SERS Investigation on Oligopeptides Used as Biomimetic Coatings for Medical Devices
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. SERS Spectra of the Peptides As-Synthesized
3.2. SERS Spectra of the Peptides after Irradiation
3.2.1. Peptide 1
3.2.2. Peptide 2
3.2.3. Peptide 3
3.2.4. Peptide 4
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, J.; Liu, K.; Xing, R.; Yan, X. Peptide self-assembly: Thermodynamics and kinetics. Chem. Soc. Rev. 2016, 45, 5589–5604. [Google Scholar] [CrossRef] [PubMed]
- Avakyan, N.; Greschner, A.A.; Aldaye, F.; Serpell, C.J.; Toader, V.; Petitjean, A.; Sleiman, H.F. Reprogramming the assembly of unmodified DNA with a small molecule. Nat. Chem. 2016, 8, 368–376. [Google Scholar] [CrossRef]
- Adler-Abramovich, L.; Gazit, E. The physical properties of supramolecular peptide assemblies: From building block association to technological applications. Chem. Soc. Rev. 2014, 43, 6881–6893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Holmes, T.; Lockshin, C.; Rich, A. Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane. Proc. Natl. Acad. Sci. USA 1993, 90, 3334–3338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Holmes, T.; Di Persio, C.M.; Hynes, R.O.; Su, X.; Rich, A. Self-complementary oligopeptide matrices support mammalian cell attachment. Biomaterials 1995, 16, 1385–1393. [Google Scholar] [CrossRef]
- Zhang, S. Emerging biological materials through molecular self-assembly. Biotechnol. Adv. 2002, 20, 321–339. [Google Scholar] [CrossRef]
- Holmes, T.C.; de Lacalle, S.; Su, X.; Liu, G.; Rich, A.; Zhang, S. Extensive neurite outgrowth and active synapse formation on self-assembling peptide scaffolds. Proc. Natl. Acad. Sci. USA 2000, 97, 6728–6733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Du, X.; Hashim, S.; Shy, A.; Xu, B. Aromatic-aromatic interactions enable α-helix to ß-sheet transition of peptides to form supramolecular hydrogels. J. Am. Chem. Soc. 2017, 139, 71–74. [Google Scholar] [CrossRef]
- Lampel, A.; Ulijn, R.V.; Tuttle, T. Guiding principles for peptide nanotechnology through directed discovery. Chem. Soc. Rev. 2018, 47, 3737–3758. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Fei, J.; Xu, Y.; Li, D.; Yuan, T.; Li, G.; Wang, C.; Li, J. A photoinduced reversible phase transition in a dipeptide supramolecular assembly. Angew. Chem. Int. Ed. 2018, 57, 1903–1907. [Google Scholar] [CrossRef]
- Yuan, T.; Xu, Y.; Fei, J.; Xue, H.; Li, X.; Wang, C.; Fytas, G.; Li, J. The ultrafast assembly of a dipeptide supramolecular organogel and its phase transition from gel to crystal. Angew. Chem. Int. Edit. 2019, 131, 11189–11194. [Google Scholar] [CrossRef]
- Christofferson, A.J.; Al-Garawi, Z.S.; Todorova, N.; Turner, J.; Del Borgo, M.P.; Serpell, L.C.; Aguilar, M.I.; Yarovsky, I. Identifying the coiled-coil triple helix structure of ß-peptide nanofibers at atomic resolution. ACS Nano 2018, 12, 9101–9109. [Google Scholar] [CrossRef]
