Phytoplankton of the Curonian Lagoon as a New Interesting Source for Bioactive Natural Products. Special Impact on Cyanobacterial Metabolites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Samples Collection
2.2. Phytoplankton Analysis
2.3. Extraction and Fractionation of Phytoplankton Biomass
2.4. Antibacterial Activity
2.4.1. Bacterial Strains
2.4.2. Antibacterial Assay
2.5. Cytotoxicity Assay
2.6. Enzyme Inhibition Assay
2.7. Acute Toxicity Assay
2.8. Analysis of Cyanometabolites
2.9. Statistical Analysis
3. Results
3.1. Phytoplankton Community
3.2. Bioactivity Screening of the Phytoplankton Extracts
3.3. Bioactivity Screening of Fractions
3.4. Analysis of Cyanopeptides
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zilius, M.; Vybernaite-Lubiene, I.; Vaiciute, D.; Petkuviene, J.; Zemlys, P.; Liskow, I.; Voss, M.; Bartoli, M.; Bukaveckas, P.A. The Influence of Cyanobacteria Blooms on the Attenuation of Nitrogen Throughputs in a Baltic Coastal Lagoon. Biogeochemistry 2018, 141, 143–165. [Google Scholar] [CrossRef]
- Vaičiūtė, D.; Bučas, M.; Bresciani, M.; Dabulevičienė, T.; Gintauskas, J.; Mėžinė, J.; Tiškus, E.; Umgiesser, G.; Morkūnas, J.; de Santi, F.; et al. Hot Moments and Hotspots of Cyanobacteria Hyperblooms in the Curonian Lagoon (SE Baltic Sea) Revealed via Remote Sensing-Based Retrospective Analysis. Sci. Total Environ. 2021, 769. [Google Scholar] [CrossRef]
- Lesutiene, J.; Bukaveckas, P.A.; Gasiunaite, Z.R.; Pilkaityte, R.; Razinkovas-Baziukas, A. Tracing the Isotopic Signal of a Cyanobacteria Bloom through the Food Web of a Baltic Sea Coastal Lagoon. Estuar. Coast. Shelf Sci. 2014, 138, 47–56. [Google Scholar] [CrossRef]
- Bartoli, M.; Zilius, M.; Bresciani, M.; Vaiciute, D.; Vybernaite-Lubiene, I.; Petkuviene, J.; Giordani, G.; Daunys, D.; Ruginis, T.; Benelli, S.; et al. Drivers of Cyanobacterial Blooms in a Hypertrophic Lagoon. Front. Mar. Sci. 2018, 5. [Google Scholar] [CrossRef] [Green Version]
- Pilkaitytė, R.; Razinkovas, A. Seasonal Changes in Phytoplankton Composition and Nutrient Limitation in a Shallow Baltic Lagoon. Boreal Environ. Res. 2007, 12, 551–559. [Google Scholar]
- Gasiūnaitė, Z.R.; Daunys, D.; Olenin, S.; Razinkovas, A. The Curonian Lagoon. In Ecology of Baltic Coastal Waters; Springer: Berlin/Heidelberg, Germany, 2008; pp. 197–215. [Google Scholar]
- Overlingė, D.; Kataržytė, M.; Vaičiūtė, D.; Gyraite, G.; Gečaitė, I.; Jonikaitė, E.; Mazur-Marzec, H. Are There Concerns Regarding CHAB in Coastal Bathing Waters Affected by Freshwater-Brackish Continuum? Mar. Pollut. Bull. 2020, 159, 111500. [Google Scholar] [CrossRef] [PubMed]
- Zilius, M.; Vybernaite-Lubiene, I.; Vaiciute, D.; Overlinge, D.; Griniene, E.; Zaiko, A.; Bonaglia, S.; Liskow, I.; Voss, M.; Andersson, A.; et al. Spatiotemporal Patterns of N2 Fixation in Coastal Waters Derived from Rate Measurements and Remote Sensing. Biogeosciences 2021, 18, 1857–1871. [Google Scholar] [CrossRef]
- Šulčius, S.; Pilkaityte, R.; Mazur-Marzec, H.; KasperovičienE, J.; Ezhova, E.; Błaszczyk, A.; Paškauskas, R. Increased Risk of Exposure to Microcystins in the Scum of the Filamentous Cyanobacterium Aphanizomenon flos-aquae Accumulated on the Western Shoreline of the Curonian Lagoon. Mar. Pollut. Bull. 2015, 99, 264–270. [Google Scholar] [CrossRef] [PubMed]
- Šulčius, S.; Montvydienė, D.; Mazur-Marzec, H.; Kasperovičienė, J.; Rulevičius, R.; Cibulskaitė, Ž. The Profound Effect of Harmful Cyanobacterial Blooms: From Food-Web and Management Perspectives. Sci. Total Environ. 2017, 609, 1443–1450. [Google Scholar] [CrossRef]
- Montvydienė, D.; Šulčius, S.; Jurgelėnė, Ž.; Makaras, T.; Kalcienė, V.; Taraškevičius, R.; Kazlauskas, M.; Kazlauskienė, N. Contrasting Ecotoxic Effects of Landfill Leachate and Cyanobacterial Biomass on Aquatic Organisms. Water Air Soil Pollut. 2020, 231. [Google Scholar] [CrossRef]
