The Open Question of How GPCRs Interact with GPCR Kinases (GRKs)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. pcDNA-GRK2-H6 Preparation
2.3. Protein Expression and Purification
2.4. Protein Concentration Normalization
2.5. Determination of Steady-State Parameters
2.6. Agonist Dose- and GRK2-Dependent Phosphorylation of β2AR in Cells
3. Results
3.1. Analysis of GPCR–GRK Interaction Models
3.1.1. The N-Terminal Helix as the Primary GPCR Docking Site (Model 1)
3.1.2. The NLBD as the Primary GPCR Docking Site (Model 2)
3.1.3. The NLBD/RH Domain as the Primary GPCR Docking Site, but Instead Binding to ICL3 (Model 3)
3.2. Extension of the Newer Models to the GRK2 Subfamily
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ovchinnikov, I.A.; Abdulaev, N.G.; Feĭgina, M.I.; Artamonov, I.D.; Bogachuk, A.S. Visual rhodopsin. III. Complete amino acid sequence and topography in a membrane. Bioorg. Khim. 1983, 9, 1331–1340. [Google Scholar]
- Hargrave, P.A.; McDowell, J.H.; Curtis, D.R.; Wang, J.K.; Juszczak, E.; Fong, S.L.; Rao, J.K.; Argos, P. The structure of bovine rhodopsin. Biophys. Struct. Mech. 1983, 9, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Dixon, R.A.; Kobilka, B.K.; Strader, D.J.; Benovic, J.L.; Dohlman, H.G.; Frielle, T.; Bolanowski, M.A.; Bennett, C.D.; Rands, E.; Diehl, R.E.; et al. Cloning of the gene and cDNA for mammalian beta-adrenergic receptor and homology with rhodopsin. Nature 1986, 321, 75–79. [Google Scholar] [CrossRef] [PubMed]
- Dohlman, H.G.; Bouvier, M.; Benovic, J.L.; Caron, M.G.; Lefkowitz, R.J. The multiple membrane spanning topography of the beta 2-adrenergic receptor. Localization of the sites of binding, glycosylation, and regulatory phosphorylation by limited proteolysis. J. Biol. Chem. 1987, 262, 14282–14288. [Google Scholar] [CrossRef]
- Fredriksson, R.; Lagerstrom, M.C.; Lundin, L.G.; Schioth, H.B. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol. Pharmacol. 2003, 63, 1256–1272. [Google Scholar] [CrossRef] [Green Version]
- Bjarnadottir, T.K.; Gloriam, D.E.; Hellstrand, S.H.; Kristiansson, H.; Fredriksson, R.; Schioth, H.B. Comprehensive repertoire and phylogenetic analysis of the G protein-coupled receptors in human and mouse. Genomics 2006, 88, 263–273. [Google Scholar] [CrossRef] [PubMed]
- Lefkowitz, R.J. Seven transmembrane receptors: Something old, something new. Acta Physiol. (Oxf.) 2007, 190, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Kang, D.S.; Benovic, J.L. β-arrestins and G protein-coupled receptor trafficking. Handb. Exp. Pharmacol. 2014, 219, 173–186. [Google Scholar] [CrossRef] [Green Version]
- Freedman, N.J.; Lefkowitz, R.J. Desensitization of G protein-coupled receptors. Recent Prog. Horm. Res. 1996, 51, 319–351, discussion 352–313. [Google Scholar] [PubMed]
- Peterson, Y.K.; Luttrell, L.M. The Diverse Roles of Arrestin Scaffolds in G Protein-Coupled Receptor Signaling. Pharmacol. Rev. 2017, 69, 256–297. [Google Scholar] [CrossRef] [Green Version]
