Age-Specific Excretion of Calcium, Oxalate, Citrate, and Glycosaminoglycans and Their Ratios in Healthy Children and Children with Urolithiasis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Urine Sampling and Analysis
2.2. Data Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Shang, Y.F.; Xu, M.; Zhang, G.N.; Ouyang, J.M. Concave urinary cristallines: Direct evidence of calcium oxalate crystals dissolution by citrate in vivo. Bioinorg. Chem. Appl. 2013, 2013, 637617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyake, O.; Kakimoto, K.; Tsujihata, M.; Yoshimura, K.; Takahara, S.; Okuyama, A. Strong inhibition of crystall-cell attachment by pediatric urinary macromolecules: A close relationship with urinary citrate secretion. Urology 2001, 58, 493–497. [Google Scholar] [CrossRef]
- DeFoor, W.R.; Jackson, E.; Minevich, E.; Caillat, A.; Reddy, P.; Sheldon, C.; Asplin, J. The risk of recurrent urolithiasis in children is dependent on urinary calcium and citrate. Urology 2010, 76, 242–245. [Google Scholar] [CrossRef] [PubMed]
- Domrongkitchaiporn, S.; Stitchantracul, W.; Kochakarn, W. Causes of hypocitraturia in recurrent calcium stone formers: Focusing on urinary potassium excretion. Am. J. Kidney Dis. 2006, 48, 546–554. [Google Scholar] [CrossRef]
- Kovacevic, L.; Wolfe-Christensen, C.; Edwards, L.; Sadaps, M.; Lakshmanan, Y. From hypercalciuria to hypocitraturia—A shifting trend in pediatric urolithiasis? J. Urol. 2012, 188 (Suppl. S4), 1623–1627. [Google Scholar] [CrossRef]
- Tefekli, A.; Esen, T.; Ziylan, O.; Erol, B.; Armagan, A.; Ander, H.; Akinci, M. Metabolic risk factors in pediatric and adult calcium oxalate urinary stone formers: Is there any difference? Urol. Int. 2003, 70, 273–277. [Google Scholar] [CrossRef] [PubMed]
- VanDervoort, K.; Wiesen, J.; Frank, R.; Vento, S.; Crosby, V.; Chandra, M.; Trachtman, H. Urolithiasis in pediatric patients: A single center study of incidence, clinical presentation and outcome. J. Urol. 2007, 177, 2300–2305. [Google Scholar] [CrossRef]
- Strohmaier, W.L.; Seilnacht, J.; Schubert, G. Urinary stone formers with hypocitraturia and „normal“ urinary pH at high risk for recurrence. Urol. Int. 2012, 88, 294–297. [Google Scholar] [CrossRef] [PubMed]
- Ebisuno, S.; Kohjimoto, Y.; Tamura, M.; Ohkawa, T. Adhesion of calcium oxalate crystals to Madin-Darby canine kidney cells and some effects of glycosaminoglycans or cell injuries. Eur. Urol. 1995, 28, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Baggio, B.; Gambaro, G.; Oliva, O.; Favaro, S.; Borsatti, A. Calcium oxalate nephrolithiasis: An easy way to detect an imbalance between promoting and inhibiting factors. Clin. Chim. Acta 1982, 124, 149–155. [Google Scholar] [CrossRef]
- Baggio, B.; Gambaro, G.; Favaro, S.; Borsatti, A.; Pavanello, L.; Siviero, B.; Zacchello, G.; Rizzoni, G.F. Juvenile renal stone disease: A study of urinary promoting and inhibiting factors. J. Urol. 1983, 130, 1133–1135. [Google Scholar] [CrossRef]
- Batinic, D.; Milosevic, D.; Konjevoda, P.; Nizic, L.J.; Vrljicak, K.; Matkovic, M.; Batinic, D.; Grkovic, L. The value of urine citrate/calcium ratio in the estimation of risk of urolithiasis. Clin. Nephrol. 2004, 61, 387–391. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.C.; Deng, G.; Boevé, E.R.; Romijn, J.C.; de Bruijn, W.C.; Verkoelen, C.F.; Schröder, F.H. Does urinary oxalate interfere with the inhibitory role of glycosaminoglycans and semisynthetic sulfated polysaccharides in calcium oxalate crystallization? Eur. Urol. 1997, 31, 485–492. [Google Scholar] [CrossRef]
