Antennal Enriched Odorant Binding Proteins Are Required for Odor Communication in Glossina f. fuscipes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biological Material
2.2. Chemicals
2.3. Odorant Exposure and RNA Extraction
2.4. Quantitative Real-Time RT-PCR Assay and Data Analysis
2.5. Structural Analysis of G. f. fuscipes Odorant-Binding Proteins
2.6. Homology Modeling and Binding Pocket Analysis
2.7. Model Optimization and Molecular Docking
2.8. Molecular Dynamic Simulations
2.9. dsRNAi Preparation and Its Delivery to Flies
2.10. Behavioural Bioassay with dsRNAi Gene-Silenced Flies
3. Results
3.1. Structural Analysis of Glossina f. fuscipes Odorant-Binding Proteins
3.2. In Silico Homology Modeling and Binding Pocket Analysis of G. f. fuscipes OBPs
3.3. Tissue-Specific Expression of Different OBPs
3.4. The Olfactory Function of Glossina f. fuscipes OBPs Expressed in the Antennae
3.5. Physiochemical Properties and Molecular Docking of G. f. fuscipes OBPs
3.6. Conformational Dynamics of Docked Systems
3.7. Evaluation of Deorphanization of Receptors Based on Expression Alterations in mRNA Levels (DREAM) on Different OBPs
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Missbach, C.; Dweck, H.K.M.; Vogel, H.; Vilcinskas, A.; Stensmyr, M.C.; Hansson, B.S.; Grosse-Wilde, E. Evolution of insect olfactory receptors. Elife 2014, 3, e02115. [Google Scholar] [CrossRef] [PubMed]
- Missbach, C.; Vogel, H.; Hansson, B.S.; Große-Wilde, E. Identification of odorant binding proteins and chemosensory proteins in antennal transcriptomes of the jumping bristletail Lepismachilis y-signata and the firebrat Thermobia domestica: Evidence for an independent OBP-OR origin. Chem. Senses 2015, 40, 615–626. [Google Scholar] [CrossRef] [Green Version]
- Getahun, M.N.; Thoma, M.; Lavista-Llanos, S.; Keesey, I.; Fandino, R.A.; Knaden, M.; Wicher, D.; Olsson, S.B.; Hansson, B.S. Intracellular regulation of the insect chemoreceptor complex impacts odor localization in flying insects. J. Exp. Biol. 2016, 219, 3428–3438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, R.; He, X.; Lehane, S.; Lehane, M.; Hertz-Fowler, C.; Berriman, M.; Field, L.M.; Zhou, J.J. Expression of chemosensory proteins in the tsetse fly Glossina morsitans morsitans is related to female host-seeking behaviour. Insect Mol. Biol. 2012, 21, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Obiero, G.F.O.; Mireji, P.O.; Nyanjom, S.R.G.; Christoffels, A.; Robertson, H.M.; Masiga, D.K. Odorant and Gustatory Receptors in the Tsetse Fly Glossina morsitans morsitans. PLoS Negl. Trop. Dis. 2014, 8, e2663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macharia, R.; Mireji, P.; Murungi, E.; Murilla, G.; Christoffels, A.; Aksoy, S.; Masiga, D. Genome-Wide Comparative Analysis of Chemosensory Gene Families in Five Tsetse Fly Species. PLoS Negl. Trop. Dis. 2016, 10, 1–30. [Google Scholar]
- Attardo, G.M.; Abd-Alla, A.M.M.; Acosta-Serrano, A.; Allen, J.E.; Bateta, R.; Benoit, J.B.; Bourtzis, K.; Caers, J.; Caljon, G.; Christensen, M.B.; et al. Comparative genomic analysis of six Glossina genomes, vectors of African trypanosomes. Genome Biol. 2019, 20, 1–31. [Google Scholar] [CrossRef] [Green Version]
- Leak, S.G.A. Tsetse Biology and Ecology: Their Role in the Epidemiology and Control of Trypanosomiasis; CABI Publishing: New York, NY, USA, 1999; 599p. [Google Scholar]