- Palczewski, K.; Kumasaka, T.; Hori, T.; Behnke, C.A.; Motoshima, H.; Fox, B.A.; Le Trong, I.; Teller, D.C.; Okada, T.; Stenkamp, R.E.; et al. Crystal structure of rhodopsin: A G protein-coupled receptor. Science 2000, 289, 739–745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rasmussen, S.G.; Choi, H.J.; Rosenbaum, D.M.; Kobilka, T.S.; Thian, F.S.; Edwards, P.C.; Burghammer, M.; Ratnala, V.R.; Sanishvili, R.; Fischetti, R.F.; et al. Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. Nature 2007, 450, 383–387. [Google Scholar] [CrossRef] [PubMed]
- Rosenbaum, D.M.; Zhang, C.; Lyons, J.A.; Holl, R.; Aragao, D.; Arlow, D.H.; Rasmussen, S.G.; Choi, H.J.; Devree, B.T.; Sunahara, R.K.; et al. Structure and function of an irreversible agonist-β(2) adrenoceptor complex. Nature 2011, 469, 236–240. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, S.G.; Choi, H.J.; Fung, J.J.; Pardon, E.; Casarosa, P.; Chae, P.S.; Devree, B.T.; Rosenbaum, D.M.; Thian, F.S.; Kobilka, T.S.; et al. Structure of a nanobody-stabilized active state of the β(2) adrenoceptor. Nature 2011, 469, 175–180. [Google Scholar] [CrossRef] [Green Version]
- Carpenter, B.; Nehmé, R.; Warne, T.; Leslie, A.G.; Tate, C.G. Structure of the adenosine A(2A) receptor bound to an engineered G protein. Nature 2016, 536, 104–107. [Google Scholar] [CrossRef]
- Manglik, A.; Kobilka, B.K.; Steyaert, J. Nanobodies to Study G Protein-Coupled Receptor Structure and Function. Annu Rev. Pharmacol. Toxicol. 2017, 57, 19–37. [Google Scholar] [CrossRef] [Green Version]
- Staus, D.P.; Hu, H.; Robertson, M.J.; Kleinhenz, A.L.W.; Wingler, L.M.; Capel, W.D.; Latorraca, N.R.; Lefkowitz, R.J.; Skiniotis, G. Structure of the M2 muscarinic receptor-β-arrestin complex in a lipid nanodisc. Nature 2020, 579, 297–302. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Masureel, M.; Qu, Q.; Janetzko, J.; Inoue, A.; Kato, H.E.; Robertson, M.J.; Nguyen, K.C.; Glenn, J.S.; Skiniotis, G.; et al. Structure of the neurotensin receptor 1 in complex with β-arrestin 1. Nature 2020, 579, 303–308. [Google Scholar] [CrossRef]
- Zhou, X.E.; He, Y.; de Waal, P.W.; Gao, X.; Kang, Y.; Van Eps, N.; Yin, Y.; Pal, K.; Goswami, D.; White, T.A.; et al. Identification of Phosphorylation Codes for Arrestin Recruitment by G Protein-Coupled Receptors. Cell 2017, 170, 457–469.e413. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.; Warne, T.; Nehmé, R.; Pandey, S.; Dwivedi-Agnihotri, H.; Chaturvedi, M.; Edwards, P.C.; García-Nafría, J.; Leslie, A.G.W.; Shukla, A.K.; et al. Molecular basis of β-arrestin coupling to formoterol-bound β(1)-adrenoceptor. Nature 2020, 583, 862–866. [Google Scholar] [CrossRef]
- Yin, W.; Li, Z.; Jin, M.; Yin, Y.L.; de Waal, P.W.; Pal, K.; Yin, Y.; Gao, X.; He, Y.; Gao, J.; et al. A complex structure of arrestin-2 bound to a G protein-coupled receptor. Cell Res. 2019, 29, 971–983. [Google Scholar] [CrossRef]