- Borges, F.T.; Michelacci, Y.M.; Aguiar, J.A.K.; Dalboni, M.A.; Garofalo, A.S.; Schor, N. Characterization of glycosaminoglycans in tubular epithelial cells: Calcium oxalate and oxalate ions effects. Kidney Int. 2005, 68, 1630–1642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akcay, T.; Konukoglu, D.; Dincer, Y. Urinary glycosaminoglycan excretion in urolithiasis. Arch. Dis. Child. 1999, 80, 271–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harangi, F.; Gyorke, Z.; Melegh, B. Urinary glycosaminoglycan excretion in healthy and stone-forming children. Pediatr. Nephrol. 1996, 10, 555–558. [Google Scholar] [CrossRef] [PubMed]
- Nishio, S.; Abe, Y.; Wakatsuki, A.; Iwata, H.; Ochi, K.; Takeuchi, M.; Matsumoto, A. Matrix glycosaminoglycan in urinary stones. J. Urol. 1985, 134, 503–505. [Google Scholar] [CrossRef]
- Lieske, J.C.; Leonard, R.; Toback, F.G. Adhesion of calcium oxalate monohydrate crystals to renal epitelial cells inhibited by specific anions. Am. J. Physiol. Ren. Physiol. 1995, 268, F604–F612. [Google Scholar] [CrossRef]
- Verkoelen, C.F.; Romijn, J.C.; Cao, L.C.; Boeve, E.R.; DeBruijn, W.C.; Schroder, F.H. Crystall-cell interaction inhibition by polysaccharides. J. Urol. 1996, 155, 749–752. [Google Scholar] [CrossRef] [Green Version]
- Turudic, D.; Batinic, D.; Golubic, A.T.; Lovric, M.; Milosevic, D. Calcium oxalate urolithiasis in children: Urinary promoters/inhibitors and role of their ratios. Eur. J. Pediatr. 2016, 175, 1959–1965. [Google Scholar] [CrossRef]
- Milosevic, D.; Rinat, C.; Batinic, D.; Frishberg, Y. Genetic analysis-a diagnostic tool for primary hyperoxaluria type I. Pediatr. Nephrol. 2002, 17, 896–898. [Google Scholar] [CrossRef] [PubMed]
- Belostotsky, R.; Seboun, E.; Idelson, G.H.; Milliner, D.S.; Becker-Cohen, R.; Rinat, C.; Monico, C.G.; Feinstein, S.; Ben-Shalom, E.; Magen, D.; et al. Mutations in DHPSL are responsible for primary hyperoxaluria type III. Am. J. Hum. Genet. 2010, 87, 392–399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belostotsky, R.; Pitt, J.J.; Frishberg, Y. Primary hyperoxaluria type III-a model for studying perturbations in glyoxylate metabolism. J. Mol. Med. 2012, 90, 1497–1504. [Google Scholar] [CrossRef] [PubMed]
- Hoppe, B.; Kemper, M.J. Diagnostic examination of the child with urolithiasis or nephrocalcinosis. Pediatr. Nephrol. 2010, 25, 403–413. [Google Scholar] [CrossRef] [Green Version]
- Ellison, J.S.; Kaufman, S.R.; Kraft, K.H.; Wolf, J.S., Jr.; Hollenbeck, B.K.; Hollingsworth, J.M. Underuse of 24-hour urine collection among children with incident urinary stones: A quality-of-care concern? Urology 2014, 84, 457–461. [Google Scholar] [CrossRef] [PubMed]
- Milosević, D.; Batinić, D.; Blau, N.; Konjevoda, P.; Stambuk, N.; Votava-Raić, A.; Barbarić, V.; Fumić, K.; Rumenjak, V.; Stavljenić-Rukavina, A.; et al. Determination of urine saturation with computer program EQUIL 2 as a method for estimation of the risk of urolithiasis. J. Chem. Inf. Comput. Sci. 1998, 38, 646–650. [Google Scholar] [CrossRef]
- Milosević, D.; Batinić, D.; Konjevoda, P.; Blau, N.; Stambuk, N.; Nizić, L.; Vrljicak, K.; Batinić, D. Analysis of calcium, oxalate, and citrate interaction in idiopathic calcium urolithiasis in children. J. Chem. Inf. Comput. Sci. 2003, 43, 1844–1847. [Google Scholar] [CrossRef]
- Motulsky, H. Intuitive Biostatistics; Oxford University Press: Oxford, UK, 1995. [Google Scholar]
- Zelterman, D. Applied Linear Models with SAS; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- StatSoft, Inc. STATISTICA (Data Analysis Software System), Version 8.0. 2007. Available online: www.statsoft.com (accessed on 26 November 2013).
