Trehalose Restrains the Fibril Load towards α-Lactalbumin Aggregation and Halts Fibrillation in a Concentration-Dependent Manner
Abstract
:1. Introduction
2. Results and Discussion
2.1. UV-Vis Spectroscopy
Thermal Transition Curve of α-LA in the Presence of a Varying Concentration of Trehalose
2.2. Fluorescence Study
2.2.1. Trehalose Effect on Thioflavin T Assay
2.2.2. Intrinsic Fluorescence
2.2.3. Rayleigh Scattering
2.3. Turbidity Assay
2.4. TEM Analysis
2.5. Molecular Docking Analysis
3. Materials and Methods
3.1. Materials
3.2. Protein Dialysis and Analytical Procedures
3.3. Aliquots Preparation and Fibril Formation
3.4. UV-Vis Spectroscopy
3.5. Turbidity Assay
3.6. Thioflavin T (ThT) Assay
3.7. Intrinsic Protein Fluorescence
3.8. Rayleigh Scattering
3.9. Transmission Electron Microscopy
3.10. Molecular Docking Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rambaran, R.N.; Serpell, L.C. Amyloid fibrils: Abnormal protein assembly. Prion 2008, 2, 112–117. [Google Scholar] [CrossRef]
- Treusch, S.; Cyr, D.M.; Lindquist, S. Amyloid deposits: Protection against toxic protein species? Cell Cycle 2009, 8, 1668–1674. [Google Scholar] [CrossRef] [Green Version]
- Hiraoka, Y.; Segawa, T.; Kuwajima, K.; Sugai, S.; Murai, N. α-Lactalbumin: A calcium metalloprotein. Biochem. Biophys. Res. Commun. 1980, 95, 1098–1104. [Google Scholar] [CrossRef]
- Ahanger, I.A.; Parray, Z.A.; Nasreen, K.; Ahmad, F.; Hassan, M.I.; Islam, A.; Sharma, A. Heparin Accelerates the Protein Aggregation via the Downhill Polymerization Mechanism: Multi-Spectroscopic Studies to Delineate the Implications on Proteinopathies. ACS Omega 2021, 6, 2328–2339. [Google Scholar] [CrossRef]
- Ikeguchi, M.; Kuwajima, K.; Mitani, M.; Sugai, S. Evidence for identity between the equilibrium unfolding intermediate and a transient folding intermediate: A comparative study of the folding reactions of. alpha.-lactalbumin and lysozyme. Biochemistry 1986, 25, 6965–6972. [Google Scholar] [CrossRef] [PubMed]
- Wijesinha-Bettoni, R.; Dobson, C.M.; Redfield, C. Comparison of the denaturant-induced unfolding of the bovine and human α-lactalbumin molten globules. J. Mol. Biol. 2001, 312, 261–273. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, L.R.; Nielsen, S.B.; Zhao, Z.; Olsen, K.; Nielsen, J.H.; Lund, M.N. Control of α-lactalbumin aggregation by modulation of temperature and concentration of calcium and cysteine. J. Agric. Food Chem. 2018, 66, 7110–7120. [Google Scholar] [CrossRef] [PubMed]
- Yancey, P.H. Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J. Exp. Biol. 2005, 208, 2819–2830. [Google Scholar] [CrossRef] [Green Version]
- Street, T.O.; Bolen, D.W.; Rose, G.D. A molecular mechanism for osmolyte-induced protein stability. Proc. Natl. Acad. Sci. USA 2006, 103, 13997–14002. [Google Scholar] [CrossRef] [Green Version]
- Arakawa, T.; Timasheff, S. The stabilization of proteins by osmolytes. Biophys. J. 1985, 47, 411–414. [Google Scholar] [CrossRef]
- Santoro, M.M.; Liu, Y.; Khan, S.M.; Hou, L.X.; Bolen, D. Increased thermal stability of proteins in the presence of naturally occurring osmolytes. Biochemistry 1992, 31, 5278–5283. [Google Scholar] [CrossRef] [PubMed]
- Jain, N.K.; Roy, I. Effect of trehalose on protein structure. Protein Sci. 2009, 18, 24–36. [Google Scholar] [CrossRef]