- Paldavičienė, A.; Mazur-Marzec, H.; Razinkovas, A. Toxic Cyanobacteria Blooms in the Lithuanian Part of the Curonian Lagoon. Oceanologia 2009, 51, 203–216. [Google Scholar] [CrossRef] [Green Version]
- Pilkaitytė, R.; Overlingė, D.; Gasiūnaitė, Z.R.; Mazur-Marzec, H. Spatial and Temporal Diversity of Cyanometabolites in the Eutrophic Curonian Lagoon (SE Baltic Sea). Water 2021, 13, 1760. [Google Scholar] [CrossRef]
- Demay, J.; Bernard, C.; Reinhardt, A.; Marie, B. Natural Products from Cyanobacteria: Focus on Beneficial Activities. Mar. Drugs 2019, 17, 320. [Google Scholar] [CrossRef] [Green Version]
- Nowruzi, B.; Sarvari, G.; Blanco, S. Applications of cyanobacteria in biomedicine. In Handbook of Algal Science, Technology and Medicine; Elsevier: Amsterdam, The Netherlands, 2020; pp. 441–453. [Google Scholar]
- Swain, S.S.; Paidesetty, S.K.; Padhy, R.N. Antibacterial, Antifungal and Antimycobacterial Compounds from Cyanobacteria. Biomed. Pharmacother. 2017, 90, 760–776. [Google Scholar] [CrossRef]
- Lauritano, C.; Martín, J.; de La Cruz, M.; Reyes, F.; Romano, G.; Ianora, A. First Identification of Marine Diatoms with Anti-Tuberculosis Activity. Sci. Rep. 2018, 8. [Google Scholar] [CrossRef] [Green Version]
- Marrez, D.A.; Naguib, M.M.; Sultan, Y.Y.; Higazy, A.M. Antimicrobial and Anticancer Activities of Scenedesmus obliquus Metabolites. Heliyon 2019, 5, e01404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kini, S.; Divyashree, M.; Mani, M.K.; Mamatha, B.S. Algae and cyanobacteria as a source of novel bioactive compounds for biomedical applications. In Advances in Cyanobacterial Biology; Elsevier: London, UK, 2020; pp. 173–194. [Google Scholar]
- Baldisserotto, C.; Sabia, A.; Ferroni, L.; Pancaldi, S. Biological Aspects and Biotechnological Potential of Marine Diatoms in Relation to Different Light Regimens. World J. Microbiol. Biotechnol. 2019, 35. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.K.; Kaur, R.; Bansal, A.; Kapur, S.; Sundaram, S. Biotechnological exploitation of cyanobacteria and microalgae for bioactive compounds. In Biotechnological Production of Bioactive Compounds; Elsevier: Amsterdam, The Netherlands, 2019; pp. 221–259. ISBN 9780444643230. [Google Scholar]
- Ventola, C.L. The Antibiotic Resistance Crisis: Causes and Threats. P T J. 2015, 40, 277–283. [Google Scholar]
- Machowska, A.; Lundborg, C.S. Drivers of Irrational Use of Antibiotics in Europe. Int. J. Environ. Res. Public Health 2019, 16, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organisation. WHO Report on Cancer: Setting Priorities, Investing Wisely and Providing Care for All; WHO: Geneva, Switzerland, 2020. [Google Scholar]
- Blunt, J.W.; Copp, B.R.; Keyzers, R.A.; Munro, M.H.G.; Prinsep, M.R. Marine Natural Products. Nat. Prod. Rep. 2015, 32, 116–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welker, M.; von Döhren, H. Cyanobacterial Peptides—Nature’s Own Combinatorial Biosynthesis. FEMS Microbiol. Rev. 2006, 30, 530–563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prarthana, J.; Maruthi, K.R. Fresh Water Algae as a Potential Source of Bioactive Compounds for Aquaculture and Significance of Solvent System in Extraction of Antimicrobials. Asian J. Sci. Res. 2018, 12, 18–28. [Google Scholar] [CrossRef]
- Ingebrigtsen, R.A.; Hansen, E.; Andersen, J.H.; Eilertsen, H.C. Field Sampling Marine Plankton for Biodiscovery. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef] [PubMed]
- Utermöhl, H. Zur Vervollkommnung Der Quantitativen Phytoplankton-Methodik. Int. Ver. Theor. Angew. Limnol. Mitt. 1958, 9, 1–38. [Google Scholar] [CrossRef]
- HELCOM. Manual of Marine Monitoring in the Combine Programme of HELCOM. Annex C-6: Guidelines Concerning Phytoplankton Species Composition, Abundance and Biomass. Available online: https://helcom.fi/media/publications/Manual-for-Marine-Monitoring-in-the-COMBINE-Programme-of-HELCOM.pdf (accessed on 11 June 2021).