- Anderson, J.M. Biological Responses to Materials. Annu. Rev. Mater. Res. 2001, 31, 81–110. [Google Scholar] [CrossRef]
- Bryan, N.; Ashwin, H.; Smart, N.; Bayon, Y.; Wohlert, S.; Hunt, J.A. Reactive oxygen species (ROS) a family of fate deciding molecules pivotal in constructive inflammation and wound healing. Eur. Cells Mater. 2012, 24, 249–265. [Google Scholar] [CrossRef] [PubMed]
- Bontidean, I.; Kumar, A.; Csöregi, E.; Galaev, I.Y.; Mattiasson, B. Highly sensitive novel biosensor based on an immobilized lac repressor. Angew. Chem. Int. Edit. 2001, 40, 2676–2678. [Google Scholar] [CrossRef]
- Marvin, J.S.; Hellinga, H.W. Conversion of a maltose receptor into a zinc biosensor by computational design. Proc. Natl. Acad. Sci. USA 2001, 98, 4955–4960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tinti, A.; Di Foggia, M.; Taddei, P.; Torreggiani, A.; Dettin, M.; Fagnano, C. Vibrational study of auto-assembling oligopeptides for biomedical applications. J. Raman Spectrosc. 2008, 39, 250–259. [Google Scholar] [CrossRef]
- Di Foggia, M.; Taddei, P.; Torreggiani, A.; Dettin, M.; Tinti, A. Interactions between Oligopeptides and oxidized Titanium Surfaces detected by vibrational spectroscopy. J. Raman Spectrosc. 2011, 42, 276–285. [Google Scholar] [CrossRef]
- Di Foggia, M.; Torreggiani, A.; Taddei, P.; Dettin, M.; Tinti, A. Spectroscopic investigation on the structural modifications induced by radical stress on oligopeptides for tissue engineering. J. Raman Spectrosc. 2013, 44, 1446–1450. [Google Scholar] [CrossRef]
- Di Foggia, M.; Ottani, S.; Torreggiani, A.; Dettin, M.; Sanchez-Cortes, S.; Cesini, D.; Tinti, A. Surface-enhanced Raman scattering and quantum-mechanical calculations on auto-assembling oligopeptides. J. Raman Spectrosc. 2018, 49, 982–996. [Google Scholar] [CrossRef]
- Yang, S.; Dai, X.; Boschitsch Stogin, B.; Wong, T.S. Ultrasensitive surface-enhanced Raman scattering detection in common fluids. Proc. Natl. Acad. Sci. USA 2016, 113, 268–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Negri, P.; Sarver, S.A.; Schiavone, N.M.; Dovichi, N.J.; Schultz, Z.D. Online SERS detection and characterization of eight biologically active peptides separated by capillary zone electrophoresis. Analyst 2015, 140, 1516–1522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Podstawka-Proniewicz, E.; Kudelski, A.; Kim, Y.; Proniewicz, L.M. Structure of Monolayers Formed from Neurotensin and Its Single-Site Mutants: Vibrational Spectroscopic Studies. J. Phys. Chem. B 2011, 115, 6709–6721. [Google Scholar] [CrossRef]
- Suh, J.S.; Moskovits, M. Surface-enhanced Raman spectroscopy of amino acids and nucleotide bases adsorbed on silver. J. Am. Chem. Soc. 1986, 108, 4711–4718. [Google Scholar] [CrossRef]