- Eastern Hemisphere. Merriam-Webster’s Geographical Dictionary; Merriam-Webster, Inc.: Springfield, MA, USA, 2001. [Google Scholar]
- Carpenter, J.F.; Crowe, J.H. An infrared spectroscopic study of the interactions of carbohydrates with dried proteins. Biochemistry 1989, 28, 3916–3922. [Google Scholar] [CrossRef] [PubMed]
- Xie, G.; Timasheff, S.N. The thermodynamic mechanism of protein stabilization by trehalose. Biophys. Chem. 1997, 64, 25–43. [Google Scholar] [CrossRef]
- Cordone, L.; Cottone, G.; Giuffrida, S.; Palazzo, G.; Venturoli, G.; Viappiani, C. Internal dynamics and protein–matrix coupling in trehalose-coated proteins. Biochim. Biophys. Acta (Bba) Proteins Proteom. 2005, 1749, 252–281. [Google Scholar] [CrossRef]
- Green, J.L.; Angell, C.A. Phase relations and vitrification in saccharide-water solutions and the trehalose anomaly. J. Phys. Chem. 1989, 93, 2880–2882. [Google Scholar] [CrossRef]
- Lins, R.D.; Pereira, C.S.; Hünenberger, P.H. Trehalose–protein interaction in aqueous solution. Proteins: Struct. Funct. Bioinform. 2004, 55, 177–186. [Google Scholar] [CrossRef]
- Francia, F.; Dezi, M.; Mallardi, A.; Palazzo, G.; Cordone, L.; Venturoli, G. Protein− matrix coupling/uncoupling in “dry” systems of photosynthetic reaction center embedded in trehalose/sucrose: The origin of trehalose peculiarity. J. Am. Chem. Soc. 2008, 130, 10240–10246. [Google Scholar] [CrossRef]
- Fedorov, M.V.; Goodman, J.M.; Nerukh, D.; Schumm, S. Self-assembly of trehalose molecules on a lysozyme surface: The broken glass hypothesis. Phys. Chem. Chem. Phys. 2011, 13, 2294–2299. [Google Scholar] [CrossRef] [Green Version]
- Katyal, N.; Deep, S. Revisiting the conundrum of trehalose stabilization. Phys. Chem. Chem. Phys. 2014, 16, 26746–26761. [Google Scholar] [CrossRef]
- Macchi, F.; Eisenkolb, M.; Kiefer, H.; Otzen, D.E. The effect of osmolytes on protein fibrillation. Int. J. Mol. Sci. 2012, 13, 3801–3819. [Google Scholar] [CrossRef] [Green Version]
- Katyal, N.; Agarwal, M.; Sen, R.; Kumar, V.; Deep, S. Paradoxical Effect of Trehalose on the Aggregation of α-Synuclein: Expedites Onset of Aggregation yet Reduces Fibril Load. Acs Chem. Neurosci. 2018, 9, 1477–1491. [Google Scholar] [CrossRef]
- Bashir, S.; Sami, N.; Bashir, S.; Ahmad, F.; Hassan, M.I.; Islam, A. Management of Insulin Through Co-Solute Engineering: A Therapeutic Approach. In Frontiers in Protein Structure, Function, and Dynamics; Springer: Berlin/Heidelberg, Germany, 2020; pp. 283–315. [Google Scholar]
- Kushwah, N.; Jain, V.; Yadav, D. Osmolytes: A Possible Therapeutic Molecule for Ameliorating the Neurodegeneration Caused by Protein Misfolding and Aggregation. Biomolecules 2020, 10, 132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amani, M.; Barzegar, A.; Mazani, M. Osmolytic effect of sucrose on thermal denaturation of pea seedling copper amine oxidase. Protein J. 2017, 36, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Bashir, S.; Shamsi, A.; Ahmad, F.; Hassan, M.I.; Kamal, M.A.; Islam, A. Biophysical Elucidation of Fibrillation Inhibition by Sugar Osmolytes in α-Lactalbumin: Multispectroscopic and Molecular Docking Approaches. Acs Omega 2020, 5, 26871–26882. [Google Scholar] [CrossRef]