- Olenina, I.; Hajdu, S.; Edler, L.; Andersson, A.; Wasmund, N.; Busch, S.; Göbel, J.; Gromisz, S.; Huseby, S.; Huttunen, M.; et al. Biovolumes and Size-Classes of Phytoplankton in the Baltic Sea Helsinki Commission Baltic Marine Environment Protection Commission; HELCOM: Helsinki, Finland, 2006; Volume 106. [Google Scholar]
- Starmach, K. Dinophyceae—Dinofity. Raphidophyceae—Rafidofity. In Flora slodkowodna Polski 5; Starmach, K., Sieminska, J., Eds.; PWN: Warszawa, Krakow, 1974. [Google Scholar]
- Tikkanen, T.; Willen, T. Vaxtplanktonflora; Statens Naturvardsverk: Solna, Sweden, 1992. [Google Scholar]
- Komárek, J.; Anganostidis, K. Cyanoprokaryota. In Süßwasserflora von Mitteleuropa; Büdel, B., Gärtner, G., Krienitz, L., Schagerl, M., Eds.; Elsevier: München, Germany, 2008; Volume 19/1. [Google Scholar]
- Komárek, J. Cyanoprokaryota: 3rd Part: Heterocystous Genera. In Süßwasserflora von Mitteleuropa; Büdel, B., Gärtner, G., Krienitz, L., Schagerl, M., Eds.; Springer Spektrum: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Kotlarska, E.; Łuczkiewicz, A.; Burzyński, A. Vibrio cholerae in the Polish Coastal Waters of the Baltic Sea—Single Case or a Sign of Climate Warming? Acta Biochim. Pol. 2018, 65, 69. [Google Scholar]
- Kotlarska, E.; Łuczkiewicz, A.; Baraniak, A.; Jankowska, K.; Całkiewicz, J. ESBL-Producing Aeromonas spp. Isolated from Wastewater and Marine Environment. Acta Biochim. Pol. 2018, 65. [Google Scholar]
- Sadowy, E.; Luczkiewicz, A. Drug-Resistant and Hospital-Associated Enterococcus Faecium from Wastewater, Riverine Estuary and Anthropogenically Impacted Marine Catchment Basin. BMC Microbiol. 2014, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Felczykowska, A.; Pawlik, A.; Mazur-Marzec, H.; Toruńska-Sitarz, A.; Narajczyk, M.; Richert, M.; Wegrzyn, G.; Herman-Antosiewicz, A. Selective Inhibition of Cancer Cells’ Proliferation by Compounds Included in Extracts from Baltic Sea Cyanobacteria. Toxicon 2015, 108, 1–10. [Google Scholar] [CrossRef]
- Pluotno, A.; Carmeli, S. Banyasin A and Banyasides A and B, Three Novel Modified Peptides from a Water Bloom of the Cyanobacterium Nostoc sp. Tetrahedron 2005, 61, 575–583. [Google Scholar] [CrossRef]
- Ocampo Bennet, X. Peptide Au Seiner Cyanobakterien Wasserblütte (1998) Aus Dem Wannsee/Berli: Strukturen and Biologische Wirksamkeit; University of Freiburg: Breisgau, Germany, 2007. [Google Scholar]
- Mazur-Marzec, H.; Błaszczyk, A.; Felczykowska, A.; Hohlfeld, N.; Kobos, J.; Toruńska-Sitarz, A.; Devi, P.; Montalvão, S.; D’souza, L.; Tammela, P.; et al. Baltic Cyanobacteria—A Source of Biologically Active Compounds. Eur. J. Phycol. 2015, 50, 343–360. [Google Scholar] [CrossRef] [Green Version]
- Jaccard, P. Étude Comparative de La Distribution Florale Dans Une Portion Des Alpes et Du Jura. Bull. Soc. Vaud. Sci. Nat. 1901, 37, 547–579. [Google Scholar] [CrossRef]
- Schlee, D.; Sneath, P.H.A.; Sokal, R.R.; Freeman, W.H. Numerical Taxonomy. The Principles and Practice of Numerical Classification. Syst. Zool. 1975, 24, 263. [Google Scholar] [CrossRef]
- Fujii, K.; Mayumi, T.; Noguchi, K.; Kashiwagi, T.; Akashi, S.; Sivonen, K.; Hirayama, K.; Harada, K. Mass Spectrometric Studies of Peptides from Cyanobacteria under FAB MS/MS Conditions. J. Mass Spectrom. Soc. Jpn. 2000, 48, 56–64. [Google Scholar] [CrossRef]
- Welker, M.; Brunke, M.; Preussel, K.; Lippert, I.; von Döhren, H. Diversity and Distribution of Microcystis (Cyanobacteria) Oligopeptide Chemotypes from Natural Communities Studies by Single-Colony Mass Spectrometry. Microbiology 2004, 150, 1785–1796. [Google Scholar] [CrossRef] [Green Version]
