Beyond the GFAP-Astrocyte Protein Markers in the Brain
Abstract
:1. Introduction
Astrocyte Functions in the Brain
2. General Astrocyte Markers
2.1. Structural Proteins
2.2. Transcription Factors
2.3. Membrane Proteins
2.4. Astrocyte Metabolic Markers
3. How Astrocytes Communicate with Other Cell Types
4. Astroglia Activation
4.1. What Activates Astrocytes, and What about A1/A2 Polarization?
4.2. Activated Astrocytes Markers
4.3. Structural and Membrane Proteins
4.4. Secreted Proteins
4.5. Intracellular Proteins
5. Heterogeneity of Astrocytes
6. Astroglial Markers in the Aging Brain
7. Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Morel, L.; Sum, M.; Chiang, R.; Higashimori, X.H.; Shoneye, T.; Iyer, L.K.; Yelick, J.; Tai, A.; Yang, X.Y. Molecular and Func-tional Properties of Regional Astrocytes in the Adult Brain. J. Neurosci. 2017, 37, 8706–8717. [Google Scholar] [CrossRef] [Green Version]
- Cunningham, C.; Dunne, A.; Lopez-Rodriguez, A.B. Astrocytes: Heterogeneous and Dynamic Phenotypes in Neurodegener-ation and Innate Immunity. Neuroscientist 2019, 25, 455–474. [Google Scholar] [CrossRef] [Green Version]
- Emsley, J.G.; Macklis, J.D. Astroglial heterogeneity closely reflects the neuronal-defined anatomy of the adult murine CNS. Neuron Glia Biol. 2006, 2, 175–186. [Google Scholar] [CrossRef] [Green Version]
- Oberheim, N.A.; Takano, T.; Han, X.; He, W.; Lin, J.H.C.; Wang, F.; Xu, Q.; Wyatt, J.D.; Pilcher, W.; Ojemann, J.; et al. Uniquely Hominid Features of Adult Human Astrocytes. J. Neurosci. 2009, 29, 3276–3287. [Google Scholar] [CrossRef]
- Khakh, B.S.; Sofroniew, M.V. Diversity of Astrocyte Functions and Phenotypes in Neural Circuits. Nat. Neurosci. 2015, 18, 942–952. [Google Scholar] [CrossRef]
- Liu, C.-Y.; Yang, Y.; Ju, W.-N.; Wang, X.; Zhang, H.-L. Emerging Roles of Astrocytes in Neuro-Vascular Unit and the Tripar-tite Synapse with Emphasis on Reactive Gliosis in the Context of Alzheimer’s Disease. Front. Cell Neurosci. 2018, 12, 193. [Google Scholar] [CrossRef] [Green Version]
- Schafer, D.P.; Lehrman, E.K.; Stevens, B. The “Quad-Partite” Synapse: Microglia-Synapse Interactions in the Developing and Mature CNS. Glia 2013, 61, 24–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Syková, E.; Vargová, L. Extrasynaptic transmission and the diffusion parameters of the extracellular space. Neurochem. Int. 2008, 52, 5–13. [Google Scholar] [CrossRef]
- Dityatev, A.; Rusakov, D. Molecular signals of plasticity at the tetrapartite synapse. Curr. Opin. Neurobiol. 2011, 21, 353–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbott, N.J.; Rönnbäck, L.; Hansson, E. Astrocyte-Endothelial Interactions at the Blood-Brain Barrier. Nat. Rev. Neurosci. 2006, 7, 41–53. [Google Scholar] [CrossRef] [PubMed]
- Jessen, N.A.; Sofie, A.; Munk, F.; Lundgaard, I.; Nedergaard, M. The Glymphatic System: A Beginner’s Guide. Neurochem. Int. 2015, 40, 2583–2599. [Google Scholar] [CrossRef] [Green Version]
- Recknor, J.B.; Recknor, J.C.; Sakaguchi, D.S.; Mallapragada, S.K. Oriented Astroglial Cell Growth on Micropatterned Poly-styrene Substrates. Biomaterials 2004, 25, 2753–2767. [Google Scholar] [CrossRef]
- Katiyar, K.S.; Winter, C.C.; Struzyna, L.A.; Harris, J.P.; Cullen, D.K. Mechanical elongation of astrocyte processes to create living scaffolds for nervous system regeneration. J. Tissue Eng. Regen. Med. 2016, 11, 2737–2751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Götz, M.; Sirko, S.; Beckers, J.; Irmler, M. Reactive astrocytes as neural stem or progenitor cells: In vivo lineage, in vitro potential, and Genome-wide expression analysis. Glia 2015, 63, 1452–1468. [Google Scholar] [CrossRef] [PubMed]
- Verkhratsky, A.; Nedergaard, M. Physiology of Astroglia. Physiol. Rev. 2018, 98, 239–389. [Google Scholar] [CrossRef]
- Oe, Y.; Baba, O.; Ashida, H.; Nakamura, K.C.; Hirase, H. Glycogen Distribution in the Microwave-Fixed Mouse Brain Reveals Heterogeneous Astrocytic Patterns. Glia 2016, 64, 1532–1545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konishi, H.; Okamoto, T.; Hara, Y.; Komine, O.; Tamada, H.; Maeda, M.; Osako, F.; Kobayashi, M.; Nishiyama, A.; Kataoka, Y.; et al. Astrocytic phagocytosis is a compensatory mechanism for microglial dysfunction. EMBO J. 2020, 39, e104464. [Google Scholar] [CrossRef]
- Middeldorp, J.; Hol, E. GFAP in health and disease. Prog. Neurobiol. 2011, 93, 421–443. [Google Scholar] [CrossRef]
- Oberheim, N.A.; Goldman, S.A.; Nedergaard, M. Heterogeneity of Astrocytic Form and Function. Astrocytes 2011, 814, 23–45. [Google Scholar] [CrossRef] [Green Version]
- Liedtke, W.; Edelmann, W.; Bieri, P.L.; Chiu, F.-C.; Cowan, N.J.; Kucherlapati, R.; Raine, C.S. GFAP Is Necessary for the Integrity of CNS White Matter Architecture and Long-Term Maintenance of Myelination. Neuron 1996, 17, 607–615. [Google Scholar] [CrossRef] [Green Version]
- Stavale, L.M.; Soares, E.S.; Mendonça, M.C.P.; Irazusta, S.P.; da Cruz Höfling, M.A. Temporal Relationship between Aqua-porin-4 and Glial Fibrillary Acidic Protein in Cerebellum of Neonate and Adult Rats Administered a BBB Disrupting Spider Venom. Toxicon 2013, 66, 37–46. [Google Scholar] [CrossRef] [Green Version]
- Miller, R.H.; Raff’, M.C.; Abney, E.R.; Cohen, J.; Lindsay, R. Fibrous and Protoplasmic Astrocytes Are Biochemically and Developmentally Distinct. J. Neurosci. 1984, 4. [Google Scholar] [CrossRef]