- Leopold, N.; Lendl, B. A new method for fast preparation of highly Surface-Enhanced Raman Scattering (SERS) active silver colloids at room temperature by reduction of silver nitrate with hydroxylamine hydrochloride. J. Phys. Chem. B 2003, 107, 5723–5727. [Google Scholar] [CrossRef]
- Wojdyr, M. Fityk: A general-purpose peak fitting program. J. Appl. Crystallogr. 2010, 43, 1126–1128. [Google Scholar] [CrossRef]
- Jun, S.; Hong, Y.; Imamura, H.; Ha, B.Y.; Bechhoefer, J.; Chen, P. Self-assembly of the ionic peptide EAK16: The effect of charge distributions on self-assembly. Biophys. J. 2004, 87, 1249–1259. [Google Scholar] [CrossRef] [Green Version]
- Ross, A.B.; Mallard, W.G.; Helman, W.P.; Buxton, G.V.; Huie, R.E.; Neta, P. NDRL-NIST Solution Kinetics Database—Ver. 3; Notre Dame Radiation Laboratory, Notre Dame, IN and NIST Standard Reference Data: Gaithersburg, MD, USA, 1998. [Google Scholar]
- Garrison, W.M. Reaction mechanisms in the radiolysis of peptides, polypeptides, and proteins. Chem. Rev. 1987, 87, 381–398. [Google Scholar] [CrossRef] [Green Version]
- Winterbourn, C.C. Toxicity of iron and hydrogen peroxide: The Fenton reaction. Toxicol. Lett. 1995, 82–83, 969–974. [Google Scholar] [CrossRef]
- Jurasekova, Z.; Tinti, A.; Torreggiani, A. Use of Raman spectroscopy for the identification of radical-mediated damages in human serum albumin. Anal. Bioanal. Chem. 2011, 400, 2921–2931. [Google Scholar] [CrossRef]
- Krämer, A.C.; Torreggiani, A.; Davies, M.J. Effect of oxidation and protein unfolding on cross-linking of β-lactoglobulin and α-lactalbumin. J. Agric. Food Chem. 2017, 65, 10258–10269. [Google Scholar] [CrossRef]
- Torreggiani, A.; Tinti, A.; Jurasekova, Z.; Capdevila, M.; Saracino, M.; Di Foggia, M. Structural Lesions of Proteins Connected to Lipid Membrane Damages Caused by Radical Stress: Assessment by Biomimetic Systems and Raman Spectroscopy. Biomolecules 2019, 9, 794; [Google Scholar] [CrossRef] [Green Version]
- Bonora, S.; Benassi, E.; Maris, A.; Tugnoli, V.; Ottani, S.; Di Foggia, M. Raman and SERS study on atrazine, prometryn and simetryn triazine herbicides. J. Mol. Struct. 2013, 1040, 139–148. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Chai, J.D.; Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- James, W.H.; Buchanan, E.G.; Muller, C.W.; Dean, J.C.; Kosenkov, D.; Slipchenko, L.V.; Guo, L.; Reidenbach, A.G.; Gellman, S.H.; Zwier, T.S. Evolution of amide stacking in larger γ-peptides: Triamide H-bonded cycles. J. Phys. Chem. A 2011, 115, 13783–13798. [Google Scholar] [CrossRef] [PubMed]
- Papajak, E.; Leverentz, H.R.; Zheng, J.J.; Truhlar, D.G. Perspectives on basis sets beautiful: Seasonal plantings of diffuse basis functions. J. Chem. Theory Comput. 2009, 5, 1197–1202. [Google Scholar] [CrossRef] [PubMed]
- Tomasi, J.; Mennucci, B.; Cammi, R. Quantum mechanical continuum solvation models. Chem. Rev. 2005, 105, 2999–3094. [Google Scholar] [CrossRef] [PubMed]