- Czarnecki, O.; Henning, M.; Lippert, I.; Welker, M. Identification of Peptide Metabolites of Microcystis (Cyanobacteria) That Inhibit Trypsin-like Activity in Planktonic Herbivorous Daphnia (Cladocera). Environ. Microbiol. 2006, 8, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Miles, C.O.; Melanson, J.E.; Ballot, A. Sulfide Oxidations for LC-MS Analysis of Methionine-Containing Microcystins in Dolichospermum flos-Aquae NIVA-CYA 656. Environ. Sci. Technol. 2014, 48, 13307–13315. [Google Scholar] [CrossRef]
- Bortoli, S.; Volmer, D.A. Characterization and Identification of Microcystins by Mass Spectrometry. Eur. J. Mass Spectrom. 2014, 20, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Puddick, J.; Prinsep, M.R.; Wood, S.A.; Kaufononga, S.A.F.; Cary, S.C.; Hamilton, D.P. High Levels of Structural Diversity Observed in Microcystins from Microcystis CAWBG11 and Characterization of Six New Microcystin Congeners. Mar. Drugs 2014, 12, 5372–5395. [Google Scholar] [CrossRef]
- Bouaïcha, N.; Miles, C.O.; Beach, D.G.; Labidi, Z.; Djabri, A.; Yasmine Benayache, N.; Nguyen-Quang, T.; Chadli Bendjedid, U.; Taref, E. Structural Diversity, Characterization and Toxicology 2 of Microcystins 3. Toxins 2019, 11, 714. [Google Scholar] [CrossRef] [Green Version]
- Jones, M.R.; Pinto, E.; Torres, M.A.; Dörr, F.; Mazur-Marzec, H.; Szubert, K.; Tartaglione, L.; Dell’Aversano, C.; Miles, C.O.; Beach, D.G.; et al. CyanoMetDB, a Comprehensive Public Database of Secondary Metabolites from Cyanobacteria. Water Res. 2021, 196. [Google Scholar] [CrossRef] [PubMed]
- Zervou, S.K.; Gkelis, S.; Kaloudis, T.; Hiskia, A.; Mazur-Marzec, H. New Microginins from Cyanobacteria of Greek Freshwaters. Chemosphere 2020, 248. [Google Scholar] [CrossRef] [PubMed]
- Carneiro, R.L.; Dörr, F.A.; Dörr, F.; Bortoli, S.; Delherbe, N.; Vásquez, M.; Pinto, E. Co-Occurrence of Microcystin and Microginin Congeners in Brazilian Strains of Microcystis sp. FEMS Microbiol. Ecol. 2012, 82, 692–702. [Google Scholar] [CrossRef] [Green Version]
- Erhard, M.; von Döhren, H.; Jungblut, P. Rapid Typing and Elucidation of New Secondary Metabolites of Intact Cyanobacteria Using MALDI-TOF Mass Spectrometry. Nat. Biotechnol. 1999, 15, 906–909. [Google Scholar] [CrossRef] [PubMed]
- Spoof, L.; Błaszczyk, A.; Meriluoto, J.; Cegłowska, M.; Mazur-Marzec, H. Structures and Activity of New Anabaenopeptins Produced by Baltic Sea Cyanobacteria. Mar. Drugs 2016, 14, 8. [Google Scholar] [CrossRef] [Green Version]
- Nishizawa, A.; bin Arshad, A.; Nishizawa, T.; Asayama, M.; Fujii, K.; Nakano, T.; Harada, K.I.; Shirai, M. Cloning and Characterization of a New Hetero-Gene Cluster of Nonribosomal Peptide Synthetase and Polyketide Synthase from the Cyanobacterium Microcystis aeruginosa K-139. J. Gen. Appl. Microbiol. 2007, 53, 17–27. [Google Scholar] [CrossRef] [Green Version]
- Janssen, E.M.L. Cyanobacterial Peptides beyond Microcystins—A Review on Co-Occurrence, Toxicity, and Challenges for Risk Assessment. Water Res. 2019, 151, 488–499. [Google Scholar] [CrossRef] [PubMed]
- Kurmayer, R.; Deng, L.; Entfellner, E. Role of Toxic and Bioactive Secondary Metabolites in Colonization and Bloom Formation by Filamentous Cyanobacteria Planktothrix. Harmful Algae 2016, 54, 69–86. [Google Scholar] [CrossRef] [Green Version]
- Shishido, T.K.; Popin, R.V.; Jokela, J.; Wahlsten, M.; Fiore, M.F.; Fewer, D.P.; Herfindal, L.; Sivonen, K. Dereplication of Natural Products with Antimicrobial and Anticancer Activity from Brazilian Cyanobacteria. Toxins 2019, 12, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lürling, M. Grazing Resistance in Phytoplankton. Hydrobiologia 2021, 848, 237–249. [Google Scholar] [CrossRef]