- Cahoy, J.D.; Emery, B.; Kaushal, A.; Foo, L.C.; Zamanian, J.L.; Christopherson, K.S.; Xing, Y.; Lubischer, J.L.; Krieg, P.A.; Krupenko, S.A.; et al. A Transcriptome Database for Astrocytes, Neurons, and Oligodendrocytes: A New Resource for Un-derstanding Brain Development and Function. J. Neurosci. 2008, 28, 264–278. [Google Scholar] [CrossRef] [Green Version]
- Clasadonte, J.; Morel, L.; Barrios-Camacho, C.M.; Chiang, M.S.R.; Zhang, J.; Iyer, L.; Haydon, P.G.; Yang, Y. Molecular analysis of acute and chronic reactive astrocytes in the pilocarpine model of temporal lobe epilepsy. Neurobiol. Dis. 2016, 91, 315–325. [Google Scholar] [CrossRef]
- Yang, Y.; Vidensky, S.; Jin, L.; Jie, C.; Lorenzini, I.; Frankl, M.; Rothstein, J.D. Molecular comparison of GLT1+ and ALDH1L1+ astrocytes in vivo in astroglial reporter mice. Glia 2010, 59, 200–207. [Google Scholar] [CrossRef] [Green Version]
- Bramanti, V.; Tomassoni, D.; Avitabile, M.; Amenta, F.A.R. Biomarkers of Glial Cell Proliferation and Differentiation in Culture. Front. Biosci. 2010, 2, 558–570. [Google Scholar]
- Evans, R.M. Vimentin: The Conundrum of the Intermediate Filament Gene Family. BioEssays 1998, 20, 79–86. [Google Scholar] [CrossRef]
- Luo, H.; Wu, X.-Q.; Zhao, M.; Wang, Q.; Jiang, G.-P.; Cai, W.-J.; Luo, M.-Y. Expression of vimentin and glial fibrillary acidic protein in central nervous system development of rats. Asian Pac. J. Trop. Med. 2017, 10, 1185–1189. [Google Scholar] [CrossRef]
- Zamanian, J.L.; Xu, L.; Foo, L.C.; Nouri, N.; Zhou, L.; Giffard, R.; Barres, B.A. Genomic Analysis of Reactive Astrogliosis. J. Neurosci. 2012, 32, 6391–6410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmer, T.D.; Willhoite, A.R.; Gage, F.H. Vascular Niche for Adult Hippocampal. J. Comp. Neurol. 2000, 494, 479–494. [Google Scholar] [CrossRef]
- Sultana, S.; Sernett, S.W.; Bellin, R.M.; Robson, R.M.; Skalli, O. Intermediate Filament Protein Synemin Is Transiently Expressed in a Subset of Astrocytes during Development. Glia 2000, 30, 143–153. [Google Scholar] [CrossRef]
- Derouiche, A.; Frotscher, M. Peripheral astrocyte processes: Monitoring by selective immunostaining for the actin-binding ERM proteins. Glia 2001, 36, 330–341. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K.; Schmitt, S.; Bergner, C.G.; Tyanova, S.; Kannaiyan, N.; Manrique-Hoyos, N.; Kongi, K.; Cantuti, L.; Hanisch, U.K.; Philips, M.A.; et al. Cell Type- and Brain Region-Resolved Mouse Brain Proteome. Nat. Neurosci. 2015, 18, 1819–1831. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Cornwell, A.; Li, J.; Peng, S.; Osorio, M.J.; Aalling, N.; Wang, S.; Benraiss, A.; Lou, N.; Goldman, S.; et al. SOX9 Is an Astrocyte-Specific Nuclear Marker in the Adult Brain Outside the Neurogenic Regions. J. Neurosci. 2017, 37, 4493–4507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lozzi, B.; Huang, T.-W.; Sardar, D.; Huang, A.Y.-S.; Deneen, B. Regionally Distinct Astrocytes Display Unique Transcription Factor Profiles in the Adult Brain. Front. Neurosci. 2020, 14, 61. [Google Scholar] [CrossRef]
- Clarke, B.E.; Taha, D.M.; Tyzack, G.E.; Patani, R. Regionally encoded functional heterogeneity of astrocytes in health and disease: A perspective. Glia 2020, 69, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Minocha, S.; Valloton, D.; Arsenijevic, Y.; Cardinaux, J.-R.; Guidi, R.D.; Hornung, J.-P.; Lebrand, C. Nkx2.1 Regulates the Proliferation and Cell Fate of Telencephalic Astrocytes during Embryonic Development. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef] [Green Version]
- Laug, D.; Huang, T.-W.; Huerta, N.A.B.; Huang, A.Y.-S.; Sardar, D.; Ortiz-Guzman, J.; Carlson, J.C.; Arenkiel, B.R.; Kuo, C.T.; Mohila, C.A.; et al. Nuclear factor I-A regulates diverse reactive astrocyte responses after CNS injury. J. Clin. Investig. 2019, 129, 4408–4418. [Google Scholar] [CrossRef]
- Pannasch, U.; Vargová, L.; Reingruber, J.; Ezan, P.; Holcman, D.; Giaume, C.; Syková, E.; Rouach, N. Astroglial networks scale synaptic activity and plasticity. Proc. Natl. Acad. Sci. USA 2011, 108, 8467–8472. [Google Scholar] [CrossRef] [Green Version]
- Orellana, J.; Retamal, M.; Moraga-Amaro, R.; Stehberg, J. Role of Astroglial Hemichannels and Pannexons in Memory and Neurodegenerative Diseases. Front. Integr. Neurosci. 2016, 10, 26. [Google Scholar] [CrossRef] [Green Version]
- Papadopoulos, M.C.; Manley, G.T.; Krishna, S.; Verkman, A.S. Aquaporin-4 Facilitates Reabsorption of Excess Fluid in Vaso-genic Brain Edema. FASEB J. 2004, 18, 1291–1293. [Google Scholar] [CrossRef]
- Seifert, G.; Hüttmann, K.; Binder, D.K.; Hartmann, C.; Wyczynski, A.; Neusch, C.; Steinhäuser, C. Analysis of Astroglial K+ Channel Expression in the Developing Hippocampus Reveals a Predominant Role of the Kir4.1 Subunit. J. Neurosci. 2009, 29, 7474–7488. [Google Scholar] [CrossRef]
- Tong, X.; Ao, Y.; Faas, G.C.; Nwaobi, S.E.; Xu, J.; Haustein, M.D.; Anderson, M.A.; Mody, I.; Olsen, M.; Sofroniew, M.V.; et al. Astrocyte Kir4.1 ion channel deficits contribute to neuronal dysfunction in Huntington’s disease model mice. Nat. Neurosci. 2014, 17, 694–703. [Google Scholar] [CrossRef] [Green Version]