- Merrick, J.P.; Moran, L.D.; Radom, L. An evaluation of harmonic vibrational frequency scale factors. J. Phys. Chem. A 2007, 111, 11683–11700. [Google Scholar] [CrossRef] [PubMed]
- Jamróz, M.H.; Dobrowolski, J.C.; Brzozowski, R. Vibrational modes of 2,6-, 2,6- and 2,3-diisopropylnaphthalene. A DFT study. J. Mol. Struct. 2006, 787, 172–183. [Google Scholar] [CrossRef]
- Jamróz, M.H. Vibrational energy distribution analysis (VEDA): Scopes and limitations. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2013, 114, 220–230. [Google Scholar] [CrossRef]
- Podstawka, E.; Kudelski, A.; Kim, Y.; Proniewicz, L.M. Potential-Dependent Studies on the interaction between phenylalanine-substituted bombesin fragments and roughened Ag, Au, and Cu electrode surface. J. Phys. Chem. B 2011, 115, 7097–7108. [Google Scholar] [CrossRef]
- Herne, T.M.; Ahern, A.M.; Garrell, R.L. Surface-enhanced Raman spectroscopy of peptides: Preferential N-terminal adsorption on colloidal silver. J. Am. Chem. Soc. 1991, 113, 846–854. [Google Scholar] [CrossRef]
- Xiaojuan, Y.; Huaimin, G.; Jiwei, W. Surface-enhanced Raman spectrum of Gly-Gly adsorbed on the silver colloidal surface. J. Mol. Struct. 2010, 977, 56–61. [Google Scholar] [CrossRef]
- Podstawka, E. Effect of amino acid modifications on the molecular structure of adsorbed and nonadsorbed bombesin 6-14 fragments on an electrochemically roughened silver surface. J. Raman Spectrosc. 2008, 39, 1290–1305. [Google Scholar] [CrossRef]
- Aliaga, A.E.; Aguayo, T.; Garrido, C.; Clavijo, E.; Hevia, E.; Gomez-Jeria, J.S.; Leyton, P.; Campos-Vallette, M.M.; Sanchez-Cortes, S. Surface-enhanced Raman scattering and theoretical studies of the C-terminal peptide of the ß-subunit human chorionic gonadotropin without linked carbohydrates. Biopolymers 2010, 95, 135–143. [Google Scholar] [CrossRef]
- Malek, K.; Makowski, M.; Krolikowska, A.; Bukowska, J. Comparative studies on IR, Raman, and surface-enhanced Raman scattering spectroscopy of dipeptides containing ΔAla and ΔPhe. J. Phys. Chem. B 2012, 116, 1414–1425. [Google Scholar] [CrossRef]
- Pienpinijtham, P.; Proniewicz, E.; Kim, Y.; Ozaki, Y.; Lombardi, J.R.; Proniewicz, L.M. Molecular orientation of neurotensin and its single-site mutants on a colloidal silver surface: SERS studies. J. Phys. Chem. C 2012, 116, 16561–16572. [Google Scholar] [CrossRef]
- Chen, X.G.; Schweitzer-Stenner, R.; Asher, S.A.; Mirkin, N.G.; Krimm, S. Vibrational Assignments of trans-N-methylacetamide and some of its deuterated isotopomers from band decomposition of IR, visible and resonance Raman Spectra. J. Phys. Chem. 1995, 99, 3074–3083. [Google Scholar] [CrossRef]
- Ramaswamy, S.; Rajaram, R.K.; Ramakrishnan, V. Vibrational spectra of bis(L-ornithinium) chloride nitrate sulfate. J. Raman Spectrosc. 2005, 36, 12–17. [Google Scholar] [CrossRef]