- Solano, P.; Kaba, D.; Ravel, S.; Dyer, N.A.; Sall, B.; Vreysen, M.J.B.; Seck, M.T.; Darbyshir, H.; Gardes, L.; Donnelly, M.J.; et al. Population Genetics as a Tool to Select Tsetse Control Strategies: Suppression or Eradication of Glossina palpalis gambiensis in the Niayes of Senegal. PLoS Negl. Trop. Dis. 2010, 4, e692. [Google Scholar] [CrossRef] [Green Version]
- Rogers, D.J.; Robinson, T.P. Tsetse distribution. In The Trypanosomes; Maudlin, I., Holmes, P.H., Miles, M.A., Eds.; CABI Publishing: Wallingford, UK, 2004; pp. 139–179. [Google Scholar]
- Gooding, R.H.; Krafsur, E.S. Tsetse genetics: Contributions to Biology, Systematics, and Control of Tsetse Flies. Annu. Rev. Entomol. 2005, 50, 101–123. [Google Scholar] [CrossRef] [Green Version]
- Krafsur, E.S. Tsetse flies: Genetics, evolution, and role as vectors. Infect. Genet. Evol. 2009, 9, 124–141. [Google Scholar] [CrossRef] [Green Version]
- Krafsur, E.S.; Marquez, J.G.; Ouma, J.O. Structure of some East African Glossina fuscipes fuscipes populations. Med. Vet. Entomol. 2008, 22, 222–227. [Google Scholar] [CrossRef] [Green Version]
- Tirados, I.; Esterhuizen, J.; Kovacic, V.; Mangwiro, T.N.C.; Vale, G.A.; Hastings, I.; Solano, P.; Lehane, M.J.; Torr, S.J. Tsetse control and Gambian sleeping sickness; implications for control strategy. PLoS Negl. Trop. Dis. 2015, 9, e0003822. [Google Scholar] [CrossRef] [Green Version]
- Aksoy, S.; Caccone, A.; Galvani, A.P.; Okedi, L.M. Glossina fuscipes populations provide insights for Human African Trypanosomiasis transmission in Uganda. Trends Parasitol. 2013, 29, 394–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clausen, P.H.; Adeyemi, I.; Bauer, B.; Breloeer, M.; Salchow, F.; Staak, C. Host preferences of tsetse (Diptera: Glossinidae) based on bloodmeal identifications. Med. Vet. Entomol. 1998, 12, 169–180. [Google Scholar] [CrossRef] [PubMed]
- Rogers, D.J.; Hendrickx, G.; Slingenbergh, J.H. Tsetse flies and their control. Rev. Sci. Tech. 1994, 13, 1075–1124. [Google Scholar] [CrossRef]
- Takken, W.; Weiss, M. The Sterile Insect Technique for Control of Tsetse Flies in Africa. IAEA Bull. 1974, 20, 20–24. [Google Scholar]
- Klassen, W. Area-wide integrated pest management and the sterile insect technique. In Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management; Dyck, V.A., Hendrichs, J., Robinson, A.S., Eds.; Springer: Dordrecht, The Netherland, 2005. [Google Scholar]
- Lindh, J.M.; Torr, S.J.; Vale, G.A.; Lehane, M.J. Improving the cost-effectiveness of artificial visual baits for controlling the tsetse fly Glossina fuscipes fuscipes. PLoS Negl. Trop. Dis. 2009, 3, 3–9. [Google Scholar] [CrossRef]
- Esterhuizen, J.; Rayaisse, J.B.; Tirados, I.; Mpiana, S.; Solano, P.; Vale, G.A.; Lehane, M.J.; Torr, S.J. Improving the cost-effectiveness of visual devices for the control of riverine tsetse flies, the major vectors of human African trypanosomiasis. PLoS Negl. Trop. Dis. 2011, 5, e1257. [Google Scholar] [CrossRef] [Green Version]
- Rayaisse, J.B.; Kröber, T.; McMullin, A.; Solano, P.; Mihok, S.; Guerin, P.M. Standardizing visual control devices for Tsetse flies: West African species glossina tachinoides, G. palpalis gambiensis and G. morsitans submorsitans. PLoS Negl. Trop. Dis. 2012, 6, e1491. [Google Scholar] [CrossRef] [Green Version]
- Owaga, M.L.A. Preliminary observations on the efficacy of olfactory attractants derived from wild hosts of tsetse. Int. J. Trop. Insect Sci. 1984, 5, 87–90. [Google Scholar] [CrossRef]
- Brightwell, R.; Dransfield, R.D.; Kyorku, C. Development of a low-cost tsetse trap and odour baits for Glossina pallidipes and G.longipennis in Kenya. Med. Vet. Entomol. 1991, 5, 87–90. [Google Scholar] [CrossRef]