- An, H.; Koh, W.; Kang, S.; Nam, M.-H.; Lee, M.-H.N.A.C.J. Differential Proximity of Perisynaptic Astrocytic Best1 at the Excitatory and Inhibitory Tripartite Synapses in APP/PS1 and MAOB-KO Mice Revealed by Lattice Structured Illumination Microscopy. Exp. Neurobiol. 2021, 30, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Regan, M.R.; Huang, Y.; Kim, Y.S.; Dykes-Hoberg, M.I.; Jin, L.; Watkins, A.M.; Bergles, D.E.; Rothstein, J.D. Variations in Promoter Activity Reveal a Differential Expression and Physiology of Glutamate Transporters by Glia in the Developing and Mature CNS. J. Neurosci. 2007, 27, 6607–6619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez-lozada, Z.; Robinson, M.B. Reciprocal Communication between Astrocytes and En-dothelial Cells Is Required for Astrocytic Glutamate Transporter 1 (GLT-1) Expression. Neurochem. Int. 2020, 139. [Google Scholar] [CrossRef] [PubMed]
- Boisvert, M.M.; Erikson, G.A.; Shokhirev, M.N.; Allen, N.J. The Aging Astrocyte Transcriptome from Multiple Regions of the Mouse Brain. Cell Rep. 2018, 22, 269–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boddum, K.; Jensen, T.P.; Magloire, V.; Kristiansen, U.; Rusakov, D.A.; Pavlov, I.; Walker, M.C. Astrocytic GABA Trans-porter Activity Modulates Excitatory Neurotransmission. Nat. Commun. 2016, 7. [Google Scholar] [CrossRef]
- Minelli, A.; DeBiasi, S.; Brecha, N.C.; Zuccarello, L.V.; Conti, F. GAT-3, a High-Affinity GABA Plasma Membrane Transporter, Is Localized to Astrocytic Processes, and It Is Not Confined to the Vicinity of GABAergic Synapses in the Cerebral Cortex. J. Neurosci. 1996, 16, 6255–6264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, X.-T.; Galvan, A.; Wichmann, T.; Smith, Y. Localization and Function of GABA Transporters GAT-1 and GAT-3 in the Basal Ganglia. Front. Syst. Neurosci. 2011, 5, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rothstein, J.D.; Martin, L.; Levey, A.I.; Dykes-Hoberg, M.; Jin, L.; Wu, D.; Nash, N.; Kuncl, R.W. Localization of neuronal and glial glutamate transporters. Neuron 1994, 13, 713–725. [Google Scholar] [CrossRef]
- Pfeiffer-Guglielmi, B.; Fleckenstein, B.; Jung, G.; Hamprecht, B. Immunocytochemical localization of glycogen phosphorylase isozymes in rat nervous tissues by using isozyme-specific antibodies. J. Neurochem. 2003, 85, 73–81. [Google Scholar] [CrossRef]
- Bolaños, J.P. Bioenergetics and redox adaptations of astrocytes to neuronal activity. J. Neurochem. 2016, 139, 115–125. [Google Scholar] [CrossRef] [PubMed]
- Melø, T.M.; Nehlig, A.; Sonnewald, U. Neuronal–glial interactions in rats fed a ketogenic diet. Neurochem. Int. 2006, 48, 498–507. [Google Scholar] [CrossRef] [PubMed]
- Itoh, Y.; Esaki, T.; Shimoji, K.; Cook, M.; Law, M.J.; Kaufman, E.; Sokoloff, L. Dichloroacetate effects on glucose and lactate oxidation by neurons and astroglia in vitro and on glucose utilization by brain in vivo. Proc. Natl. Acad. Sci. USA 2003, 100, 4879–4884. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Chen, K.; Sloan, S.; Bennett, M.; Scholze, A.R.; O’Keeffe, S.; Phatnani, H.P.; Guarnieri, P.; Caneda, C.; Ruderisch, N.; et al. An RNA-Sequencing Transcriptome and Splicing Database of Glia, Neurons, and Vascular Cells of the Cerebral Cortex. J. Neurosci. 2014, 34, 11929–11947. [Google Scholar] [CrossRef]
- Rafiki, A.; Boulland, J.-L.; Halestrap, A.; Ottersen, O.; Bergersen, L. Highly differential expression of the monocarboxylate transporters MCT2 and MCT4 in the developing rat brain. Neuroscience 2003, 122, 677–688. [Google Scholar] [CrossRef] [PubMed]
- Debernardi, R.; Pierre, K.; Lengacher, S.; Magistretti, P.J. Cell-Specific Expression Pattern of Monocarboxylate Transporters in Astrocytes Brain Cortical Cell Cultures. J. Neurosci. Res. 2003, 155, 141–155. [Google Scholar] [CrossRef] [PubMed]
- Bouçanova, F.; Pollmeier, G.; Sandor, K.; Morado Urbina, C.; Nijssen, J.; Médard, J.J.; Bartesaghi, L.; Pellerin, L.; Svensson, C.I.; Hedlund, E.; et al. Disrupted Function of Lactate Transporter MCT1, but Not MCT4, in Schwann Cells Affects the Maintenance of Motor End-Plate Innervation. Glia 2021, 69, 124–136. [Google Scholar] [CrossRef]
- Ebert, D.; Haller, R.G.; Walton, M.E. Energy Contribution of Octanoate to Intact Rat Brain Metabolism Measured by13C Nuclear Magnetic Resonance Spectroscopy. J. Neurosci. 2003, 23, 5928–5935. [Google Scholar] [CrossRef] [Green Version]
- McKenna, M.C. The glutamate-glutamine cycle is not stoichiometric: Fates of glutamate in brain. J. Neurosci. Res. 2007, 85, 3347–3358. [Google Scholar] [CrossRef] [PubMed]
- Jeong, W.; Lee, H.; Cho, S.; Seo, J. ApoE4-Induced Cholesterol Dysregulation and Its Brain Cell Type-Specific Implications in the Pathogenesis of Alzheimer’s Disease. Mol. Cells 2019, 42, 739–746. [Google Scholar] [PubMed]
- Aikawa, T.; Holm, M.-L.; Kanekiyo, T. ABCA7 and Pathogenic Pathways of Alzheimer’s Disease. Brain Sci. 2018, 8, 27. [Google Scholar] [CrossRef] [Green Version]
- Eraso-Pichot, A.; Brasó-Vives, M.; Golbano, A.; Menacho, C.; Claro, E.; Galea, E.; Masgrau, R. GSEA of mouse and human mitochondriomes reveals fatty acid oxidation in astrocytes. Glia 2018, 66, 1724–1735. [Google Scholar] [CrossRef]
- Yun, S.-W.; Leong, C.; Zhai, D.; Tan, Y.L.; Lim, L.; Bi, X.; Lee, J.-J.; Kim, H.J.; Kang, N.-Y.; Ng, S.H.; et al. Neural stem cell specific fluorescent chemical probe binding to FABP7. Proc. Natl. Acad. Sci. USA 2012, 109, 10214–10217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, J.K.; Baker, J.H.; Müller, T. Immunoreactivity for Brain-Fatty Acid Binding Protein in Gomori-Positive Astrocytes. Glia 1996, 16, 218–226. [Google Scholar] [CrossRef]