- Graph-Pad Software, San Diego, CA, USA. Available online: http://www.graphpad.com (accessed on 26 November 2013).
- Witten, I.H.; Frank, E.; Hall, M.A. Data Mining: Practical Machine Learning Tools and Techniques, 3rd ed.; Morgan Kaufmann: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Brix, N.; Ernst, A.; Lauridsen, L.L.B.; Parner, E.; Støvring, H.; Olsen, J.; Henriksen, T.B.; Ramlau-Hansen, C.H. Timing of puberty in boys and girls: A population-based study. Paediatr. Perinat. Epidemiol. 2019, 33, 70–78. [Google Scholar] [CrossRef]
- Barr, D.B.; Wilder, L.C.; Caudill, S.P.; Gonzalez, A.J.; Needham, L.L.; Pirkle, J.L. Urinary creatinine concentrations in the U.S. population: Implications for urinary biologic monitoring measurements. Environ. Health Perspect. 2005, 113, 192–200. [Google Scholar] [CrossRef] [Green Version]
- Remer, T.; Neubert, A.; Maser-Gluth, C. Anthropometry-based reference values for 24-h urinary creatinine excretion during growth and their use in endocrine and nutritional research. Am. J. Clin. Nutr. 2002, 75, 561–569. [Google Scholar] [CrossRef] [Green Version]
- 36 Batinić, D.; Milosević, D.; Blau, N.; Konjevoda, P.; Stambuk, N.; Barbarić, V.; Subat-Dezulović, M.; Votava-Raić, A.; Nizić, L.; Vrljicak, K. Value of the stone promoters/inhibitors ratios in the estimation of the risk of urolithiasis. J. Chem. Comput. Sci. 2000, 40, 607–610. [Google Scholar] [CrossRef]
- Milošević, D.; Batinić, D.; Turudić, D.; Batinić, D.; Topalović-Grković, M.; Gradiški, I.P. Demographic characteristics and metabolic risk factors in Croatian children with urolithiasis. Eur. J. Pediatr. 2014, 173, 353–359. [Google Scholar] [CrossRef]
- Kirejczyk, J.K.; Porowski, T.; Konstantynowicz, J.; Kozerska, A.; Nazarkiewicz, A.; Hoppe, B.; Wasilewska, A. Urinary citrate excretion in healthy children depends on age and gender. Pediatr. Nephrol. 2014, 29, 1575–1582. [Google Scholar] [CrossRef] [Green Version]
- Cambraeri, G.M.; Kovacevic, L.; Bayne, A.P.; Giel, D.; Corbett, S.; Schurtz, E.; Sukhu, T.; Chiang, G. National multi-institutional cooperative on urolithiasis in children: Age is a significant predictor of urine abnormalities. J. Pediatr. Urol. 2015, 11, 218–223. [Google Scholar] [CrossRef] [PubMed]
- Ohana, E.; Shcheynikov, N.; Moe, O.W.; Muallem, S. SLC2A6 and NaDC-1 transporters interact to regulate oxalate and citrate homeostasis. J. Am. Soc. Nephrol. 2013, 24, 1617–1626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, R.W.; Zhang, S.; Coleman-Barnett, J.A.; Hamm, L.L.; Hering-Smith, K.S. Calcium receptor signaling and citrate transport. Urolithiasis 2018, 46, 409–418. [Google Scholar] [CrossRef] [PubMed]
- Michelacci, Y.M.; Boim, M.A.; Bergamaschi, C.T.; Rovigatti, R.M.; Schor, N. Possible role for chondroitin sulfate in urolithiasis: In vivo studies in an experimental model. Clin. Chim. Acta 1992, 208, 1–8. [Google Scholar] [CrossRef]
- Akinci, M.; Esen, T.; Kocak, T.; Ozsoy, C.; Tellaloglu, S. Role of inhibitor deficiency in urolithiasis. I. Rationale of urinary magnesium, citrate, pyrophosphate and glycosaminoglycan determinations. Eur. Urol. 1991, 19, 240–243. [Google Scholar] [CrossRef] [PubMed]