- Dransfield, R.D.; Brightwell, R.; Kyorku, C.; Williams, B. Control of tsetse fly (Diptera: Glossinidae) populations using traps at Nguruman, south-west Kenya. Bull. Entomol. Res. 1990, 80, 265–276. [Google Scholar] [CrossRef]
- Byamungu, M.; Zacarie, T.; Makumyaviri M’Pondi, A.; Mansinsa Diabakana, P.; McMullin, A.; Kröber, T.; Mihok, S.; Guerin, P.M. Standardising visual control devices for Tsetse: East and Central African Savannah species Glossina swynnertoni, Glossina morsitans centralis and Glossina pallidipes. PLoS Negl. Trop. Dis. 2018, 12, e0006831. [Google Scholar] [CrossRef] [PubMed]
- Vale, G.A. Field responses of tsetse flies (Diptera: Glossinidae) to odours of men, lactic acid and carbon dioxide. Bull. Entomol. Res 1974, 69, 459–467. [Google Scholar] [CrossRef]
- Otter, C.J.D. Olfactory responses of tsetse flies to phenols from buffalo urine. Physiol. Entomol. 1991, 16, 401–410. [Google Scholar] [CrossRef]
- Brady, J.; Griffiths, N. Upwind flight responses of tsetse flies (Glossina spp.) (Diptera: Glossinidae) to acetone, octenol and phenols in nature: A video study. Bull. Entomol. Res. 1993, 83, 329. [Google Scholar] [CrossRef] [Green Version]
- Vale, G.A. Field studies of the responses of tsetse flies (Glossinidae) and other Diptera to carbon dioxide, acetone and other chemicals. Bull. Entomol. Res. 1980, 70, 563–570. [Google Scholar] [CrossRef]
- Vale, G.A. The responses of Glossina (Glossinidae) and other Diptera to odour plumes in the field. Bull. Entomol. Res. 1984, 74, 143–152. [Google Scholar] [CrossRef]
- Torr, S.J.; Mangwiro, T.N.C.; Hall, D.R. Responses of Glossina pallidipes (Diptera: Glossinidae) to synthetic repellents in the field. Bull. Entomol. Res. 1996, 86, 609–616. [Google Scholar] [CrossRef]
- Torr, S.J.; Hall, D.R.; Phelps, R.J.; Vale, G.A. Methods for dispensing odour attractants for tsetse flies (Diptera: Glossinidae). Bull. Entomol. Res. 1997, 87, 299–311. [Google Scholar] [CrossRef]
- Rayaisse, J.B.; Tirados, I.; Kaba, D.; Dewhirst, S.Y.; Logan, J.G.; Diarrassouba, A.; Salou, E.; Omolo, M.O.; Solano, P.; Lehane, M.J.; et al. Prospects for the Development of Odour Baits to Control the Tsetse Flies Glossina tachinoidesand G. palpalis s.l. PLoS Negl. Trop. Dis. 2010, 4, e632. [Google Scholar] [CrossRef]
- Omolo, M.O.; Hassanali, A.; Mpiana, S.; Esterhuizen, J.; Lindh, J.; Lehane, M.J.; Solano, P.; Rayaisse, J.B.; Vale, G.A.; Torr, S.J.; et al. Prospects for developing odour baits to control Glossina fuscipes spp., the major vector of human African trypanosomiasis. PLoS Negl. Trop. Dis. 2009, 3, e435. [Google Scholar] [CrossRef] [PubMed]
- Pelosi, P.; Iovinella, I.; Felicioli, A.; Dani, F.R. Soluble proteins of chemical communication: An overview across arthropods. Front. Physiol. 2014, 5, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Pelosi, P. Perireceptor events in olfaction. J. Neurobiol. 1996, 30, 3–19. [Google Scholar] [CrossRef]
- Fan, J.; Francis, F.; Liu, Y.; Chen, J.L.; Cheng, D.F. An overview of odorant-binding protein functions in insect peripheral olfactory reception. Genet. Mol. Res. 2011, 10, 3056–3069. [Google Scholar] [CrossRef]
- Leal, W.S. Odorant Reception in Insects: Roles of Receptors, Binding Proteins, and Degrading Enzymes. Annu. Rev. Entomol. 2013, 58, 373–391. [Google Scholar] [CrossRef]