- Garrido, C.; Aliaga, A.E.; Gomez-Jeria, J.S.; Clavijo, R.E.; Campos-Vallette, M.M.; Sanchez-Cortes, S. Adsorption of oligopeptides on silver nanoparticles: Surface-enhanced Raman scattering and theoretical studies. J. Raman Spectrosc. 2010, 41, 1149–1155. [Google Scholar] [CrossRef]
- Levine, M.S.; Ghosh, M.; Hesser, M.; Hennessy, N.; DiGuiseppi, D.M.; Adler-Abramovich, L.; Schweitzer-Stenner, R. Formation of peptide-based oligomers in dimethylsulfoxide: Identifying the precursor of fibril formation. Soft Matter 2020, 16, 7860–7868. [Google Scholar] [CrossRef] [PubMed]
- Aliaga, A.E.; Ahumada, H.; Sepulveda, K.; Gomez-Jeria, J.S.; Garrido, C.; Weiss-Lopez, B.E.; Campos-Vallette, M.M. SERS, molecular dynamics and molecular orbital studies of the MRKDV peptide on silver and membrane surfaces. J. Phys. Chem. C 2011, 115, 3982–3989. [Google Scholar] [CrossRef]
- Castro, J.L.; Sanchez-Cortes, S.; Garcia Ramos, J.V.; Otero, J.C.; Marcos, J.I. Surface-enhanced Raman spectroscopy of γ-aminobutyric acid on silver colloid surfaces. Biospectroscopy 1998, 3, 449–455. [Google Scholar] [CrossRef]
- Stewart, S.; Fredericks, P.M. Surface-enhanced Raman spectroscopy of peptides and proteins adsorbed on an electrochemically prepared silver surface. Spectrochim. Acta A 1999, 55, 1615–1640. [Google Scholar] [CrossRef]
- Ignatjev, I.; Proniewicz, E.; Proniewicz, L.M.; Niaura, G. Effect of potential on temperature-dependent SERS spectra of neuromedin B on Cu electrode. Phys. Chem. Chem. Phys. 2013, 15, 807–815. [Google Scholar] [CrossRef]
- Tu, A.T. Raman spectroscopy in biology. In Principles and Applications; John Wiley and Sons: New York, NY, USA, 1982; pp. 187–233. [Google Scholar]
- Sevilla, P.; Sánchez-Cortés, S.; García-Ramos, J.V.; Feis, A. Concentration-controlled formation of myoglobin/gold nanosphere aggregates. J. Phys. Chem. B 2014, 118, 5082–5092. [Google Scholar] [CrossRef] [Green Version]
- Matei, A.; Drichko, N.; Gompf, B.; Dressel, M. Far-infrared spectra of amino acids. Chem. Phys. 2005, 316, 61–71. [Google Scholar] [CrossRef]
- Stewart, S.; Fredericks, P.M. Surface-enhanced Raman spectroscopy of amino acids adsorbed on an electrochemically prepared silver surface. Spectrochim. Acta A 1999, 55, 1641–1660. [Google Scholar] [CrossRef]
- Nakamoto, K. Infrared and Raman spectra of inorganic and coordination compounds. Part B: Applications in Coordination, Organometallic, and Bioinorganic Chemistry, 5th ed.; Wiley Interscience Publ.: New York, NY, USA, 1997; pp. 59–62. [Google Scholar]
- Lima, J.A.; Freire, P.T.C.; Lima, R.J.C.; Moreno, A.J.D.; Mendes Filho, J.; Melo, F.E.A. Raman scattering of L-valine crystals. J. Raman Spectrosc. 2005, 36, 1076–1081. [Google Scholar] [CrossRef]
Assignment | Pept1 H2N-Ala-Glu-Ala-Glu-Ala-Lys-Ala-Lys-Ala-Glu-Ala-Glu-Ala-Lys-Ala-Lys-CONH2 | Pept2 Glu→Asp Substitution | Pept3 Lys→Orn Substitution | Pept4 Glu→Asp and Lys→Orn Substitutions | ||||
---|---|---|---|---|---|---|---|---|
SERS | SERS Gamma 200 Gy | SERS | SERS Gamma 200 Gy | SERS | SERS Gamma 200 Gy | SERS | SERS Gamma 200 Gy | |