- Yamasaki, M.; Yamada, K.; Furuya, S.; Mitoma, J.; Hirabayashi, Y.; Watanabe, M. 3-Phosphoglycerate Dehydrogenase, a Key Enzyme forl-Serine Biosynthesis, Is Preferentially Expressed in the Radial Glia/Astrocyte Lineage and Olfactory Ensheathing Glia in the Mouse Brain. J. Neurosci. 2001, 21, 7691–7704. [Google Scholar] [CrossRef] [Green Version]
- Baek, J.H.; Vignesh, A.; Son, H.; Lee, D.H.; Roh, G.S.; Kang, S.S.; Cho, G.J.; Choi, W.S.; Kim, H.J. Glutamine Supplementation Ameliorates Chronic Stress-induced Reductions in Glutamate and Glutamine Transporters in the Mouse Prefrontal Cortex. Exp. Neurobiol. 2019, 28, 270–278. [Google Scholar] [CrossRef]
- Timper, K.; del Río-Martín, A.; Cremer, A.L.; Bremser, S.; Alber, J.; Giavalisco, P.; Varela, L.; Heilinger, C.; Nolte, H.; Trifunovic, A.; et al. GLP-1 Receptor Signaling in Astrocytes Regulates Fatty Acid Oxidation, Mitochondrial Integrity, and Function. Cell Metab. 2020, 31, 1189–1205.e13. [Google Scholar] [CrossRef]
- Morita, M.; Ikeshima-Kataoka, H.; Kreft, M.; Vardjan, N.; Zorec, R.; Noda, M. Metabolic Plasticity of Astrocytes and Aging of the Brain. Int. J. Mol. Sci. 2019, 20, 941. [Google Scholar] [CrossRef] [Green Version]
- Liddelow, S.; Guttenplan, K.; Clarke, L.E.; Bennett, F.; Bohlen, S.A.L.C.J.; Schirmer, L.; Bennett, M.; Münch, A.; Chung, W.-S.; Peterson, T.C.; et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 2017, 541, 481–487. [Google Scholar] [CrossRef]
- Jurga, A.M.; Paleczna, M.; Kuter, K.Z. Overview of General and Discriminating Markers of Differential Microglia Phenotypes. Front. Cell Neurosci. 2020, 14, 198. [Google Scholar] [CrossRef]
- Holm, T.H.; Draeby, D.; Owens, T. Microglia are required for astroglial toll-like receptor 4 response and for optimal TLR2 and TLR3 response. Glia 2012, 60, 630–638. [Google Scholar] [CrossRef]
- Chen, S.H.; Oyarzabal, E.A.; Sung, Y.F.; Chu, C.H.; Wang, Q.; Chen, S.L.; Lu, R.B.; Hong, J.S. Microglial Regulation of Im-munological and Neuroprotective Functions of Astroglia. Glia 2015, 63, 118–131. [Google Scholar] [CrossRef] [Green Version]
- Parri, R.; Gould, T.M.; Crunelli, V. Spontaneous astrocytic Ca2+ oscillations in situ drive NMDAR-mediated neuronal excitation. Nat. Neurosci. 2001, 4, 803–812. [Google Scholar] [CrossRef]
- Pangršič, T.; Potokar, M.; Stenovec, M.; Kreft, M.; Fabbretti, E.; Nistri, A.; Pryazhnikov, E.; Khiroug, L.; Giniatullin, R.; Zorec, R. Exocytotic Release of ATP from Cultured Astrocytes. J. Biol. Chem. 2007, 282, 28749–28758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harada, K.; Kamiya, T.; Tsuboi, T. Gliotransmitter Release from Astrocytes: Functional, Developmental and Pathological Implications in the Brain. Front. Neurosci. 2016, 9, 499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vainchtein, I.D.; Chin, G.; Cho, F.S.; Kelley, K.W.; Miller, J.G.; Chien, E.C.; Liddelow, S.A.; Nguyen, P.T.; Nakao-Inoue, H.; Dorman, L.C.; et al. Astrocyte-Derived Interleukin-33 Promotes Microglial Synapse Engulfment and Neural Circuit Development. Science 2018, 359, 1269–1273. [Google Scholar] [CrossRef] [Green Version]
- Hyvärinen, T.; Hagman, S.; Ristola, M.; Sukki, L.; Veijula, K.; Kreutzer, J.; Kallio, P.; Narkilahti, S. Co-Stimulation with IL-1β and TNF-α Induces an Inflammatory Reactive Astrocyte Phenotype with Neurosupportive Characteristics in a Human Plu-ripotent Stem Cell Model System. Sci. Rep. 2019, 9, 16944. [Google Scholar] [CrossRef]
- Choi, S.S.; Lee, H.J.; Lim, I.; Satoh, J.-I.; Kim, S.U. Human Astrocytes: Secretome Profiles of Cytokines and Chemokines. PLoS ONE 2014, 9, e92325. [Google Scholar] [CrossRef] [Green Version]
- Hennessy, E.; Griffin, E.W.; Cunningham, C. Astrocytes Are Primed by Chronic Neurodegeneration to Produce Exaggerated Chemokine and Cell Infiltration Responses to Acute Stimulation with the Cytokines IL-1b and TNF-A. J. Neurosci. 2015, 35, 8411–8422. [Google Scholar] [CrossRef] [PubMed]
- Thompson, W.L.; Van Eldik, L.J. Inflammatory Cytokines Stimulate the Chemokines CCL2/MCP-1 and CCL7/MCP-7 through NFκB and MAPK Dependent Pathways in Rat Astrocytes. Brain Res. 2009, 1287, 47–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKimmie, C.S.; Graham, G.J. Astrocytes modulate the chemokine network in a pathogen-specific manner. Biochem. Biophys. Res. Commun. 2010, 394, 1006–1011. [Google Scholar] [CrossRef] [PubMed]
- Drago, F.; Lombardi, M.; Prada, I.; Gabrielli, M.; Joshi, P.; Cojoc, D.; Franck, J.; Fournier, I.; Vizioli, J.; Verderio, C. ATP Modi-fies the Proteome of Extracellular Vesicles Released by Microglia and Influences Their Action on Astrocytes. Front. Pharmacol. 2017, 8, 910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, S.; Sheng, S.; Wang, Y.; Ding, L.; Xu, X.; Xia, X.; Zheng, J.C. Astrocyte-Derived Extracellular Vesicles: A Double-Edged Sword in Central Nervous System Disorders | Elsevier Enhanced Reader. Neurosci. Biobehav. Rev. 2021, 125, 148–159. [Google Scholar] [CrossRef]
- Zorec, R.; Parpura, V.; Verkhratsky, A. Astroglial Vesicular Trafficking in Neurodegenerative Diseases. Neurochem. Res. 2016, 42, 905–917. [Google Scholar] [CrossRef]
- Adams, J.C. Thrombospondins: Multifunctional Regulators of Cell Interactions. Annu. Rev. Cell Dev. Biol. 2001, 17, 25–51. [Google Scholar] [CrossRef]
- Hung, C.C.; Lin, C.H.; Chang, H.; Wang, C.Y.; Lin, S.H.; Hsu, P.C.; Sun, Y.Y.; Lin, T.N.; Shie, F.S.; Kao, L.S.; et al. Astrocytic GAP43 Induced by the TLR4/NF-KB/STAT3 Axis Attenuates Astrogliosis-Mediated Microglial Activation and Neurotoxicity. J. Neurosci. 2016, 36, 2027–2043. [Google Scholar] [CrossRef]