- Singer, M.A.; Lindquist, S. Multiple effects of trehalose on protein folding in vitro and in vivo. Mol. Cell 1998, 1, 639–648. [Google Scholar] [CrossRef]
- Benaroudj, N.; Goldberg, A.L. Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals. J. Biol. Chem. 2001, 276, 24261–24267. [Google Scholar] [CrossRef] [Green Version]
- Argüelles, J.C. Physiological roles of trehalose in bacteria and yeasts: A comparative analysis. Arch. Microbiol. 2000, 174, 217–224. [Google Scholar]
- Liu, R.; Barkhordarian, H.; Emadi, S.; Park, C.B.; Sierks, M.R. Trehalose differentially inhibits aggregation and neurotoxicity of beta-amyloid 40 and 42. Neurobiol. Dis. 2005, 20, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, R.K.; Kardani, J.; Singh, K.; Banerjee, R.; Roy, I. Deciphering the roles of trehalose and Hsp104 in the inhibition of aggregation of mutant huntingtin in a yeast model of Huntington’s disease. Neuromol. Med. 2014, 16, 280–291. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Machida, Y.; Niu, S.; Ikeda, T.; Jana, N.R.; Doi, H.; Kurosawa, M.; Nekooki, M.; Nukina, N. Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease. Nat. Med. 2004, 10, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Tien, N.T.; Karaca, I.; Tamboli, I.Y.; Walter, J. Trehalose alters subcellular trafficking and the metabolism of the Alzheimer-associated amyloid precursor protein. J. Biol. Chem. 2016, 291, 10528–10540. [Google Scholar] [CrossRef] [Green Version]
- Izmitli, A.; Schebor, C.; McGovern, M.P.; Reddy, A.S.; Abbott, N.L.; De Pablo, J.J. Effect of trehalose on the interaction of Alzheimer’s Aβ-peptide and anionic lipid monolayers. Biochim. Et Biophys. Acta (BBA) Biomembr. 2011, 1808, 26–33. [Google Scholar] [CrossRef] [Green Version]
- Du, J.; Liang, Y.; Xu, F.; Sun, B.; Wang, Z. Trehalose rescues A lzheimer’s disease phenotypes in APP/PS 1 transgenic mice. J. Pharm. Pharmacol. 2013, 65, 1753–1756. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, S.; Davies, J.E.; Huang, Z.; Tunnacliffe, A.; Rubinsztein, D.C. Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and α-synuclein. J. Biol. Chem. 2007, 282, 5641–5652. [Google Scholar] [CrossRef] [Green Version]
- Aguib, Y.; Heiseke, A.; Gilch, S.; Riemer, C.; Baier, M.; Ertmer, A.; Schätzl, H.M. Autophagy induction by trehalose counter-acts cellular prion-infection. Autophagy 2009, 5, 361–369. [Google Scholar] [CrossRef] [Green Version]
- Béranger, F.; Crozet, C.; Goldsborough, A.; Lehmann, S. Trehalose impairs aggregation of PrPSc molecules and protects prion-infected cells against oxidative damage. Biochem. Biophys. Res. Commun. 2008, 374, 44–48. [Google Scholar] [CrossRef]
- Yu, W.-B.; Jiang, T.; Lan, D.-M.; Lu, J.-H.; Yue, Z.-Y.; Wang, J.; Zhou, P. Trehalose inhibits fibrillation of A53T mutant alpha-synuclein and disaggregates existing fibrils. Arch. Biochem. Biophys. 2012, 523, 144–150. [Google Scholar] [CrossRef]
- Ruzza, P.; Hussain, R.; Biondi, B.; Calderan, A.; Tessari, I.; Bubacco, L.; Siligardi, G. Effects of trehalose on thermodynamic properties of alpha-synuclein revealed through synchrotron radiation circular dichroism. Biomolecules 2015, 5, 724–734. [Google Scholar] [CrossRef] [Green Version]