- Herrera, N.; Palacio, J.; Echeverri, F.; Ferrão-Filho, A. Effects of a Cyanobacterial Bloom Sample Containing Microcystin-LR on the Ecophysiology of Daphnia similis. Toxicol. Rep. 2014, 1, 909–914. [Google Scholar] [CrossRef] [Green Version]
- Pawlik-Skowrońska, B.; Toporowska, M.; Mazur-Marzec, H. Effects of Secondary Metabolites Produced by Different Cyanobacterial Populations on the Freshwater Zooplankters Brachionus calyciflorus and Daphnia pulex. Environ. Sci. Pollut. Res. 2019, 26, 11793–11804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ger, K.A.; Hansson, L.A.; Lürling, M. Understanding Cyanobacteria-Zooplankton Interactions in a More Eutrophic World. Freshw. Biol. 2014, 59, 1783–1798. [Google Scholar] [CrossRef] [Green Version]
- Falaise, C.; François, C.; Travers, M.A.; Morga, B.; Haure, J.; Tremblay, R.; Turcotte, F.; Pasetto, P.; Gastineau, R.; Hardivillier, Y.; et al. Antimicrobial Compounds from Eukaryotic Microalgae against Human Pathogens and Diseases in Aquaculture. Mar. Drugs 2016, 14, 159. [Google Scholar] [CrossRef] [Green Version]
- Takemura, A.F.; Chien, D.M.; Polz, M.F. Associations and Dynamics of Vibrionaceae in the Environment, from the Genus to the Population Level. Front. Microbiol. 2014, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.-J.; Ryu, J.-O.; Lee, S.-Y.; Kim, E.-S.; Kim, H.-Y. Multiplex PCR for Detection of the Vibrio Genus and Five Pathogenic Vibrio Species with Primer Sets Designed Using Comparative Genomics. BMC Microbiol. 2015, 15, 239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Environmental Protection Agency US. Climate Change Indicators: Sea Surface Temperature. Climate Change Indicators in the United States. US EPA. Available online: https://www.epa.gov/climate-indicators/climate-change-indicators-sea-surface-temperature (accessed on 14 June 2021).
- Savadova-Ratkus, K.; Mazur-Marzec, H.; Karosienė, J.; Kasperovičienė, J.; Paškauskas, R.; Vitonytė, I.; Koreivienė, J. Interplay of Nutrients, Temperature, and Competition of Native and Alien Cyanobacteria Species Growth and Cyanotoxin Production in Temperate Lakes. Toxins 2021, 13, 23. [Google Scholar] [CrossRef] [PubMed]
- Paerl, H.W.; Havens, K.E.; Hall, N.S.; Otten, T.G.; Zhu, M.; Xu, H.; Zhu, G.; Qin, B. Mitigating a Global Expansion of Toxic Cyanobacterial Blooms: Confounding Effects and Challenges Posed by Climate Change. Mar. Freshw. Res. 2020, 71, 579–592. [Google Scholar] [CrossRef] [Green Version]
- Gyraite, G.; Katarzyte, M.; Schernewski, G. First Findings of Potentially Human Pathogenic Bacteria Vibrio in the South-Eastern Baltic Sea Coastal and Transitional Bathing Waters. Mar. Pollut. Bull. 2019, 149. [Google Scholar] [CrossRef] [PubMed]
- Mouriño-Pérez, R.R.; Worden, R.Z.; Azam, F. Growth of Vibrio cholerae O1 in Red Tide Waters off California. Appl. Environ. Microbiol. 2003, 69, 6923–6931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eiler, A.; Gonzalez-Rey, C.; Allen, S.; Bertilsson, S. Growth Response of Vibrio cholerae and Other Vibrio spp. to Cyanobacterial Dissolved Organic Matter and Temperature in Brackish Water. FEMS Microbiol. Ecol. 2007, 60, 411–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organisation. Guidelines for Safe Recreational Water Environments. Volume 1, Coastal and Fresh Waters; WHO: Geneva, Switzerland, 2003; Volume 1. [Google Scholar]