- Michelacci, Y.M.; Glashan, R.Q.; Schor, N. Urinary excretion of glycosaminoglycans in normal and stone forming subjects. Kidney Int. 1989, 36, 1022–1028. [Google Scholar] [CrossRef] [Green Version]
- Sas, D.J. An update on the changing epidemiology and metabolic risk factors in pediatric kidney stone disease. Clin. J. Am. Soc. Nephrol. 2011, 6, 2062–2068. [Google Scholar] [CrossRef] [Green Version]
- Dissayabutra, T.; Kalpongnukul, N.; Chindaphan, K.; Srisa-art, M.; Ungjaroenwathana, W.; Kaewwongse, M.; Iampenkha, K.; Tosukhowon, P. Urinary sulfated glycosaminoglycan insufficiency and chondroitin sulfate supplement in urolithiasis. PLoS ONE 2019, 14, e0213180. [Google Scholar] [CrossRef] [PubMed]
- Poon, N.W.; Gohel, M.D. Urinary glycosaminoglycans and glycoproteins in a calcium oxalate crystallization system. Carbohidr. Res. 2012, 347, 64–68. [Google Scholar] [CrossRef] [PubMed]
Total No. of Children | Healthy Children (n = 25) | Children with Urolithiasis (n = 61) | p Value | ||
---|---|---|---|---|---|
Variable | Healthy Children (YC) (n = 13) M:F = 5:8 | YC Children with Urolithiasis (n = 31), M:F = 18:13 31 Single Stone Occurrence, 0 Recurrent Family History Positive (11 Total, 35.4%) | |||
Mean (SD) | Median (IQR) | Mean (SD) | Median (IQR) | ||
Age (months) | 66.23 (39.07) | 80.00 (40.00 to 90.00) | 75.71 (31.64) | 84.00 (58.00 to 103.00) | 0.3679 |
Ca (mmol/mmol cr) | 0.57 (0.74) | 0.20 (0.19 to 0.56) | 0.66 (0.40) | 0.60 (0.34 to 0.99) | 0.0421 |
Ox (mmol/mol cr) | 111.58 (84.02) | 79.21 (64.40 to 122.20) | 72.44 (49.07) | 62.63 (43.00 to 84.74) | 0.0971 |
Cit (mmol/mol cr) | 438.49 (279.36) | 368.10 (337.00 to 408.80) | 391.36 (232.55) | 380.42 (219.00 to 507.20) | 0.7674 |
GAG (mg/mmol cr) | 5.40 (3.60) | 4.25 (3.93 to 5.40) | 4.80 (3.78) | 3.54 (2.15 to 6.20) | 0.3347 |
Ca/Cit | 1.06 (0.87) | 0.84 (0.94 to 1.39) | 4.54 (12.18) | 1.60 (0.97 to 3.27) | 0.0140 |
Ox/GAG | 25.63 (22.36) | 18.64 (14.21 to 22.95) | 22.35 (15.09) | 22.20 (10.13 to 39.76) | 0.8672 |
Ox/Cit | 0.26 (0.14) | 0.22 (0.19 to 0.34) | 0.39 (0.73) | 0.18 (0.11 to 0.29) | 0.2418 |
Ox/(Cit × GAG) | 0.06 (0.05) | 0.05 (0.04 to 0.07) | 0.16 (0.50) | 0.05 (0.03 to 0.10) | 0.9692 |
Cit/GAG | 109.93 (99.32) | 85.18 (56.08 to 95.34) | 127.62 (120.39) | 84.66 (47.10 to 160.47) | 0.8269 |
Cr (mmol/day) | 3.30 (1.80) | 3.86 (1.56 to 4.96) | 4.31 (2.42) | 3.90 (3.10 to 5.02) | 0.2687 |
Total No. of Children | Healthy Children (n = 25) | Children with Urolithiasis (n = 61) | p Value | ||
---|---|---|---|---|---|
Variable | Healthy Children (OC) (n = 12) M:F = 6:6 | OC Children with Urolithiasis (n = 30), M:F = 22:8 28 Single Stone Occurrence, 2 Recurrent Family History Positive (11 Total, 36.67%) | |||
Mean (SD) | Median (IQR) | Mean (SD) | Median (IQR) | ||
Age (months) | 142.67 (26.31) | 134.50 (122.50 to 157.00) | 157.13 (25.49) | 158.50 (133.00 to 176.00) | 0.0818 |
Ca (mmol/mmol cr) | 0.34 (0.17) | 0.36 (0.19 to 0.49) | 0.46 (0.47) | 0.33 (0.25 to 0.59) | 0.6065 |