- Jiang, T.; Yu, W.-B.; Yao, T.; Zhi, X.-L.; Pan, L.-F.; Wang, J.; Zhou, P. Trehalose inhibits wild-type α-synuclein fibrillation and overexpression and protects against the protein neurotoxicity in transduced PC12 cells. RSC Adv. 2013, 3, 9500–9508. [Google Scholar] [CrossRef]
- Levine III, H. Thioflavine T interaction with synthetic Alzheimer’s disease β-amyloid peptides: Detection of amyloid aggregation in solution. Protein Sci. 1993, 2, 404–410. [Google Scholar] [CrossRef]
- Shamsi, A.; Amani, S.; Alam, M.T.; Naeem, A. Aggregation as a consequence of glycation: Insight into the pathogenesis of arthritis. Eur. Biophys. J. 2016, 45, 523–534. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, S.; Ittah, V.; Bai, P.; Luo, L.; Haas, E.; Peng, Z.-y. Structure and dynamics of the α-lactalbumin molten globule: Fluorescence studies using proteins containing a single tryptophan residue. Biochemistry 2001, 40, 7228–7238. [Google Scholar] [CrossRef]
- Amani, S.; Shamsi, A.; Rabbani, G.; Naim, A. An insight into the biophysical characterization of insoluble collagen aggregates: Implication for arthritis. J. Fluoresc. 2014, 24, 1423–1431. [Google Scholar] [CrossRef]
- Shamsi, A.; Ahmed, A.; Bano, B. Glyoxal induced structural transition of buffalo kidney cystatin to molten globule and aggregates: Anti-fibrillation potency of quinic acid. Iubmb Life 2016, 68, 156–166. [Google Scholar] [CrossRef]
- Santiago, P.S.; Carvalho, F.A.O.; Domingues, M.M.; Carvalho, J.W.P.; Santos, N.C.; Tabak, M. Isoelectric Point Determination for Glossoscolex paulistus Extracellular Hemoglobin: Oligomeric Stability in Acidic pH and Relevance to Protein− Surfactant Interactions. Langmuir 2010, 26, 9794–9801. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Petty, S.; Trojanowski, A.; Knee, K.; Goulet, D.; Mukerji, I.; King, J. Formation of amyloid fibrils in vitro from partially unfolded intermediates of human γC-crystallin. Investig. Ophthalmol. Vis. Sci. 2010, 51, 672–678. [Google Scholar] [CrossRef]
- McPhie, P. Dialysis. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1971; Volume 22, pp. 23–32. [Google Scholar]
- Beg, I.; Minton, A.P.; Islam, A.; Hassan, M.I.; Ahmad, F. The ph dependence of Saccharides’ influence on thermal denaturation of two model proteins supports an excluded volume model for stabilization generalized to allow for intramolecular electrostatic interactions. J. Biol. Chem. 2017, 292, 505–511. [Google Scholar] [CrossRef] [Green Version]
- Beg, I.; Minton, A.P.; Islam, A.; Hassan, M.I.; Ahmad, F. Comparison of the thermal stabilization of proteins by oligosaccharides and monosaccharide mixtures: Measurement and analysis in the context of excluded volume theory. Biophys. Chem. 2018, 237, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Beg, I.; Minton, A.P.; Hassan, M.I.; Islam, A.; Ahmad, F. Thermal stabilization of proteins by mono-and oligosaccharides: Measurement and analysis in the context of an excluded volume model. Biochemistry 2015, 54, 3594–3603. [Google Scholar] [CrossRef] [PubMed]
- Hudson, S.A.; Ecroyd, H.; Kee, T.W.; Carver, J.A. The thioflavin T fluorescence assay for amyloid fibril detection can be biased by the presence of exogenous compounds. FEBS J. 2009, 276, 5960–5972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shamsi, A.; Abdullah, K.M.; Usmani, H.; Shahab, A.; Hasan, H.; Naseem, I. Glyoxal Induced Transition of Transferrin to Aggregates: Spectroscopic, Microscopic and Molecular Docking Insight. Curr. Pharm. Biotechnol. 2019, 20, 1028–1036. [Google Scholar] [CrossRef]