- Gheda, S.F.; Ismail, G.A. Natural Products from Some Soil Cyanobacterial Extracts with Potent Antimicrobial, Antioxidant and Cytotoxic Activities. An. Acad. Bras. De Cienc. 2020, 92, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Emparan, Q.; Harun, R.; Danquah, M.K. Role of Phycoremediation for Nutrient Removal from Wastewaters: A Review. Appl. Ecol. Environ. Res. 2019, 17, 889–915. [Google Scholar] [CrossRef]
- Dar, R.A.; Sharma, N.; Kaur, K.; Phutela, U.G. Feasibility of Microalgal Technologies in Pathogen Removal from Wastewater. In Application of Microalgae in Wastewater Treatment; Springer International Publishing: Cham, Switzerland, 2019; pp. 237–268. [Google Scholar]
- Da Silva, M.F.; Tiago, I.; Veríssimo, A.; Boaventura, R.A.; Nunes, O.C.; Manaia, C.M. Antibiotic Resistance of Enterococci and Related Bacteria in an Urban Wastewater Treatment Plant. FEMS Microbiol. Ecol. 2006, 55, 322–329. [Google Scholar] [CrossRef] [Green Version]
- Zahra, Z.; Choo, D.H.; Lee, H.; Parveen, A. Cyanobacteria: Review of Current Potentials and Applications. Environments 2020, 7, 13. [Google Scholar] [CrossRef] [Green Version]
- Rico, M.; González, A.G.; Santana-Casiano, M.; González-Dávila, M.; Pérez-Almeida, N.; Tangil, M.S. de Production of Primary and Secondary Metabolites Using Algae. In Prospects and Challenges in Algal Biotechnology; Springer: Singapore, 2017; pp. 311–326. [Google Scholar]
- Silva-Stenico, M.E.; Silva, C.S.P.; Lorenzi, A.S.; Shishido, T.K.; Etchegaray, A.; Lira, S.P.; Moraes, L.A.B.; Fiore, M.F. Non-Ribosomal Peptides Produced by Brazilian Cyanobacterial Isolates with Antimicrobial Activity. Microbiol. Res. 2011, 166, 161–175. [Google Scholar] [CrossRef]
- Rojas, V.; Rivas, L.; Cárdenas, C.; Guzmán, F. Cyanobacteria and Eukaryotic Microalgae as Emerging Sources of Antibacterial Peptides. Molecules 2020, 25, 5804. [Google Scholar] [CrossRef]
- Skočibušić, M.; Lacić, S.; Rašić, Z. Evaluation of Antimicrobial Potential of the Marine Cyanobacterium, Rivularia mesenterica. J. Adv. Microbiol. 2019, 16, 1–11. [Google Scholar] [CrossRef]
- Tan, L.T.; Phyo, M.Y. Marine Cyanobacteria: A Source of Lead Compounds and Their Clinically-Relevant Molecular Targets. Molecules 2020, 25, 2197. [Google Scholar] [CrossRef]
- Chlipala, G.E.; Mo, S.; Orjala, J. Chemodiversity in Freshwater and Terrestrial Cyanobacteria-A Source for Drug Discovery. Curr. Drug Targets 2011, 12, 1654–1673. [Google Scholar] [CrossRef] [PubMed]
- Mazur-Marzec, H.; Fidor, A.; Cegłowska, M.; Wieczerzak, E.; Kropidłowska, M.; Goua, M.; Macaskill, J.; Edwards, C. Cyanopeptolins with Trypsin and Chymotrypsin Inhibitory Activity from the Cyanobacterium Nostoc edaphicum CCNP1411. Mar. Drugs 2018, 16, 220. [Google Scholar] [CrossRef] [Green Version]
- Weckesser, J.; Martin, C.; Jakobi, C. Cyanopeptolins, Depsipeptides from Cyanobacteria. Syst. Appl. Microbiol. 1996, 19, 133–138. [Google Scholar] [CrossRef]
- Tsukamoto, S.; Painuly, P.; Young, K.A.; Yang, X.; Shimizu, Y.; Cornell, L. Microcystilide A: A Novel Cell-Differentiation-Promoting Depsipeptide from Microcystis aeruginosa NO-15-1840. J. Am. Chem. Soc. 1993, 115, 11046–11047. [Google Scholar] [CrossRef]
- Salem, O.M.; el Assi, R.K. Bioactive Constituents of Three Algal Species Extracts and Their Anticancer Activity against Human Cancer Cell Lines. Egypt. J. Phycol. 2020, 21, 2020. [Google Scholar]
- Ujvárosi, A.Z.; Hercog, K.; Riba, M.; Gonda, S.; Filipič, M.; Vasas, G.; Žegura, B. The Cyanobacterial Oligopeptides Microginins Induce DNA Damage in the Human Hepatocellular Carcinoma (HepG2) Cell Line. Chemosphere 2020, 240. [Google Scholar] [CrossRef] [PubMed]
- Okino, T.; Murakami, M.; Ryo, H.; Hideaki, M.; Matsuda, H.; Yamaguchi, K. Micropeptins A and B, Plasmin and Trypsin Inhibitors from the Blue-Green Alga Microcystis aeruginosa. Tetrahedron Lett. 1993, 34, 8131–8134. [Google Scholar] [CrossRef]