- Cahill, T.J., 3rd; Thomsen, A.R.; Tarrasch, J.T.; Plouffe, B.; Nguyen, A.H.; Yang, F.; Huang, L.Y.; Kahsai, A.W.; Bassoni, D.L.; Gavino, B.J.; et al. Distinct conformations of GPCR-β-arrestin complexes mediate desensitization, signaling, and endocytosis. Proc. Natl. Acad. Sci. USA 2017, 114, 2562–2567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shukla, A.K.; Westfield, G.H.; Xiao, K.; Reis, R.I.; Huang, L.Y.; Tripathi-Shukla, P.; Qian, J.; Li, S.; Blanc, A.; Oleskie, A.N.; et al. Visualization of arrestin recruitment by a G-protein-coupled receptor. Nature 2014, 512, 218–222. [Google Scholar] [CrossRef] [PubMed]
- Kühn, H.; Dreyer, W.J. Light dependent phosphorylation of rhodopsin by ATP. FEBS Lett. 1972, 20, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Wilden, U.; Kühn, H. Light-dependent phosphorylation of rhodopsin: Number of phosphorylation sites. Biochemistry 1982, 21, 3014–3022. [Google Scholar] [CrossRef]
- Pei, G.; Samama, P.; Lohse, M.; Wang, M.; Codina, J.; Lefkowitz, R.J. A constitutively active mutant beta 2-adrenergic receptor is constitutively desensitized and phosphorylated. Proc. Natl. Acad. Sci. USA 1994, 91, 2699–2702. [Google Scholar] [CrossRef] [Green Version]
- Benovic, J.L.; Bouvier, M.; Caron, M.G.; Lefkowitz, R.J. Regulation of adenylyl cyclase-coupled beta-adrenergic receptors. Annu. Rev. Cell Biol. 1988, 4, 405–428. [Google Scholar] [CrossRef] [PubMed]
- Palczewski, K.; Buczyłko, J.; Kaplan, M.W.; Polans, A.S.; Crabb, J.W. Mechanism of rhodopsin kinase activation. J. Biol. Chem. 1991, 266, 12949–12955. [Google Scholar] [CrossRef]
- McCarthy, N.E.; Akhtar, M. Activation of rhodopsin kinase. Biochem. J. 2002, 363, 359–364. [Google Scholar] [CrossRef]
- Lodowski, D.T.; Pitcher, J.A.; Capel, W.D.; Lefkowitz, R.J.; Tesmer, J.J. Keeping G proteins at bay: A complex between G protein-coupled receptor kinase 2 and Gbetagamma. Science 2003, 300, 1256–1262. [Google Scholar] [CrossRef]
- Lodowski, D.T.; Tesmer, V.M.; Benovic, J.L.; Tesmer, J.J. The structure of G protein-coupled receptor kinase (GRK)-6 defines a second lineage of GRKs. J. Biol. Chem. 2006, 281, 16785–16793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, P.; Wang, B.; Maeda, T.; Palczewski, K.; Tesmer, J.J. Structures of rhodopsin kinase in different ligand states reveal key elements involved in G protein-coupled receptor kinase activation. J. Biol. Chem. 2008, 283, 14053–14062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, S.J.; Parthasarathy, G.; Darke, P.L.; Diehl, R.E.; Ford, R.E.; Hall, D.L.; Johnson, S.A.; Reid, J.C.; Rickert, K.W.; Shipman, J.M.; et al. Structure and Function of the Hypertension Variant A486V of G Protein-coupled Receptor Kinase 4. J. Biol. Chem. 2015, 290, 20360–20373. [Google Scholar] [CrossRef] [Green Version]
- Homan, K.T.; Waldschmidt, H.V.; Glukhova, A.; Cannavo, A.; Song, J.; Cheung, J.Y.; Koch, W.J.; Larsen, S.D.; Tesmer, J.J. Crystal Structure of G Protein-coupled Receptor Kinase 5 in Complex with a Rationally Designed Inhibitor. J. Biol. Chem. 2015, 290, 20649–20659. [Google Scholar] [CrossRef] [Green Version]