- Nomura, T.; Yabe, T.; Rosenthal, E.S.; Krzan, M.; Schwartz, J.P. PSA-NCAM Distinguishes Reactive Astrocytes in 6-OHDA-Lesioned Substantia Nigra from Those in the Striatal Terminal Fields. J. Neurosci. Res. 2000, 61, 588–596. [Google Scholar] [CrossRef]
- Nguyen, A.Q.; Koeppen, J.; Woodruff, S.; Mina, K.; Figueroa, Z.; Ethell, I.M. Astrocytic Ephrin-B1 Controls Synapse For-mation in the Hippocampus During Learning and Memory. Front. Synaptic Neurosci. 2020, 12, 10. [Google Scholar] [CrossRef]
- Tanigami, H.; Okamoto, T.; Yasue, Y.; Shimaoka, M. Astroglial Integrins in the Development and Regulation of Neurovascular Units. Pain Res. Treat. 2012, 2012. [Google Scholar] [CrossRef]
- Paratcha, G.; Ibáñez, C.F.; Ledda, F. GDNF Is a Chemoattractant Factor for Neuronal Precursor Cells in the Rostral Migratory Stream. Mol. Cell. Neurosci. 2006, 31, 505–514. [Google Scholar] [CrossRef] [PubMed]
- Araki, T.; Ikegaya, Y.; Koyama, R. The effects of microglia- and astrocyte-derived factors on neurogenesis in health and disease. Eur. J. Neurosci. 2020, 5, 5880–5901. [Google Scholar] [CrossRef] [PubMed]
- Liebmann, M.; Stahr, A.; Guenther, M.; Witte, O.W.; Frahm, C. Astrocytic Cx43 and Cx30 differentially modulate adult neurogenesis in mice. Neurosci. Lett. 2013, 545, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Jones, E.V.; Bouvier, D.S. Astrocyte-Secreted Matricellular Proteins in CNS Remodelling during Development and Disease. Neural Plast. 2014, 2014, 1–12. [Google Scholar] [CrossRef] [Green Version]
- De Luca, C.; Papa, M. Matrix Metalloproteinases, Neural Extracellular Matrix, and Central Nervous System Pathology. Prog. Mol. Biol. Transl. Sci. 2017, 148, 167–202. [Google Scholar]
- Escartin, C.; Galea, E.; Lakatos, A.; O’Callaghan, J.P.; Petzold, G.C.; Serrano-Pozo, A.; Steinhäuser, C.; Volterra, A.; Carmignoto, G.; Agarwal, A.; et al. Reactive astrocyte nomenclature, definitions, and future directions. Nat. Neurosci. 2021, 24, 312–325. [Google Scholar] [CrossRef]
- Wilhelmsson, U.; Bushong, E.A.; Price, D.L.; Smarr, B.; Phung, V.; Terada, M.; Ellisman, M.H.; Pekny, M. Redefining the concept of reactive astrocytes as cells that remain within their unique domains upon reaction to injury. Proc. Natl. Acad. Sci. USA 2006, 103, 17513–17518. [Google Scholar] [CrossRef] [Green Version]
- Giovannoni, F.; Quintana, F.J. The Role of Astrocytes in CNS Inflammation. Trends Immunol. 2020, 41, 805–819. [Google Scholar] [CrossRef]
- Canhos, L.L.; Chen, M.; Falk, S.; Popper, B.; Straub, T.; Götz, M.; Sirko, S. Repetitive injury and absence of monocytes promote astrocyte self-renewal and neurological recovery. Glia 2020, 69, 165–181. [Google Scholar] [CrossRef]
- Sofroniew, M.V. Astrocyte Reactivity: Subtypes, States, and Functions in CNS Innate Immunity. Trends Immunol. 2020, 41, 758–770. [Google Scholar] [CrossRef]
- Gwak, Y.S.; Kang, J.; Unabia, G.C.; Hulsebosch, C.E. Spatial and temporal activation of spinal glial cells: Role of gliopathy in central neuropathic pain following spinal cord injury in rats. Exp. Neurol. 2012, 234, 362–372. [Google Scholar] [CrossRef] [Green Version]
- Jurga, A.; Piotrowska, A.; Makuch, W.; Przewlocka, B.; Mika, J. Blockade of P2 × 4 Receptors Inhibits Neuropathic Pain-Related Behavior by Preventing MMP-9 Activation and, Consequently, Pronociceptive Interleukin Release in a Rat Model. Front. Pharmacol. 2017, 8, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; De Koninck, Y. Spatial and temporal relationship between monocyte chemoattractant protein-1 expression and spinal glial activation following peripheral nerve injury. J. Neurochem. 2006, 97, 772–783. [Google Scholar] [CrossRef]
- Hwang, M.; Bergmann, C.C. Alpha/Beta Interferon (IFN-α/β) Signaling in Astrocytes Mediates Protection against Viral En-cephalomyelitis and Regulates IFN-γ-Dependent Responses. J. Virol. 2018, 92, e01901-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- John, G.R.; Lee, S.C.; Brosnan, C.F. Cytokines: Powerful Regulators of Glial Cell Activation. Neuroscience 2003, 9, 10–22. [Google Scholar] [CrossRef] [PubMed]
- Brahmachari, S.; Fung, Y.K.; Pahan, K. Neurobiology of Disease Induction of Glial Fibrillary Acidic Protein Expression in Astrocytes by Nitric Oxide. J. Neurosci. 2006, 26, 4930–4939. [Google Scholar] [CrossRef] [PubMed]
- Nahirnyj, A.; Livne-Bar, I.; Guo, X.; Sivak, J.M. ROS Detoxification and Proinflammatory Cytokines Are Linked by p38 MAPK Signaling in a Model of Mature Astrocyte Activation. PLoS ONE 2013, 8, e83049. [Google Scholar] [CrossRef] [Green Version]
- Schachtrup, C.; Ryu, J.K.; Helmrick, M.J.; Vagena, E.; Galanakis, D.K.; Degen, J.L.; Margolis, R.U.; Akassoglou, K. Fibrinogen Triggers Astrocyte Scar Formation by Promoting the Availability of Active TGF-β after Vascular Damage. J. Neurosci. 2010, 30, 5843–5854. [Google Scholar] [CrossRef]
- Liu, B.; Chen, H.; Johns, T.G.; Neufeld, A.H. Epidermal Growth Factor Receptor Activation: An Upstream Signal for Transi-tion of Quiescent Astrocytes into Reactive Astrocytes after Neural Injury. J. Neurosci. 2006, 26, 7532–7540. [Google Scholar] [CrossRef]