- Kato, A.; Touhara, K. Mammalian olfactory receptors: Pharmacology, G protein coupling and desensitization. Cell. Mol. Life Sci. 2009, 66, 3743–3753. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.J. Odorant-binding proteins in insects. Vitam. Horm. 2010, 83, 241–272. [Google Scholar]
- Swarup, S.; Williams, T.I.; Anholt, R.R.H. Functional dissection of Odorant binding protein genes in Drosophila melanogaster. Genes Brain Behav. 2011, 10, 648–657. [Google Scholar] [CrossRef] [PubMed]
- Van der Goes van Naters, W.; Carlson, J.R.R. Receptors and Neurons for Fly Odors in Drosophila. Curr. Biol. 2007, 17, 606–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larter, N.K.; Sun, J.S.; Carlson, J.R.; Haven, N.; States, U. Organization and function of Drosophila odorant binding proteins. Elife 2016, 5, e20242. [Google Scholar] [CrossRef]
- Scheuermann, E.A.; Smith, D.P. Odor-specific deactivation defects in a drosophila odorant-binding protein mutant. Genetics 2019, 213, 897–909. [Google Scholar] [CrossRef]
- Bentzur, A.; Shmueli, A.; Omesi, L.; Ryvkin, J.; Knapp, J.; Parnas, M.; Davis, F.P.; Shohat-ophir, G. Odorant binding protein 69a connects social interaction to modulation of social responsiveness in Drosophila. PLoS Genet. 2018, 14, e1007328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rihani, K.; Fraichard, S.; Chauvel, I.; Poirier, N.; Delompré, T.; Neiers, F.; Tanimura, T.; Ferveur, J.F.; Briand, L. A conserved odorant binding protein is required for essential amino acid detection in Drosophila. Commun. Biol. 2019, 2, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Pelletier, J.; Guidolin, A.; Syed, Z.; Cornel, A.J.; Leal, W.S. Knockdown of a mosquito odorant-binding protein involved in the sensitive detection of oviposition attractants. J. Chem. Ecol. 2010, 36, 245–248. [Google Scholar] [CrossRef] [Green Version]
- Biessmann, H.; Andronopoulou, E.; Biessmann, M.R.; Douris, V.; Dimitratos, S.D.; Eliopoulos, E.; Guerin, P.M.; Iatrou, K.; Justice, R.W.; Kröber, T.; et al. The Anopheles gambiae odorant binding protein 1 (AgamOBP1) mediates indole recognition in the antennae of female mosquitoes. PLoS ONE 2010, 5, e9471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- David, M.J.; Foteini., D.; Emma, M.; Emely, D. Binding of indole induces conformational changes that regulate interactions between odorant binding proteins from Anopheles gambiae mosquitoes. Chem. Senses 2012, 1, 37. [Google Scholar]
- Feldmann, U. Guidelines for the Rearing of Tsetse Flies Using the Membrane Feeding Technique; ICIPE Science Press: Nairobi, Kenya, 1994; pp. 449–471. [Google Scholar]
- Pérez-Olivero, S.J.; Pérez-Pont, M.L.; Conde, J.E.; Pérez-Trujillo, J.P. Determination of Lactones in Wines by Headspace Solid-Phase Microextraction and Gas Chromatography Coupled with Mass Spectrometry. J. Anal. Methods Chem. 2014, 2014, 863019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karlsson, B.C.G.; Friedman, R. Dilution of whisky—The molecular perspective. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Weid, B.; Von Der Rossier, D.; Lindup, M.; Tuberosa, J.; Widmer, A.; Col, J.D.; Kan, C.; Carleton, A.; Rodriguez, I. Large-scale transcriptional profiling of chemosensory neurons identifies receptor-ligand pairs in vivo. Nat. Neurosci. 2015, 18, 1455–1463. [Google Scholar] [CrossRef]
- Koerte, S.; Keesey, I.W.; Khallaf, M.A.; Cortés Llorca, L.; Grosse-Wilde, E.; Hansson, B.S.; Knaden, M. Evaluation of the DREAM Technique for a High-Throughput Deorphanization of Chemosensory Receptors in Drosophila. Front. Mol. Neurosci. 2018, 11, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Diallo, S.; Shahbaaz, M.; Torto, B.; Christoffels, A.; Masiga, D.; Getahun, M.N. Cellular and Molecular Targets of Waterbuck Repellent Blend Odors in Antennae of Glossina fuscipes fuscipes Newstead, 1910. Front. Cell. Neurosci. 2020, 14, 137. [Google Scholar] [CrossRef] [PubMed]