- Madhusudan; Akamine, P.; Xuong, N.H.; Taylor, S.S. Crystal structure of a transition state mimic of the catalytic subunit of cAMP-dependent protein kinase. Nat. Struct. Biol. 2002, 9, 273–277. [Google Scholar] [CrossRef]
- Boguth, C.A.; Singh, P.; Huang, C.C.; Tesmer, J.J. Molecular basis for activation of G protein-coupled receptor kinases. EMBO J. 2010, 29, 3249–3259. [Google Scholar] [CrossRef] [Green Version]
- Komolov, K.E.; Sulon, S.M.; Bhardwaj, A.; van Keulen, S.C.; Duc, N.M.; Laurinavichyute, D.K.; Lou, H.J.; Turk, B.E.; Chung, K.Y.; Dror, R.O.; et al. Structure of a GRK5-Calmodulin Complex Reveals Molecular Mechanism of GRK Activation and Substrate Targeting. Mol. Cell 2020. [Google Scholar] [CrossRef]
- Watari, K.; Nakaya, M.; Kurose, H. Multiple functions of G protein-coupled receptor kinases. J. Mol. Signal. 2014, 9, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pronin, A.N.; Carman, C.V.; Benovic, J.L. Structure-function analysis of G protein-coupled receptor kinase-5. Role of the carboxyl terminus in kinase regulation. J. Biol. Chem. 1998, 273, 31510–31518. [Google Scholar] [CrossRef] [Green Version]
- Thiyagarajan, M.M.; Stracquatanio, R.P.; Pronin, A.N.; Evanko, D.S.; Benovic, J.L.; Wedegaertner, P.B. A predicted amphipathic helix mediates plasma membrane localization of GRK5. J. Biol. Chem. 2004, 279, 17989–17995. [Google Scholar] [CrossRef] [Green Version]
- Ding, B.; Glukhova, A.; Sobczyk-Kojiro, K.; Mosberg, H.I.; Tesmer, J.J.; Chen, Z. Unveiling the membrane-binding properties of N-terminal and C-terminal regions of G protein-coupled receptor kinase 5 by combined optical spectroscopies. Langmuir 2014, 30, 823–831. [Google Scholar] [CrossRef]
- Lodowski, D.T.; Barnhill, J.F.; Pyskadlo, R.M.; Ghirlando, R.; Sterne-Marr, R.; Tesmer, J.J. The role of G beta gamma and domain interfaces in the activation of G protein-coupled receptor kinase 2. Biochemistry 2005, 44, 6958–6970. [Google Scholar] [CrossRef]
- Carman, C.V.; Barak, L.S.; Chen, C.; Liu-Chen, L.Y.; Onorato, J.J.; Kennedy, S.P.; Caron, M.G.; Benovic, J.L. Mutational analysis of Gbetagamma and phospholipid interaction with G protein-coupled receptor kinase 2. J. Biol. Chem. 2000, 275, 10443–10452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koch, W.J.; Inglese, J.; Stone, W.C.; Lefkowitz, R.J. The binding site for the beta gamma subunits of heterotrimeric G proteins on the beta-adrenergic receptor kinase. J. Biol. Chem. 1993, 268, 8256–8260. [Google Scholar] [CrossRef]
- Pitcher, J.A.; Inglese, J.; Higgins, J.B.; Arriza, J.L.; Casey, P.J.; Kim, C.; Benovic, J.L.; Kwatra, M.M.; Caron, M.G.; Lefkowitz, R.J. Role of beta gamma subunits of G proteins in targeting the beta-adrenergic receptor kinase to membrane-bound receptors. Science 1992, 257, 1264–1267. [Google Scholar] [CrossRef]