- Barreto, G.E.; Veiga, S.; Azcoitia, I.; Garcia-Segura, L.M.; Garcia-Ovejero, D. Testosterone decreases reactive astroglia and reactive microglia after brain injury in male rats: Role of its metabolites, oestradiol and dihydrotestosterone. Eur. J. Neurosci. 2007, 25, 3039–3046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giraud, S.N.; Caron, C.M.; Pham-Dinh, D.; Kitabgi, P.; Nicot, A.B. Estradiol Inhibits Ongoing Autoimmune Neuroinflamma-tion and NFκB-Dependent CCL2 Expression in Reactive Astrocytes. Proc. Natl. Acad. Sci. USA 2010, 107, 8416–8421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Matas, S.; de Vera, N.; Aznar, A.O.; Marimon, J.M.; Adell, A.; Planas, A.M.; Cristòfol, R.; Sanfeliu, C. In Vitro and In Vivo Activation of Astrocytes by Amyloid-β is Potentiated by Pro-Oxidant Agents. J. Alzheimer’s Dis. 2010, 20, 229–245. [Google Scholar] [CrossRef]
- Butchi, N.B.; Du, M.; Peterson, K.E. Interactions between TLR7 and TLR9 agonists and receptors regulate innate immune responses by astrocytes and microglia. Glia 2009, 58, 650–664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Miranda, J.; Yaddanapudi, K.; Hornig, M.; Lipkin, W.I. Astrocytes recognize intracellular polyinosinic-polycytidylic acid via MDA-5. FASEB J. 2008, 23, 1064–1071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeffries, A.M.; Marriott, I. Human Microglia and Astrocytes Express CGAS-STING Viral Sensing Components. Neurosci. Lett. 2017, 658, 53–56. [Google Scholar] [CrossRef] [PubMed]
- Jang, E.; Kim, J.-H.; Lee, S.; Kim, J.-H.; Seo, J.-W.; Jin, M.; Lee, M.-G.; Jang, I.-S.; Lee, W.-H.; Suk, K. Phenotypic Polarization of Activated Astrocytes: The Critical Role of Lipocalin-2 in the Classical Inflammatory Activation of Astrocytes. J. Immunol. 2013, 191, 5204–5219. [Google Scholar] [CrossRef] [Green Version]
- Neal, M.; Luo, J.; Harischandra, D.S.; Gordon, R.; Sarkar, S.; Jin, H.; Anantharam, V.; Désaubry, L.; Kanthasamy, A.; Kanthasamy, A. Prokineticin-2 promotes chemotaxis and alternative A2 reactivity of astrocytes. Glia 2018, 66, 2137–2157. [Google Scholar] [CrossRef] [PubMed]
- Liddelow, S.A.; Barres, B.A. Reactive Astrocytes: Production, Function, and Therapeutic Potential. Immunity 2017, 46, 957–967. [Google Scholar] [CrossRef] [Green Version]
- Su, Y.; Chen, Z.; Du, H.; Liu, R.; Wang, W.; Li, H.; Ning, B. Silencing miR-21 induces polarization of astrocytes to the A2 phenotype and improves the formation of synapses by targeting glypican 6 via the signal transducer and activator of transcription-3 pathway after acute ischemic spinal cord injury. FASEB J. 2019, 33, 10859–10871. [Google Scholar] [CrossRef] [PubMed]
- Hol, E.M.; Pekny, M. Glial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament system in diseases of the central nervous system. Curr. Opin. Cell Biol. 2015, 32, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Ben Haim, L.; Rowitch, D. Functional diversity of astrocytes in neural circuit regulation. Nat. Rev. Neurosci. 2016, 18, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Yamada, T.; Kawamata, T.; Walker, D.G.; McGeer, P.L. Vimentin immunoreactivity in normal and pathological human brain tissue. Acta Neuropathol. 1992, 84, 157–162. [Google Scholar] [CrossRef]
- Jing, R.; Wilhelmsson, U.; Goodwill, W.; Li, L.; Pan, Y.; Pekny, M.; Skalli, O. Synemin is expressed in reactive astrocytes in neurotrauma and interacts differentially with vimentin and GFAP intermediate filament networks. J. Cell Sci. 2007, 120, 1267–1277. [Google Scholar] [CrossRef] [Green Version]
- Moreels, M.; Vandenabeele, F.; Dumont, D.; Robben, J.; Lambrichts, I. Alpha-Smooth Muscle Actin (Alpha-SMA) and Nestin Expression in Reactive Astrocytes in Multiple Sclerosis Lesions: Potential Regulatory Role of Transforming Growth Factor-Beta 1 (TGF-Beta1). Neuropathol. Appl. Neurobiol. 2008, 34, 532–546. [Google Scholar] [CrossRef]
- Krishnasamy, S.; Weng, Y.-C.; Thammisetty, S.S.; Phaneuf, D.; Lalancette-Hebert, M.; Kriz, J. Molecular imaging of nestin in neuroinflammatory conditions reveals marked signal induction in activated microglia. J. Neuroinflammation 2017, 14, 45. [Google Scholar] [CrossRef] [Green Version]
- Fujita, A.; Yamaguchi, H.; Yamasaki, R.; Cui, Y.; Matsuoka, Y.; Yamada, K.; Kira, J. Connexin 30 Deficiency Attenuates A2 Astrocyte Responses and Induces Severe Neurodegeneration in a 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine Hydrochloride Parkinson’s Disease Animal Model. J. Neuroinflamm. 2018, 15, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Konopka, A.; Zeug, A.; Skupien, A.; Kaza, B.; Mueller, F.; Chwedorowicz, A.; Ponimaskin, E.; Wilczynski, G.M.; Dzwonek, J. Cleavage of Hyaluronan and CD44 AdhesionMolecule Regulate Astrocyte Morphology ViaRac1 Signalling. PLoS ONE 2016, 11, e0155053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sosunov, A.A.; Wu, X.; Tsankova, N.M.; Guilfoyle, E.; McKhann II, G.M.; Goldman, J.E. Phenotypic Heterogeneity and Plas-ticity of Isocortical AndHippocampal Astrocytes in the Human Brain. J. Neurosci. 2014, 34, 2285–2298. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, T.; Imagama, S.; Hirano, K.; Ohgomori, T.; Natori, T.; Kobayashi, K.; Muramoto, A.; Ishiguro, N.; Kadomatsu, K. CD44 expression in astrocytes and microglia is associated with ALS progression in a mouse model. Neurosci. Lett. 2012, 520, 115–120. [Google Scholar] [CrossRef]
- Bao, Y.; Qin, L.; Kim, E.; Bhosle, S.; Guo, H.; Febbraio, M.; Haskew-Layton, R.E.; Ratan, R.; Cho, S. CD36 Is Involved in As-trocyte Activation and Astroglial Scar Formation. J. Cereb. Blood Flow Metab. 2012, 32, 1567. [Google Scholar] [CrossRef]