Ox (mmol/mol cr) | 44.94 (21.60) | 44.15 (27.15 to 56.32) | 67.52 (43.91) | 53.54 (34.81 to 86.74) | 0.1157 |
Cit (mmol/mol cr) | 363.89 (152.65) | 361.71 (276.74 to 414.08) | 261.59 (184.41) | 239.61 (126.89 to 321.12) | 0.0154 |
GAG (mg/mmol cr) | 3.66 (2.38) | 3.54 (1.51 to 4.82) | 2.42 (1.93) | 1.78 (1.24 to 3.00) | 0.0794 |
Ca/Cit | 1.06 (0.77) | 0.85 (0.54 to 1.41) | 2.26 (2.01) | 1.50 (1.10 to 2.63) | 0.0113 |
Ox/GAG | 22.23 (35.33) | 10.46 (7.00 to 31.34) | 39.47 (37.50) | 27.74 (16.09 to 44.07) | 0.0278 |
Ox/Cit | 0.14 (0.09) | 0.11 (0.09 to 0.18) | 0.39 (0.46) | 0.25 (0.14 to 0.46) | 0.0113 |
Ox/(Cit × GAG) | 0.08 (0.09) | 0.02 (0.02 to 0.14) | 0.24 (0.29) | 0.11 (0.05 to 0.30) | 0.0058 |
Cit/GAG | 136.61 (89.87) | 98.55 (82.35 to 191.29) | 152.32 (110.21) | 133.04 (66.36 to 209.49) | 0.8237 |
Cr (mmol/day) | 8.10 (3.28) | 7.85 (5.96 to 10.60) | 8.14 (4.30) | 7.27 (5.56 to 10.30) | 0.8021 |
Healthy YC Children (n = 13) vs. YC with Urolithiasis (n = 31) | |||||
---|---|---|---|---|---|
Variables | Cut-off value | AUC | Sensitivity | Specificity | p-value |
Ca/Cit | >0.84 | 0.737 (0.571 to 0.903) | 83.87 | 53.85 | 0.0050 |
Healthy OC Children (n = 12) vs. OC with Urolithiasis (n = 30) | |||||
Variables | Cut-off value | AUC | Sensitivity | Specificity | p-value |
Cit (mmol/mol cr) | ≤327.87 | 0.742 (0.578 to 0.906) | 80.00 | 66.67 | 0.0039 |
Ca/Cit | >1.02 | 0.753 (0.585 to 0.921) | 76.67 | 66.67 | 0.0032 |
Ox/GAG | >11.24 | 0.719 (0.515 to 0.924) | 86.67 | 66.67 | 0.0355 |
Ox/Citrate | >0.12 | 0.753 (0.601 to 0.904) | 80.00 | 75.00 | 0.0011 |
Ox/(Cit × GAG) | >0.03 | 0.775 (0.600 to 0.950) | 93.33 | 58.33 | 0.0021 |
Class | J48 Classification | |
---|---|---|
Healthy children (n = 12) | Healthy children (n = 9) | Urolithiasis (n = 3) |
Urolithiasis (n = 30) | Healthy children (n = 1) | Urolithiasis (n = 29) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turudic, D.; Golubic, A.T.; Lovric, M.; Bilic, M.; Milosevic, D. Age-Specific Excretion of Calcium, Oxalate, Citrate, and Glycosaminoglycans and Their Ratios in Healthy Children and Children with Urolithiasis. Biomolecules 2021, 11, 758. https://doi.org/10.3390/biom11050758
Turudic D, Golubic AT, Lovric M, Bilic M, Milosevic D. Age-Specific Excretion of Calcium, Oxalate, Citrate, and Glycosaminoglycans and Their Ratios in Healthy Children and Children with Urolithiasis. Biomolecules. 2021; 11(5):758. https://doi.org/10.3390/biom11050758
Chicago/Turabian StyleTurudic, Daniel, Anja Tea Golubic, Mila Lovric, Marko Bilic, and Danko Milosevic. 2021. "Age-Specific Excretion of Calcium, Oxalate, Citrate, and Glycosaminoglycans and Their Ratios in Healthy Children and Children with Urolithiasis" Biomolecules 11, no. 5: 758. https://doi.org/10.3390/biom11050758
APA StyleTurudic, D., Golubic, A. T., Lovric, M., Bilic, M., & Milosevic, D. (2021). Age-Specific Excretion of Calcium, Oxalate, Citrate, and Glycosaminoglycans and Their Ratios in Healthy Children and Children with Urolithiasis. Biomolecules, 11(5), 758. https://doi.org/10.3390/biom11050758