- Koch, W.J.; Rockman, H.A.; Samama, P.; Hamilton, R.A.; Bond, R.A.; Milano, C.A.; Lefkowitz, R.J. Cardiac function in mice overexpressing the beta-adrenergic receptor kinase or a beta ARK inhibitor. Science 1995, 268, 1350–1353. [Google Scholar] [CrossRef]
- Pitcher, J.A.; Fredericks, Z.L.; Stone, W.C.; Premont, R.T.; Stoffel, R.H.; Koch, W.J.; Lefkowitz, R.J. Phosphatidylinositol 4,5-bisphosphate (PIP2)-enhanced G protein-coupled receptor kinase (GRK) activity. Location, structure, and regulation of the PIP2 binding site distinguishes the GRK subfamilies. J. Biol. Chem. 1996, 271, 24907–24913. [Google Scholar] [CrossRef] [Green Version]
- DebBurman, S.K.; Ptasienski, J.; Benovic, J.L.; Hosey, M.M. G protein-coupled receptor kinase GRK2 is a phospholipid-dependent enzyme that can be conditionally activated by G protein betagamma subunits. J. Biol. Chem. 1996, 271, 22552–22562. [Google Scholar] [CrossRef] [Green Version]
- Komolov, K.E.; Du, Y.; Duc, N.M.; Betz, R.M.; Rodrigues, J.; Leib, R.D.; Patra, D.; Skiniotis, G.; Adams, C.M.; Dror, R.O.; et al. Structural and Functional Analysis of a β(2)-Adrenergic Receptor Complex with GRK5. Cell 2017, 169, 407–421.e416. [Google Scholar] [CrossRef] [Green Version]
- Kong, G.; Penn, R.; Benovic, J.L. A beta-adrenergic receptor kinase dominant negative mutant attenuates desensitization of the beta 2-adrenergic receptor. J. Biol. Chem. 1994, 269, 13084–13087. [Google Scholar] [CrossRef]
- Kallal, L.; Gagnon, A.W.; Penn, R.B.; Benovic, J.L. Visualization of agonist-induced sequestration and down-regulation of a green fluorescent protein-tagged beta2-adrenergic receptor. J. Biol. Chem. 1998, 273, 322–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sterne-Marr, R.; Baillargeon, A.I.; Michalski, K.R.; Tesmer, J.J. Expression, purification, and analysis of G-protein-coupled receptor kinases. Methods Enzymol. 2013, 521, 347–366. [Google Scholar] [CrossRef] [Green Version]
- Pitcher, J.A.; Tesmer, J.J.; Freeman, J.L.; Capel, W.D.; Stone, W.C.; Lefkowitz, R.J. Feedback inhibition of G protein-coupled receptor kinase 2 (GRK2) activity by extracellular signal-regulated kinases. J. Biol. Chem. 1999, 274, 34531–34534. [Google Scholar] [CrossRef] [Green Version]
- Beautrait, A.; Michalski, K.R.; Lopez, T.S.; Mannix, K.M.; McDonald, D.J.; Cutter, A.R.; Medina, C.B.; Hebert, A.M.; Francis, C.J.; Bouvier, M.; et al. Mapping the putative G protein-coupled receptor (GPCR) docking site on GPCR kinase 2: Insights from intact cell phosphorylation and recruitment assays. J. Biol. Chem. 2014, 289, 25262–25275. [Google Scholar] [CrossRef] [Green Version]
- Kannan, N.; Haste, N.; Taylor, S.S.; Neuwald, A.F. The hallmark of AGC kinase functional divergence is its C-terminal tail, a cis-acting regulatory module. Proc. Natl. Acad. Sci. USA 2007, 104, 1272–1277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siderovski, D.P.; Hessel, A.; Chung, S.; Mak, T.W.; Tyers, M. A new family of regulators of G-protein-coupled receptors? Curr. Biol. 1996, 6, 211–212. [Google Scholar] [CrossRef] [Green Version]