- Petit, A.; Sanders, A.; Kennedy, T.E.; Tetzlaff, W.; Glattfelder, K.J.; Dalley, R.A.; Puchalski, R.B.; Jones, A.R.; Roskams, A.J. Adult Spinal Cord Radial Glia Display a Unique Progenitor Phenotype. PLoS ONE 2011, 6, e24538. [Google Scholar] [CrossRef] [Green Version]
- Koirala, S.; Corfas, G. Identification of Novel Glial Genes by Single-Cell Transcriptional Profiling of Bergmann Glial Cells from Mouse Cerebellum. PLoS ONE 2010, 5, e9198. [Google Scholar] [CrossRef] [PubMed]
- Killoy, K.M.; Harlan, B.A.; Pehar, M.; Vargas, M.R. FABP7 upregulation induces a neurotoxic phenotype in astrocytes. Glia 2020, 68, 2693–2704. [Google Scholar] [CrossRef] [PubMed]
- Gril, B.; Paranjape, A.N.; Woditschka, S.; Hua, E.; Dolan, E.L.; Hanson, J.; Wu, X.; Kloc, W.; Izycka-Swieszewska, E.; Duchnowska, R.; et al. Reactive astrocytic S1P3 signaling modulates the blood–tumor barrier in brain metastases. Nat. Commun. 2018, 9, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Farasat, S.; Wei, M.-H.; Herman, M.; Liewehr, D.J.; Steinberg, S.M.; Bale, S.J.; Fleckman, P.; Toro, J.R. Novel Transglutami-nase-1 Mutations and Genotype-Phenotype Investigations of 104 Patients with Autosomal Recessive Congenital Ichthyosis in the USA. J. Med. Genet. 2008, 46, 103–111. [Google Scholar] [CrossRef] [Green Version]
- Bangsow, T.; Baumann, E.; Bangsow, C.; Jaeger, M.H.; Pelzer, B.; Gruhn, P.; Wolf, S.; von Melchner, H.; Stanimirovic, D.B. The Epithelial Membrane Protein 1 is a Novel Tight Junction Protein of the Blood—Brain Barrier. Br. J. Pharmacol. 2008, 28, 1249–1260. [Google Scholar] [CrossRef] [Green Version]
- Al-Dalahmah, O.; Sosunov, A.; Shaik, A.; Ofori, K.; Liu, Y.; Vonsattel, J.P.; Adorjan, I.; Menon, V.; Goldman, J. Single-Nucleus RNA-Seq Identifies Huntington Disease Astrocyte States. Acta Neuropathol. Commun. 2019, 6, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Ip, J.P.; Noçon, A.L.; Hofer, M.J.; Ling Lim, S.; Müller, M.; Campbell, I.L. Lipocalin 2 in the Central Nervous System Host Response to Systemic Lipopolysaccharide Administration. J. Neuroinflamm. 2011, 8, 124. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Fujimoto, M.; Nakano, F.; Nishikawa, H.; Okada, T.; Kawakita, F.; Imanaka-Yoshida, K.; Yoshida, T.; Suzuki, H. Deficiency of Tenascin-C Alleviates Neuronal Apoptosis and Neuroinflammation After Experimental Subarachnoid Hemorrhage in Mice. Mol. Neurobiol. 2018, 55, 8346–8354. [Google Scholar] [CrossRef]
- Chia, W.-J.; Dawe, G.; Ong, W.-Y. Expression and localization of the iron–siderophore binding protein lipocalin 2 in the normal rat brain and after kainate-induced excitotoxicity. Neurochem. Int. 2011, 59, 591–599. [Google Scholar] [CrossRef] [PubMed]
- Tyzack, G.; Sitnikov, S.; Barson, D.; Adams-Carr, K.; Lau, N.K.; Kwok, J.C.; Zhao, C.; Franklin, R.; Karadottir, R.T.; Fawcett, J.; et al. Astrocyte response to motor neuron injury promotes structural synaptic plasticity via STAT3-regulated TSP-1 expression. Nat. Commun. 2014, 5, 4294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okada, T.; Suzuki, H. The Role of Tenascin-C in Tissue Injury and Repair after Stroke. Front. Immunol. 2021, 11, 607587. [Google Scholar] [CrossRef]
- Johnson, K.M.; Crocker, S.J. TIMP-1 couples RhoK activation to IL-1β-induced astrocyte responses. Neurosci. Lett. 2015, 609, 165–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fricker, M.; Neher, J.J.; Zhao, J.W.; Théry, C.; Tolkovsky, A.M.; Brown, G.C. MFG-E8 Mediates Primary Phagocytosis of Viable Neurons during Neuroinflammation. J. Neurosci. 2012, 32, 2657–2666. [Google Scholar] [CrossRef] [Green Version]
- Fuller, A.D.; Van Eldik, L.J. MFG-E8 Regulates Microglial Phagocytosis of Apoptotic Neurons. J. Neuroimmune Pharmacol. 2008, 3, 246–256. [Google Scholar] [CrossRef] [Green Version]
- Dvoriantchikova, G.; Barakat, D.; Brambilla, R.; Agudelo, C.; Hernandez, E.; Bethea, J.R.; Shestopalov, V.I.; Ivanov, D. Inac-tivation of Astroglial NF-KB Promotes Survival of Retinal Neurons Following Ischemic Injury. Eur. J. Neurosci. 2009, 30, 175–185. [Google Scholar]
- Fernandes, A.; Falcão, A.; Silva, R.F.; Brito, M.; Brites, D. MAPKs are key players in mediating cytokine release and cell death induced by unconjugated bilirubin in cultured rat cortical astrocytes. Eur. J. Neurosci. 2007, 25, 1058–1068. [Google Scholar] [CrossRef]
- Rutkowska, A.; Shimshek, D.R.; Sailer, A.W.; Dev, K.K. EBI2 regulates pro-inflammatory signalling and cytokine release in astrocytes. Neuropharmacology 2018, 133, 121–128. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, A.; Zhu, Y.; He, W.; Di, W.; Fang, Y.; Shi, X. MFG-E8 Reverses Microglial-Induced Neurotoxic Astrocyte (A1) via NF-KB and PI3K-Akt Pathways. J. Cell. Physiol. 2018, 234, 904–914. [Google Scholar] [CrossRef] [Green Version]
- Noris, M.; Remuzzi, G. Overview of Complement Activation and Regulation. Semin. Nephrol. 2013, 33, 479–492. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Wagner, E.; Zhang, H.; Frank, M.M. Complement 1 Inhibitor Is a Regulator of the Alternative Complement Path-way. J. Exp. Med. 2001, 194, 1609–1616. [Google Scholar] [CrossRef] [Green Version]
- Jung, H.E.; Oh, J.E.; Lee, H.K. Cell-Penetrating Mx1 Enhances Anti-Viral Resistance against Mucosal Influenza Viral Infection. Viruses 2019, 11, 109. [Google Scholar] [CrossRef]
- Gerlach, R.; Demel, G.; König, H.-G.; Gross, U.; Prehn, J.; Raabe, A.; Seifert, V.; Kögel, D. Active secretion of S100B from astrocytes during metabolic stress. Neuroscience 2006, 141, 1697–1701. [Google Scholar] [CrossRef] [PubMed]