- Bober, B.; Bialczyk, J. Determination of the Toxicity of the Freshwater Cyanobacterium Woronichinia naegeliana (Unger) Elenkin. J. Appl. Phycol. 2017, 29, 1355–1362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishida, K.; Kato, T.; Murakami, M.; Watanabe, M.; Watanabe, M.F. Microginins, Zinc Metalloproteases Inhibitors Cyanobacterium Microcystis aeruginosa. Tetrahedron 2000, 56, 8643–8656. [Google Scholar] [CrossRef]
- Barkia, I.; Al-Haj, L.; Hamid, A.A.; Zakaria, M.; Saari, N.; Zadjali, F. Indigenous Marine Diatoms as Novel Sources of Bioactive Peptides with Antihypertensive and Antioxidant Properties. Int. J. Food Sci. Technol. 2019, 54, 1514–1522. [Google Scholar] [CrossRef]
- Hielscher-Michael, S.; Griehl, C.; Buchholz, M.; Demuth, H.-U.; Arnold, N.; Wessjohann, L.A. Natural Products from Microalgae with Potential against Alzheimer’s Disease: Sulfolipids Are Potent Glutaminyl Cyclase Inhibitors. Mar. Drugs 2016, 14, 203. [Google Scholar] [CrossRef] [PubMed]
- Kusaikin, M.I.; Ermakova, S.P.; Shevchenko, N.M.; Isakov, V.V.; Gorshkov, A.G.; Vereshchagin, A.L.; Grachev, M.A.; Zvyagintseva, T.N. Structural Characteristics and Antitumor Activity of a New Chrysolaminaran from the Diatom Alga Synedra acus. Chem. Nat. Compd. 2010, 46, 1–4. [Google Scholar] [CrossRef]
- Prestegard, S.K.; Oftedal, L.; Coyne, R.T.; Nygaard, G.; Skjærven, K.H.; Knutsen, G.; Døskeland, S.O.; Herfindal, L. Marine Benthic Diatoms Contain Compounds Able to Induce Leukemia Cell Death and Modulate Blood Platelet Activity. Mar. Drugs 2009, 7, 605. [Google Scholar] [CrossRef] [PubMed]
Collected Samples | 1st Testing Step | 2nd Testing Step | 3rd Testing Step | ||||||
---|---|---|---|---|---|---|---|---|---|
Sampling dates | Sample ID | Extract ID | Assay | ID 1 of the fractions tested | Assay | ID 2 of the fractions tested | Assay | ||
N2018.06.24 | 1 | I | acute toxicity, antibacterial, enzyme inhibition, cytotoxicity | I fractionation | − | − | II fractionation | − | − |
N2018.06.28 | 2 | II | − | − | − | − | |||
J2018.07.11 | 3 | III | − | − | − | − | |||
J2018.07.20 | 4 | IV | IV-[10–100] 3 | antibacterial, cytotoxicity | IV-60-[20; 40; 60; 90; 100] 3; IV-70-[20; 40; 60; 90; 100] 3 | cytotoxicity | |||
N2018.07.23 | 5 | V | V-[10–100] 3 | antibacterial | − | − | |||
N2018.08.03 | 6 | VI | − | − | − | − | |||
N2018.08.09 | 7 | VII | − | − | − | − | |||
N2018.08.16 | 8 | VIII | VIII-[10–100] 3 | enzyme inhibition | − | − | |||
N2018.08.30 | 9 | IX | IX-[10–100] 3 | − | − |
Bacterial Strains | Clinical Strains | Environmental Strains | |||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Staphylococcus aureus CCNPB/1505 | Pseudomonas aeruginosa CCNPB/MBL | Acinetobacter baumanii CCNPB/O | Klebsiella pneumoniae CCNPB/1404 | Enterococcus faecium 45 | Aeromonas salmonicida 2013 | Vibrio cholerae 2329 | Vibrio diazotrophicus Cd1 | ||||||||||||||||||
Conc., µg mL−1 | 500 | 250 | 125 | 500 | 250 | 125 | 500 | 250 | 125 | 500 | 250 | 125 | 500 | 250 | 125 | 500 | 250 | 125 | 500 | 250 | 125 | 500 | 250 | 125 | |
Extracts | I | ||||||||||||||||||||||||
II | |||||||||||||||||||||||||
III | |||||||||||||||||||||||||
IV | |||||||||||||||||||||||||
V | |||||||||||||||||||||||||
VI | |||||||||||||||||||||||||
VII | |||||||||||||||||||||||||
VIII | |||||||||||||||||||||||||
IX | |||||||||||||||||||||||||
0–20% | 20–50% | 50–70% | 70–100% | 100–120% | 120–150% |
Bioassays | Enzyme Inhibition Assay | Cytotoxicity Assay | Acute Toxicity Assay | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Trypsin | Thrombin | T47D Cells | Daphnia Magna | ||||||||||||