- Palczewski, K.; Buczyłko, J.; Lebioda, L.; Crabb, J.W.; Polans, A.S. Identification of the N-terminal region in rhodopsin kinase involved in its interaction with rhodopsin. J. Biol. Chem. 1993, 268, 6004–6013. [Google Scholar] [CrossRef]
- Yu, Q.M.; Cheng, Z.J.; Gan, X.Q.; Bao, G.B.; Li, L.; Pei, G. The amino terminus with a conserved glutamic acid of G protein-coupled receptor kinases is indispensable for their ability to phosphorylate photoactivated rhodopsin. J. Neurochem. 1999, 73, 1222–1227. [Google Scholar] [CrossRef] [PubMed]
- Noble, B.; Kallal, L.A.; Pausch, M.H.; Benovic, J.L. Development of a yeast bioassay to characterize G protein-coupled receptor kinases. Identification of an NH2-terminal region essential for receptor phosphorylation. J. Biol. Chem. 2003, 278, 47466–47476. [Google Scholar] [CrossRef] [Green Version]
- Pao, C.S.; Barker, B.L.; Benovic, J.L. Role of the amino terminus of G protein-coupled receptor kinase 2 in receptor phosphorylation. Biochemistry 2009, 48, 7325–7333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, C.C.; Yoshino-Koh, K.; Tesmer, J.J. A surface of the kinase domain critical for the allosteric activation of G protein-coupled receptor kinases. J. Biol. Chem. 2009, 284, 17206–17215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, C.C.; Orban, T.; Jastrzebska, B.; Palczewski, K.; Tesmer, J.J. Activation of G protein-coupled receptor kinase 1 involves interactions between its N-terminal region and its kinase domain. Biochemistry 2011, 50, 1940–1949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sterne-Marr, R.; Leahey, P.A.; Bresee, J.E.; Dickson, H.M.; Ho, W.; Ragusa, M.J.; Donnelly, R.M.; Amie, S.M.; Krywy, J.A.; Brookins-Danz, E.D.; et al. GRK2 activation by receptors: Role of the kinase large lobe and carboxyl-terminal tail. Biochemistry 2009, 48, 4285–4293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Y.; Gao, X.; Goswami, D.; Hou, L.; Pal, K.; Yin, Y.; Zhao, G.; Ernst, O.P.; Griffin, P.; Melcher, K.; et al. Molecular assembly of rhodopsin with G protein-coupled receptor kinases. Cell Res. 2017, 27, 728–747. [Google Scholar] [CrossRef]
- Dhami, G.K.; Dale, L.B.; Anborgh, P.H.; O’Connor-Halligan, K.E.; Sterne-Marr, R.; Ferguson, S.S. G Protein-coupled receptor kinase 2 regulator of G protein signaling homology domain binds to both metabotropic glutamate receptor 1a and Galphaq to attenuate signaling. J. Biol. Chem. 2004, 279, 16614–16620. [Google Scholar] [CrossRef] [Green Version]
- Ballesteros, J.A.; Jensen, A.D.; Liapakis, G.; Rasmussen, S.G.; Shi, L.; Gether, U.; Javitch, J.A. Activation of the beta 2-adrenergic receptor involves disruption of an ionic lock between the cytoplasmic ends of transmembrane segments 3 and 6. J. Biol. Chem. 2001, 276, 29171–29177. [Google Scholar] [CrossRef] [Green Version]