- Rao, X.; Huang, X.; Zhou, Z.; Lin, X. An improvement of the 2ˆ(-delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostat. Bioinform. Biomath. 2014, 3, 71–85. [Google Scholar]
- Untergasser, A.; Cutcutache, I.; Koressaar, T.; Ye, J.; Faircloth, B.C.; Remm, M.; Rozen, S.G. Primer3-new capabilities and interfaces. Nucleic Acids Res. 2012, 40, e115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, W.; Peng, W.; Zhu, C.; Zhang, Q.; Saccone, G.; Zhang, H. Identification and expression profile analysis of odorant binding proteins in the oriental fruit fly Bactrocera dorsalis. Int. J. Mol. Sci. 2013, 14, 14936–14949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.N.; Jin, J.Y.; Jin, R.; Xia, Y.H.; Zhou, J.J.; Deng, J.Y.; Dong, S.L. Differential Expression Patterns in Chemosensory and Non-Chemosensory Tissues of Putative Chemosensory Genes Identified by Transcriptome Analysis of Insect Pest the Purple Stem Borer Sesamia inferens (Walker). PLoS ONE 2013, 8, e69715. [Google Scholar]
- Zhang, S.; Li, Q.; Qiao, Q. Nanometer TiO2 photocatalyst complexed by semiconductor. Chem. Bull. Huaxue Tongbao 2004, 67, 295–299. [Google Scholar]
- Yang, H.; Dong, J.; Sun, Y.; Hu, Z.; Lv, Q.; Li, D. Antennal transcriptome analysis and expression profiles of putative chemosensory soluble proteins in Histia rhodope Cramer (Lepidoptera: Zygaenidae). Comp. Biochem. Physiol. Part D Genom. Proteom. 2020, 33, 100654. [Google Scholar] [CrossRef]
- Waterhouse, A.M.; Procter, J.B.; Martin, D.M.A.; Clamp, M.; Barton, G.J. Sequence analysis Jalview Version 2-a multiple sequence alignment editor and analysis workbench. Bioinformatics 2009, 25, 1189–1191. [Google Scholar] [CrossRef] [Green Version]
- Almagro Armenteros, J.J.; Tsirigos, K.D.; Sønderby, C.K.; Petersen, T.N.; Winther, O.; Brunak, S.; von Heijne, G.; Nielsen, H. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 2019, 37, 420–423. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Y.; Li, Y. Evaluating signal peptide prediction methods for Gram-positive bacteria. Sect. Cell. Mol. Biol. 2009, 64, 655–659. [Google Scholar] [CrossRef]
- Nielsen, H.; Tsirigos, K.D.; Brunak, S.; von Heijne, G. A Brief History of Protein Sorting Prediction. Protein J. 2019, 38, 200–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelley, L.A.; Mezulis, S.; Yates, C.M.; Wass, M.N.; Sternberg, M.J.E. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 2015, 10, 845–858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahrrolfes, R.F.; Bietz, S.; Flachsenberg, F.; Meyder, A.; Nittinger, E.; Otto, T.; Volkamer, A.; Rarey, M. ProteinsPlus: A web portal for structure analysis of macromolecules. Nucleic Acids Res. 2017, 45, 337–343. [Google Scholar] [CrossRef] [Green Version]
- Team, R.C. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Pronk, S.; Apostolov, R.; Shirts, M.R.; Smith, J.C.; Kasson, P.M.; Spoel, D.; Van Der Hess, B.; Lindahl, E. A high- throughput and highly parallel open source molecular simu- lation toolkit. Bioinformatics 2013, 29, 845–854. [Google Scholar] [CrossRef]
- Oostenbrink, C.; Villa, A.; Mark, A.E.; Gunsteren, W.F.V.A.N. A Biomolecular Force Field Based on the Free Enthalpy of Hydration and Solvation: The GROMOS Force-Field Parameter Sets 53A5 and 53A6. J. Comput. Chem. 2004, 26, 1402–1416. [Google Scholar] [CrossRef] [PubMed]