- Shamsi, A.; Shahwan, M.; Husain, F.M.; Khan, M.S. Characterization of methylglyoxal induced advanced glycation end products and aggregates of human transferrin: Biophysical and microscopic insight. Int. J. Biol. Macromol. 2019, 138, 718–724. [Google Scholar] [CrossRef] [PubMed]
- Hassan, N.M.; Alhossary, A.A.; Mu, Y.; Kwoh, C.-K. Protein-ligand blind docking using QuickVina-W with inter-process spatio-temporal integration. Sci. Rep. 2017, 7, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Mohammad, T.; Mathur, Y.; Hassan, M.I. InstaDock: A single-click graphical user interface for molecular docking-based virtual high-throughput screening. Brief. Bioinform. 2020. [Google Scholar] [CrossRef]
- DeLano, W.L. Pymol: An open-source molecular graphics tool. CCP4 Newslet. Prot. Crystal. 2002, 40, 82–92. [Google Scholar]
- Biovia, D.S. Discovery Studio Modeling Environment; Dassault Systèmes: San Diego, CA, USA, 2015. [Google Scholar]
- Hopkins, A.L.; Groom, C.R.; Alex, A. Ligand efficiency: A useful metric for lead selection. Drug Discov. Today 2004, 9, 430. [Google Scholar] [CrossRef]
- Díaz-Villanueva, J.F.; Díaz-Molina, R.; García-González, V. Protein folding and mechanisms of proteostasis. Int. J. Mol. Sci. 2015, 16, 17193–17230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Concentration (mg mL−1) | Ao | Amax | b | Tagg (°C) | Ti (Tagg − 2b) (°C) |
---|---|---|---|---|---|
0.0 | −0.010 ± 0.005 | 1.890 ± 0.009 | 2.610 ± 0.070 | 58.22 ± 0.08 | 53.02 |
0.5 | −0.020 ± 0.006 | 1.727 ± 0.0105 | 2.788 ± 0.080 | 61.30 ± 0.08 | 55.72 |
0.75 | −0.003 ± 0.002 | 0.617 ± 0.005 | 3.126 ± 0.100 | 65.87 ± 0.11 | 59.67 |
1.0 | −0.002 ± 0.001 | 0.207 ± 0.002 | 2.899 ± 0.113 | 69.75 ± 0.13 | 64.17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bashir, S.; Ahanger, I.A.; Shamsi, A.; Alajmi, M.F.; Hussain, A.; Choudhry, H.; Ahmad, F.; Hassan, M.I.; Islam, A. Trehalose Restrains the Fibril Load towards α-Lactalbumin Aggregation and Halts Fibrillation in a Concentration-Dependent Manner. Biomolecules 2021, 11, 414. https://doi.org/10.3390/biom11030414
Bashir S, Ahanger IA, Shamsi A, Alajmi MF, Hussain A, Choudhry H, Ahmad F, Hassan MI, Islam A. Trehalose Restrains the Fibril Load towards α-Lactalbumin Aggregation and Halts Fibrillation in a Concentration-Dependent Manner. Biomolecules. 2021; 11(3):414. https://doi.org/10.3390/biom11030414
Chicago/Turabian StyleBashir, Sania, Ishfaq Ahmad Ahanger, Anas Shamsi, Mohamed F. Alajmi, Afzal Hussain, Hani Choudhry, Faizan Ahmad, Md. Imtaiyaz Hassan, and Asimul Islam. 2021. "Trehalose Restrains the Fibril Load towards α-Lactalbumin Aggregation and Halts Fibrillation in a Concentration-Dependent Manner" Biomolecules 11, no. 3: 414. https://doi.org/10.3390/biom11030414
APA StyleBashir, S., Ahanger, I. A., Shamsi, A., Alajmi, M. F., Hussain, A., Choudhry, H., Ahmad, F., Hassan, M. I., & Islam, A. (2021). Trehalose Restrains the Fibril Load towards α-Lactalbumin Aggregation and Halts Fibrillation in a Concentration-Dependent Manner. Biomolecules, 11(3), 414. https://doi.org/10.3390/biom11030414