- Yao, X.Q.; Cato, M.C.; Labudde, E.; Beyett, T.S.; Tesmer, J.J.G.; Grant, B.J. Navigating the conformational landscape of G protein-coupled receptor kinases during allosteric activation. J. Biol. Chem. 2017, 292, 16032–16043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, W.; Osawa, S.; Dickerson, C.D.; Weiss, E.R. Rhodopsin mutants discriminate sites important for the activation of rhodopsin kinase and Gt. J. Biol. Chem. 1995, 270, 2112–2119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orban, T.; Huang, C.C.; Homan, K.T.; Jastrzebska, B.; Tesmer, J.J.; Palczewski, K. Substrate-induced changes in the dynamics of rhodopsin kinase (G protein-coupled receptor kinase 1). Biochemistry 2012, 51, 3404–3411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Homan, K.T.; Tesmer, J.J. Structural insights into G protein-coupled receptor kinase function. Curr. Opin. Cell Biol. 2014, 27, 25–31. [Google Scholar] [CrossRef] [Green Version]
- Thal, D.M.; Homan, K.T.; Chen, J.; Wu, E.K.; Hinkle, P.M.; Huang, Z.M.; Chuprun, J.K.; Song, J.; Gao, E.; Cheung, J.Y.; et al. Paroxetine is a direct inhibitor of g protein-coupled receptor kinase 2 and increases myocardial contractility. ACS Chem. Biol. 2012, 7, 1830–1839. [Google Scholar] [CrossRef]
- Homan, K.T.; Larimore, K.M.; Elkins, J.M.; Szklarz, M.; Knapp, S.; Tesmer, J.J. Identification and structure-function analysis of subfamily selective G protein-coupled receptor kinase inhibitors. ACS Chem. Biol. 2015, 10, 310–319. [Google Scholar] [CrossRef] [Green Version]
- Komolov, K.E.; Bhardwaj, A.; Benovic, J.L. Atomic Structure of GRK5 Reveals Distinct Structural Features Novel for G Protein-coupled Receptor Kinases. J. Biol. Chem. 2015, 290, 20629–20647. [Google Scholar] [CrossRef] [Green Version]
- Barak, L.S.; Tiberi, M.; Freedman, N.J.; Kwatra, M.M.; Lefkowitz, R.J.; Caron, M.G. A highly conserved tyrosine residue in G protein-coupled receptors is required for agonist-mediated beta 2-adrenergic receptor sequestration. J. Biol. Chem. 1994, 269, 2790–2795. [Google Scholar] [CrossRef]
- Ferguson, S.S.; Ménard, L.; Barak, L.S.; Koch, W.J.; Colapietro, A.M.; Caron, M.G. Role of phosphorylation in agonist-promoted beta 2-adrenergic receptor sequestration. Rescue of a sequestration-defective mutant receptor by beta ARK1. J. Biol. Chem. 1995, 270, 24782–24789. [Google Scholar] [CrossRef] [Green Version]
- Nickolls, S.A.; Humphreys, S.; Clark, M.; McMurray, G. Co-expression of GRK2 reveals a novel conformational state of the µ-opioid receptor. PLoS ONE 2013, 8, e83691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miess, E.; Gondin, A.B.; Yousuf, A.; Steinborn, R.; Mösslein, N.; Yang, Y.; Göldner, M.; Ruland, J.G.; Bünemann, M.; Krasel, C.; et al. Multisite phosphorylation is required for sustained interaction with GRKs and arrestins during rapid μ-opioid receptor desensitization. Sci. Signal. 2018, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Møller, T.C.; Pedersen, M.F.; van Senten, J.R.; Seiersen, S.D.; Mathiesen, J.M.; Bouvier, M.; Bräuner-Osborne, H. Dissecting the roles of GRK2 and GRK3 in μ-opioid receptor internalization and β-arrestin2 recruitment using CRISPR/Cas9-edited HEK293 cells. Sci. Rep. 2020, 10, 17395. [Google Scholar] [CrossRef]