- Schüttelkopf, A.W.; Van Aalten, D.M. PRODRG: A tool for high-throughput crystallography of protein ± ligand complexes research papers. Acta Crystallogr. Sect. D Biol. Crystallogr. 2004, 60, 1355–1363. [Google Scholar] [CrossRef] [Green Version]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Fox, D.J. Gaussian 09; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Zielkiewicz, J. Structural properties of water: Comparison of the SPC, SPCE, TIP4P, and TIP5P models of water Structural properties of water: Comparison of the SPC, SPCE, TIP4P, and TIP5P models of water. J. Chem. Phys. 2005, 123, 104501. [Google Scholar] [CrossRef]
- Kumari, R.; Kumar, R.; Source, O.; Discovery, D.; Lynn, A. g_mmpbsa—A GROMACS tool for high-throughput MM-PBSA calculations. J. Chem. Inf. Model. 2014, 54, 1951–1962. [Google Scholar] [CrossRef]
- Walshe, D.P.; Lehane, S.M.; Lehane, M.J.; Haines, L.R. Prolonged gene knockdown in the tsetse fly Glossina by feeding double stranded RNA. Insect Mol. Biol. 2009, 18, 11–19. [Google Scholar] [CrossRef]
- Retzke, T.; Thoma, M.; Hansson, B.S.; Knaden, M. Potencies of effector genes in silencing odor-guided behavior in Drosophila melanogaster. J. Exp. Biol. 2017, 220, 1812–1819. [Google Scholar] [CrossRef] [Green Version]
- Hekmat-Scafe, D.S.; Scafe, C.R.; McKinney, A.J.; Tanouye, M.A. Genome-Wide analysis of the odorant-binding protein gene family in Drosophila melanogaster. Genome Res. 2002, 12, 1357–1369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, W.; Cornel, A.J.; Leal, W.S. Odorant-binding proteins of the malaria mosquito anopheles funestus sensu stricto. PLoS ONE 2010, 5, e15403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, X.; Krieger, J.; Breer, H.; Pregitzer, P. Distinct subfamilies of odorant binding proteins in locust (Orthoptera, Acrididae): Molecular evolution, structural variation, and sensilla-specific expression. Front. Physiol. 2017, 8, 734. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Li, D.; Zhou, A.; Yi, S.; Liu, H.; Wang, M. Predicted structure of a Minus-C OBP from Batocera horsfieldi (Hope ) suggests an intermediate structure in evolution of OBPs. Nat. Publ. Gr. 2016, 6, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Hajjar, E.; Perahia, D.; Débat, H.; Nespoulous, C.; Robert, C.H. Odorant binding and conformational dynamics in the odorant-binding protein. J. Biol. Chem. 2006, 281, 29929–29937. [Google Scholar] [CrossRef] [Green Version]
- Szabady, R.L.; Peterson, J.H.; Skillman, K.M.; Bernstein, H.D. An unusual signal peptide facilitates late steps in the biogenesis of a bacterial autotransporter. Proc. Natl. Acad. Sci. USA 2004, 102, 221–226. [Google Scholar] [CrossRef] [Green Version]
- Ghavami, M.B.; Khoeini, S.; Djadid, N.D. Molecular characteristics of odorant—Binding protein 1 in Anopheles maculipennis. Malar. J. 2020, 19, 1–10. [Google Scholar] [CrossRef] [PubMed]
- De Bruyne, M.; Baker, T.C. Odor detection in insects: Volatile codes. J. Chem. Ecol. 2008, 34, 882–897. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.S.; Repp, A.; Smith, D.P. LUSH odorant-binding protein mediates chemosensory responses to alcohols in Drosophila melanogaster. Genetics 1998, 150, 711–721. [Google Scholar]
- Biessmann, H.; Le, D.; Walter, M.F. Microarray-based survey of a subset of putative olfactory genes in the mosquito Anopheles gambiae. Insect Mol. Biol. 2005, 14, 575–589. [Google Scholar] [CrossRef]