Conc., µg mL−1 | 45 | 4.5 | 45 | 4.5 | 200 | 100 | 50 | 25 | 24 h | 48 h | |||||
10 | 5 | 2.5 | 10 | 5 | 2.5 | ||||||||||
Extracts | I | ||||||||||||||
II | |||||||||||||||
III | |||||||||||||||
IV | |||||||||||||||
V | |||||||||||||||
VI | |||||||||||||||
VII | |||||||||||||||
VIII | |||||||||||||||
IX | |||||||||||||||
High enzymatic inhibition/ Low cell viability/High toxicity 1 | Low enzymatic inhibition/ High cell viability/Low toxicity 1 | ||||||||||||||
0–20% | 20–50% | 50–70% | 70–100% | 100–120% |
Antibacterial Assay | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Extracts | IV | V | ||||||||||||||||||
Fractions 1 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
Staphylococcus aureus CCNPB/1505 | − | − | − | − | − | + | ++ | + | + | − | − | − | − | − | − | + | + | ++ | + | |
Pseudomonas aeuruginosa CCNPB/MBL | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − | |
Enterococcus faecium 45 | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − | |
Vibrio cholerae 2329 | − | − | − | − | − | ++ | ++ | − | ++ | − | − | − | − | − | − | − | + | ++ | + | |
Aeromonas salmonicida 2013 | − | + | + | + | ++ | ++ | ++ | ++ | + | + | + | + | ++ | + | + | + | + | + | ++ | |
Vibrio diazotrophicus Cd1 | + | + | + | ++ | + | + | − | + | + | + | ++ | + | + | + | + | + | + | + | + | |
Cytotoxicity Assay | ||||||||||||||||||||
Extracts | IV | |||||||||||||||||||
Fractions 1 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | ||||||||||
T47D | − | − | − | − | ++ | ++ | − | − | − | |||||||||||
Fractions (3rd testing step) | IV-50 | IV-60 | IV-70 | |||||||||||||||||
20 | 40 | 60 | 90 | 100 | 20 | 40 | 60 | 90 | 100 | 20 | 40 | 60 | 90 | 100 | ||||||
T47D | − | − | − | − | − | − | − | − | − | − | − | − | − | − | − | |||||
Enzyme Inhibition Assay | ||||||||||||||||||||
Extracts | VIII | IX | ||||||||||||||||||
Fractions 1 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
Trypsin | − | − | − | + | + | + | ++ | ++ | + | + | − | − | + | ++ | + | + | + | ++ | + | + |
Chymotrypsin | − | − | − | − | + | + | ++ | + | + | + | − | − | − | + | + | + | + | + | + | + |
Thrombin | − | − | − | + | + | + | + | + | + | − | − | − | − | + | ++ | + | + | + | − | − |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Overlingė, D.; Toruńska-Sitarz, A.; Cegłowska, M.; Błaszczyk, A.; Szubert, K.; Pilkaitytė, R.; Mazur-Marzec, H. Phytoplankton of the Curonian Lagoon as a New Interesting Source for Bioactive Natural Products. Special Impact on Cyanobacterial Metabolites. Biomolecules 2021, 11, 1139. https://doi.org/10.3390/biom11081139
Overlingė D, Toruńska-Sitarz A, Cegłowska M, Błaszczyk A, Szubert K, Pilkaitytė R, Mazur-Marzec H. Phytoplankton of the Curonian Lagoon as a New Interesting Source for Bioactive Natural Products. Special Impact on Cyanobacterial Metabolites. Biomolecules. 2021; 11(8):1139. https://doi.org/10.3390/biom11081139
Chicago/Turabian StyleOverlingė, Donata, Anna Toruńska-Sitarz, Marta Cegłowska, Agata Błaszczyk, Karolina Szubert, Renata Pilkaitytė, and Hanna Mazur-Marzec. 2021. "Phytoplankton of the Curonian Lagoon as a New Interesting Source for Bioactive Natural Products. Special Impact on Cyanobacterial Metabolites" Biomolecules 11, no. 8: 1139. https://doi.org/10.3390/biom11081139
APA StyleOverlingė, D., Toruńska-Sitarz, A., Cegłowska, M., Błaszczyk, A., Szubert, K., Pilkaitytė, R., & Mazur-Marzec, H. (2021). Phytoplankton of the Curonian Lagoon as a New Interesting Source for Bioactive Natural Products. Special Impact on Cyanobacterial Metabolites. Biomolecules, 11(8), 1139. https://doi.org/10.3390/biom11081139