2+-specific DNAzyme | 0.2 nM | 1nM–20 nM | Ultrahigh | 96–105% | [86] |
Mg2+-specific DNAzyme | 33 pM | 50 pM–1.2 nM | Good | 91.0–108.4% | [92] |
Mg2+-specific DNAzyme | 30 pM | 0.1 nM–5 nM | Good | 94–108% | [93] |
Mg2+-specific DNAzyme combination with HCR | 42 fM | 0.1 pM–10 nM | Good | 95.2–103.3% | [94] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S. Construction of DNA Biosensors for Mercury (II) Ion Detection Based on Enzyme-Driven Signal Amplification Strategy. Biomolecules 2021, 11, 399. https://doi.org/10.3390/biom11030399
Wang S. Construction of DNA Biosensors for Mercury (II) Ion Detection Based on Enzyme-Driven Signal Amplification Strategy. Biomolecules. 2021; 11(3):399. https://doi.org/10.3390/biom11030399
Chicago/Turabian StyleWang, Shuchang. 2021. "Construction of DNA Biosensors for Mercury (II) Ion Detection Based on Enzyme-Driven Signal Amplification Strategy" Biomolecules 11, no. 3: 399. https://doi.org/10.3390/biom11030399
APA StyleWang, S. (2021). Construction of DNA Biosensors for Mercury (II) Ion Detection Based on Enzyme-Driven Signal Amplification Strategy. Biomolecules, 11(3), 399. https://doi.org/10.3390/biom11030399