- Gonzalez, D.; Rihani, K.; Neiers, F.; Poirier, N.; Fraichard, S. The Drosophila odorant—Binding protein 28a is involved in the detection of the floral odour ß-ionone. Cell. Mol. Life Sci. 2019, 2019, 1–13. [Google Scholar] [CrossRef]
- Liang, J.I.E.; Edelsbrunner, H.; Woodward, C. Anatomy of protein pockets and cavities: Measurement of binding site geometry and implications for ligand design. Protein Sci. 1998, 7, 1884–1897. [Google Scholar] [CrossRef] [Green Version]
- Stank, A.; Kokh, D.B.; Fuller, J.C.; Wade, R.C. Protein Binding Pocket Dynamics. Acc. Chem. Res. 2016, 49, 809–815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kahraman, A.; Morris, R.J.; Laskowski, R.A.; Thornton, J.M.; Centre, J.I. Shape Variation in Protein Binding Pockets and their Ligands. J. Mol. Biol. 2007, 368, 283–301. [Google Scholar] [CrossRef] [PubMed]
- Pace, C.N.; Fu, H.; Fryar, K.L.; Landua, J.; Trevino, S.R.; Bret, A.; Hendricks, M.M.; Iimura, S.; Gajiwala, K.; Scholtz, J.M.; et al. NIH Public Access. J. Mol. Biol. 2011, 408, 514–528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, D.Z.; Yu, G.Q.; Yi, S.C.; Zhang, Y.; Kong, D.X.; Wang, M.Q. Structure-based analysis of the ligand-binding mechanism for DhelOBP21, a C-minus odorant binding protein, from Dastarcus Helophoroides (Fairmaire; Coleoptera: Bothrideridae). Int. J. Biol. Sci. 2015, 11, 1281–1295. [Google Scholar] [CrossRef] [Green Version]
- Tsitsanou, K.E.; Drakou, C.E.; Thireou, T.; Gruber, A.V.; Kythreoti, G.; Azem, A.; Fessas, D.; Eliopoulos, E.; Iatrou, K.; Zographos, S.E. Crystal and solution studies of the “plus-C” odorant-binding protein 48 from Anopheles gambiae: Control of binding specificity through three-dimensional domain swapping. J. Biol. Chem. 2013, 288, 33427–33438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Mármol, J.; Yedlin, M.; Ruta, V. The structural basis of odorant recognition in insect olfactory receptors. bioRxiv 2021. [Google Scholar] [CrossRef]
- Xiao, S.; Sun, J.S.; Carlson, J.R. Robust olfactory responses in the absence of odorant binding proteins. Elife 2019, 8, e51040. [Google Scholar] [CrossRef] [PubMed]
- Swarup, S.; Morozova, T.V.; Sridhar, S.; Nokes, M.; Anholt, R.R.H. Modulation of feeding behavior by odorant-binding proteins in drosophila melanogaster. Chem. Senses 2014, 39, 125–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diallo, S.; Shahbaaz, M.; Makwatta, J.O.; Muema, J.M.; Masiga, D.; Christofells, A.; Getahun, M.N. Antennal Enriched Odorant Binding Proteins Are Required for Odor Communication in Glossina f. fuscipes. Biomolecules 2021, 11, 541. https://doi.org/10.3390/biom11040541
Diallo S, Shahbaaz M, Makwatta JO, Muema JM, Masiga D, Christofells A, Getahun MN. Antennal Enriched Odorant Binding Proteins Are Required for Odor Communication in Glossina f. fuscipes. Biomolecules. 2021; 11(4):541. https://doi.org/10.3390/biom11040541
Chicago/Turabian StyleDiallo, Souleymane, Mohd Shahbaaz, JohnMark O. Makwatta, Jackson M. Muema, Daniel Masiga, Alan Christofells, and Merid N. Getahun. 2021. "Antennal Enriched Odorant Binding Proteins Are Required for Odor Communication in Glossina f. fuscipes" Biomolecules 11, no. 4: 541. https://doi.org/10.3390/biom11040541
APA StyleDiallo, S., Shahbaaz, M., Makwatta, J. O., Muema, J. M., Masiga, D., Christofells, A., & Getahun, M. N. (2021). Antennal Enriched Odorant Binding Proteins Are Required for Odor Communication in Glossina f. fuscipes. Biomolecules, 11(4), 541. https://doi.org/10.3390/biom11040541