ν CH (aliphatic) [24,43] | 2968 sh 2934 vs 2878 sh | 2968 sh 2934 vs 2875 sh | 2968 sh 2934 vs 2878 sh | 2968 sh 2934 vs 2878 sh | 2968 sh 2934 vs 2878 sh | 2968 sh 2934 vs 2878 sh | 2968 sh 2934 vs 2878 sh | 2968 sh 2934 vs 2878 sh |
Amide I [43,44,45,46,47,48,49] | 1679 sh | 1677 sh 1670 sh | 1674 sh | 1668 m, sh 1653 m (1676 + 1649 sh) | 1679 sh | 1666 m (1677 + 1640 sh) | 1672 m (1680 + 1654 sh) | 1671 m (1681 + 1656 sh) |
δH2O [50] | 1644 m | 1644 m 1638 sh | 1650 m | 1650 m | ||||
νas COO− [45] δ NH3+ [51,52] FMOC [53] | 1600 m | 1603 m | 1602 sh | 1603 sh | ||||
δ NH3+ (Lys) [45,47] | 1579 sh | 1575 sh | 1567 sh | 1579 sh | 1577 sh | 1572 sh | 1575 sh | |
νas COO− [24,44,46] δ NH3+ (Lys) [54] Amide II [43,48] | 1530 sh | 1551 sh 1531 sh | 1555 br | 1542 br | 1568 sh 1542 sh 1531 sh | 1551 m | 1559 sh 1548 br 1535 sh | 1559 sh 1548 br |
δ CH2 [43,44,45,46,50] | 1447 m | 1447 m | 1449 m | 1447 m | 1447 m | 1448 m | 1454 sh 1442 m | 1450 m |
νs COO− [24,43,44,45,46,47,49,55] | 1393 m | 1392 m | 1414 sh 1391 m | 1414 sh 1391 m | 1420 sh 1394 m | 1394 m | 1415 sh 1391 m | 1417 sh 1391 m |
ω CH2(Lys) [24,44,45,54] | 1329 m | 1325 m | 1328 m | 1326 m | 1327 w | 1323 m | 1326 m | 1326 br |
Amide III [44,45,46] ω CH2 [54,56] | 1288 m | 1289 m | 1285 sh | 1283 sh | 1287 sh | |||
Amide III [43,44,45,46] ω CH2 [56] | 1253 br | 1246 m | 1253 br | 1264 sh | 1265 m | 1258 sh | 1259 sh | |
Amide III [44,45,46] ω CH2 [56] τ Cα2H2 [44,46] | 1238 sh | 1242 m | 1245 sh | 1245 m | 1243 m | 1242 m 1232 sh | ||
νas CαCN [44,48] τ CH2 (Lys) [52,54] | 1162 w | 1162 sh | 1164 sh | 1158 sh | 1158 sh | 1161 w | 1155 sh | |
ν CC [46] τ HCN [24,45,49] | 1125 w | 1122 w | 1131 sh | 1123 sh | 1121 m | 1121 m | 1125 sh | 1130 sh |
τ NH3+ [24,44,47,49,51,55] ν CC [46] ν CN [49] | 1102 sh | 1100 sh | 1101 m | 1100 m | 1106 sh | 1105 m | 1104 m | 1101 m |
νas CαCN [24,45] ν CC τ HCN [43,49,51] | 1086 m | 1085 m | 1077 sh | 1074 sh | 1085 sh | 1090 sh | 1086 sh | |
ν CC [49] τ HCH [24,45,51,55] τ CH [51,55] | 1054 m | 1052 w | 1053 vw | 1048 sh | 1053 sh | 1053 m | 1055 sh | 1056 sh 1031 sh |
ρ CH2 [44] ν CC [46] ν CN, δ NH2 FMOC [53] | 997 sh | 1018 sh | 1027 sh | 1001 w | 1001 w | 1032 sh | 1030 sh | |
ν CC [45,46,49] τ HCH (Lys) | 949 m 938 sh | 945 m | 971 w 937 m | 969 sh 935 m | 948 m | 945 m | 969 w 935 m | 970 w 934 m |
ν COO− [45,46,55] | 909 m | 907 m | 900 m | 900 m | 910 m | 909 m | 899 m | 899 m |
ν CC [44,45] τ HCCN | 882 sh | 884 sh | 885 sh 871 sh | 886 sh 875 sh | ||||
ν CC [46,51] | 838 sh | 840 sh | 851 vw | 837 vw | 835 vw | 835 vw | ||
ν CC [46]τ HCCO [49] | 816 w | 818 vw | 812 vw | 801 vw | 818 vw | 818 vw | 815 vw | |
Amide V [46] τ HCCC [51] | 760 w, br | 759 w, br | 760 br | 759 br | 752 br | 763 m | 758 w | 757 w |
δ COO− [24,45,47] ρ CH2 [47] | 709 sh | 701 sh | 701 vw | 717 vw | 707 sh | 711 sh | ||