- Li, L.; Homan, K.T.; Vishnivetskiy, S.A.; Manglik, A.; Tesmer, J.J.; Gurevich, V.V.; Gurevich, E.V. G Protein-coupled Receptor Kinases of the GRK4 Protein Subfamily Phosphorylate Inactive G Protein-coupled Receptors (GPCRs). J. Biol. Chem. 2015, 290, 10775–10790. [Google Scholar] [CrossRef] [Green Version]
Bovine GRK2 Variant | Km (95% CI) (µM) | Normalized Vmax (95% CI) (A.U.) 1 | Normalized Vmax/Km (µM−1) |
---|---|---|---|
WT | 13 (8 to 21) | 1.2 (1.0 to 1.4) | 0.09 |
L33N | 13 (10 to 18) | 1.2 (1.1 to 1.3) | 0.09 |
E36A | 17 (8 to 44) | 1.3 (1.0 to 1.9) | 0.08 |
K220R | N.D. 2 | N.D. | N.D. |
E532A | 22 (12 to 40) | 1.4 (1.1 to 1.8) | 0.06 |
L536N | 17 (9 to 32) | 1.4 (1.1 to 1.8) | 0.08 |
L547N | 13 (4 to 36) | 1.0 (0.8 to 1.6) | 0.08 |
Bovine GRK2 Variant | Km (95% CI) (µM) | Normalized Vmax (95% CI) (A.U.) 1 | Normalized Vmax/Km (µM−1) |
---|---|---|---|
WT | 24 (16 to 36) | 1.3 (1.1 to 1.6) | 0.05 |
L33N | 30 (14 to 82) | 1.0 (0.7 to 1.7) | 0.03 |
E36A | 27 (18 to 43) | 0.9 (0.8 to 1.1) | 0.03 |
K220R | N.D. 2 | N.D. | N.D. |
E532A | 37 (17 to 101) | 0.8 (0.6 to 1.4) | 0.02 |
L536N | 34 (17 to 77) | 1.2 (0.9 to 1.8) | 0.04 |
L547N | 24 (9 to 89) | 0.8 (0.5 to 1.5) | 0.03 |
Bovine GRK2 Variant | Km (95% CI) (nM) 1 | Normalized Vmax (95% CI) (A.U.) 2 | Normalized Vmax/Km (µM−1) |
---|---|---|---|
wt | 240 (160 to 350) | 1.1 (1.0 to 1.2) | 5 |
L33N | 360 (160 to 760) | 1.1 (0.9 to 1.4) | 3 |
E36A | 130 (75 to 220) | 0.6 (0.5 to 0.7) | 5 |
K220R | 300 (160 to 510) | 0.3 (0.2 to 0.3) | 1 |
E532A | 140 (70 to 260) | 0.4 (0.3 to 0.4) | 3 |
L536N | 180 (90 to 330) | 0.5 (0.4 to 0.6) | 3 |
L547N | 170 (93 to 290) | 0.4 (0.4 to 0.5) | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cato, M.C.; Yen, Y.-C.; Francis, C.J.; Elkins, K.E.; Shareef, A.; Sterne-Marr, R.; Tesmer, J.J.G. The Open Question of How GPCRs Interact with GPCR Kinases (GRKs). Biomolecules 2021, 11, 447. https://doi.org/10.3390/biom11030447
Cato MC, Yen Y-C, Francis CJ, Elkins KE, Shareef A, Sterne-Marr R, Tesmer JJG. The Open Question of How GPCRs Interact with GPCR Kinases (GRKs). Biomolecules. 2021; 11(3):447. https://doi.org/10.3390/biom11030447
Chicago/Turabian StyleCato, M. Claire, Yu-Chen Yen, Charnelle J. Francis, Kaely E. Elkins, Afzaal Shareef, Rachel Sterne-Marr, and John J. G. Tesmer. 2021. "The Open Question of How GPCRs Interact with GPCR Kinases (GRKs)" Biomolecules 11, no. 3: 447. https://doi.org/10.3390/biom11030447
APA StyleCato, M. C., Yen, Y. -C., Francis, C. J., Elkins, K. E., Shareef, A., Sterne-Marr, R., & Tesmer, J. J. G. (2021). The Open Question of How GPCRs Interact with GPCR Kinases (GRKs). Biomolecules, 11(3), 447. https://doi.org/10.3390/biom11030447