Amide IV [44] δ COO [49,51] | 655 br | 651 br | 681 sh 663 br | 663 br | 658 br | 667 sh 642 vw | 669 sh 649 w | 669 vw 643 w |
ω COO− [45,46,48,51] | 609 sh | 594 sh | 608 w | 600 vw | 577 vw | |||
Amide VI [47,49,52] ω COO− [44,45,51] | 563 br | 563 br | 563 m, br | 563 br | 541 vw | 552 w | 554 w | |
τ NH3+ [51] | 525 sh | 517 vw | 517 vw | 517 vw | 520 sh | |||
τ CN [47] | 473 vw | 463 vw | 465 vw | 468 vw | 466 vw | |||
δ CN [47] | 429 vw | 425 vw | 414 vw | 424 vw |
Sample | Not Treated | under Oxidative Radical Stress | ||||
---|---|---|---|---|---|---|
FWHM νCH/cm−1 | I2930/I2870 | I1060/I1130 | FWHM νCH/cm−1 | I2930/I2870 | I1060/I1130 | |
Pept1 | 49 | 3.0 | 1.4 | 48 | 3.0 | 1.4 |
Pept2 | 46 | 3.2 | 0.9 | 47 | 3.7 | 0.5 |
Pept3 | 46 | 3.2 | 2.0 | 46 | 3.3 | 2.4 |
Pept4 | 43 | 3.2 | 0.9 | 45 | 3.9 | 0.6 |
Peptide-Ag2 Conformations | |
---|---|
Pept1-r: Ag2/-COO− 1st setting Eet = −8,218,083.1 | Pept1-r: Ag2/-COO− 2nd setting Eet = −8,218,064.5 |
ΔE = 0 | ΔE = 18.64 |
Pept1-r: Ag2/-C=Ochain Eet = −8,218,058.4 | Pept1-r: Ag2/-NH Eet = −8,218,050.4 |
ΔE = 24.67 | ΔE = 32.70 |
Pept1-r: Ag2/-C=Oterminal, Eet = −8,218,041.1 ΔE = 41.99 | |
Pept2-r: Ag2/-COO−, (Table S1) Eet = −8,011,715.4 | Pept2-r: Ag2/-C=Ochain 1st setting, (Table S2) Eet = −8,011,703.5 |
ΔE = 0 | ΔE = 11.96 |
Pept2-r: Ag2/-C=Ochain 2nd setting, (Table S3) Eet = −8,011,699.8 | Pept2-r: Ag2/-C=Oterminal, (Table S4) Eet = −8,011,696.6 |
ΔE = 15.64 | ΔE = 18.81 |
Pept3-r: Ag2/-COO−Glu, (Table S5) Eet = −8,011,705.0 | Pept3-r: Ag2/-C=Ochain 2nd setting, (Table S6) Eet = −8,011,685.1 |
ΔE = 0 | ΔE = 19.98 |
Pept3-r: Ag2/-C=Ochain 1st setting, (Table S7) Eet = −8,011,684.7 | Pept3-r: Ag2/-C=Oterminal, (Table S8) Eet = −8,011,676.9 |
ΔE = 20.30 | ΔE = 28.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Foggia, M.; Tugnoli, V.; Ottani, S.; Dettin, M.; Zamuner, A.; Sanchez-Cortes, S.; Cesini, D.; Torreggiani, A. SERS Investigation on Oligopeptides Used as Biomimetic Coatings for Medical Devices. Biomolecules 2021, 11, 959. https://doi.org/10.3390/biom11070959
Di Foggia M, Tugnoli V, Ottani S, Dettin M, Zamuner A, Sanchez-Cortes S, Cesini D, Torreggiani A. SERS Investigation on Oligopeptides Used as Biomimetic Coatings for Medical Devices. Biomolecules. 2021; 11(7):959. https://doi.org/10.3390/biom11070959
Chicago/Turabian StyleDi Foggia, Michele, Vitaliano Tugnoli, Stefano Ottani, Monica Dettin, Annj Zamuner, Santiago Sanchez-Cortes, Daniele Cesini, and Armida Torreggiani. 2021. "SERS Investigation on Oligopeptides Used as Biomimetic Coatings for Medical Devices" Biomolecules 11, no. 7: 959. https://doi.org/10.3390/biom11070959
APA StyleDi Foggia, M., Tugnoli, V., Ottani, S., Dettin, M., Zamuner, A., Sanchez-Cortes, S., Cesini, D., & Torreggiani, A. (2021). SERS Investigation on Oligopeptides Used as Biomimetic Coatings for Medical Devices. Biomolecules, 11(7), 959. https://doi.org/10.3390/biom11070959