- Rothermundt, M.; Peters, M.; Prehn, J.; Arolt, V. S100B in brain damage and neurodegeneration. Microsc. Res. Tech. 2003, 60, 614–632. [Google Scholar] [CrossRef] [PubMed]
- Shindo, A.; Maki, T.; Mandeville, E.T.; Liang, A.C.; Egawa, N.; Itoh, K.; Itoh, N.; Borlongan, M.; Holder, J.C.; Chuang, T.T.; et al. Astrocyte-Derived Pentraxin 3 Supports Blood–Brain Barrier Integrity Under Acute Phase of Stroke. Stroke 2016, 47, 1094–1100. [Google Scholar] [CrossRef] [PubMed]
- Levine, J.; Kwon, E.; Paez, P.; Yan, W.; Czerwieniec, G.; Loo, J.A.; Sofroniew, M.V.; Wanner, I.-B. Traumatically injured astrocytes release a proteomic signature modulated by STAT3-dependent cell survival. Glia 2015, 64, 668–694. [Google Scholar] [CrossRef]
- Halford, J.; Shen, S.; Itamura, K.; Levine, J.; Chong, A.; Czerwieniec, G.; Glenn, T.; A Hovda, D.; Vespa, P.; Bullock, R.; et al. New astroglial injury-defined biomarkers for neurotrauma assessment. Br. J. Pharmacol. 2017, 37, 3278–3299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heo, J.Y.; Nam, M.-H.; Yoon, H.H.; Ryu, H.; Jeon, S.R.; Lee, C.J. Aberrant Tonic Inhibition of Dopaminergic Neuronal Activ-ity Causes Motor Symptoms in Animal Models of Parkinson’s Disease. Curr. Biol. 2019, 30, 276–291. [Google Scholar] [CrossRef] [PubMed]
- Pannell, M.; Economopoulos, V.; Wilson, T.C.; Kersemans, V.; Isenegger, P.G.; Larkin, J.R.; Smart, S.; Gilchrist, S.; Gouverneur, V.; Sibson, N.R. Imaging of translocator protein upregulation is selective for pro-inflammatory polarized astrocytes and microglia. Glia 2019, 68, 280–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathys, H.; Davila-Velderrain, J.; Peng, Z.; Gao, F.; Mohammadi, S.; Young, J.Z.; Menon, M.; He, L.; Abdurrob, F.; Jiang, X.; et al. Single-cell transcriptomic analysis of Alzheimer’s disease. Nature 2019, 570, 332–337. [Google Scholar] [CrossRef] [PubMed]
- Furman, J.L.; Sompol, P.; Kraner, S.D.; Pleiss, M.M.; Putman, E.J.; Dunkerson, J.; Abdul, H.M.; Roberts, K.N.; Scheff, S.W.; Norris, C.M. Blockade of Astrocytic Calcineurin/NFAT Signaling Helps to Normalize Hippocampal Synaptic Function and Plasticity in a Rat Model of Traumatic Brain Injury. J. Neurosci. 2016, 36, 1502–1515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colombo, E.; Cordiglieri, C.; Melli, G.; Newcombe, J.; Krumbholz, M.; Parada, L.F.; Medico, E.; Hohlfeld, R.; Meinl, E.; Farina, C. Stimulation of the neurotrophin receptor TrkB on astrocytes drives nitric oxide production and neurodegeneration. J. Exp. Med. 2012, 209, 521–535. [Google Scholar] [CrossRef]
- Hong, S.; Song, M.-R. STAT3 but Not STAT1 Is Required for Astrocyte Differentiation. PLoS ONE 2014, 9, e86851. [Google Scholar] [CrossRef]
- Priego, N.; Zhu, L.; Monteiro, C.; Mulders, M.; Wasilewski, D.; Bindeman, W.; Doglio, L.; Martínez, L.; Martinez-Saez, E.; Cajal, S.R.Y.; et al. STAT3 labels a subpopulation of reactive astrocytes required for brain metastasis. Nat. Med. 2018, 24, 1024–1035. [Google Scholar] [CrossRef]
- Liu, J.; Wang, H.; Zhang, L.; Xu, Y.; Deng, W.; Zhu, H.; Qin, C. S100B Transgenic Mice Develop Features of Parkinson’s Dis-ease. Arch. Med. Res. 2011, 42, 1–7. [Google Scholar] [CrossRef]
- Rescher, U.; Gerke, V. S100A10/P11: Family, Friends and Functions. Eur. J. Physiol. 2008, 455, 575–582. [Google Scholar] [CrossRef]
- Flügge, G.; Araya-Callis, C.; Garea-Rodriguez, E.; Stadelmann, C.; Fuchs, E. NDRG2 as a marker protein for brain astrocytes. Cell Tissue Res. 2014, 357, 31–41. [Google Scholar] [CrossRef] [Green Version]
- Le, T.M.; Takarada-Iemata, M.; Ta, H.M.; Roboon, J.; Ishii, H.; Tamatani, T.; Kitao, Y.; Hattori, T.; Hori, O. Ndrg2deficiency ameliorates neurodegeneration in experimental autoimmune encephalomyelitis. J. Neurochem. 2018, 145, 139–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Gao, H.; Li, N.; Chang, H.; Cheng, B.; Li, Y.; Miao, J.; Li, S.; Wang, Q. NDRG2 is expressed on enteric glia and altered in conditions of inflammation and oxygen glucose deprivation/reoxygenation. J. Mol. Histol. 2020, 52, 101–111. [Google Scholar] [CrossRef]
- Gan, L.; Vargas, M.; Johnson, D.A.; Johnson, J.A. Astrocyte-Specific Overexpression of Nrf2 Delays Motor Pathology and Synuclein Aggregation throughout the CNS in the Alpha-Synuclein Mutant (A53T) Mouse Model. J. Neurosci. 2012, 32, 17775–17787. [Google Scholar] [CrossRef] [Green Version]
- Liddell, J.R. Are Astrocytes the Predominant Cell Type for Activation of Nrf2 in Aging and Neurodegeneration? Antioxidants 2017, 6, 65. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Hunt, J.B.; Selenica, M.-L.B.; Sanneh, A.; Sandusky-Beltran, L.A.; Watler, M.; Daas, R.; Kovalenko, A.; Liang, H.; Placides, D.; et al. Arginase 1 Insufficiency Precipitates Amyloid-β Deposition and Hastens Behavioral Impairment in a Mouse Model of Amyloidosis. Front. Immunol. 2021, 11, 582998. [Google Scholar] [CrossRef] [PubMed]
- Barra, G.; Lepore, A.; Gagliardi, M.; Somma, D.; Matarazzo, M.R.; Costabile, F.; Pasquale, G.; Mazzoni, A.; Gallo, C.; Nuzzo, G.; et al. Sphingosine Kinases promote IL-17 expression in human T lymphocytes. Sci. Rep. 2018, 8, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, F.A.C.; Carvalho, L.R.B.; Grinberg, L.T.; Farfel, J.M.; Ferretti, R.E.L.; Leite, R.E.P.; Filho, W.J.; Lent, R.; Herculano-Houzel, S. Equal Numbers of Neuronal and Nonneuronal Cells Make the Human Brain an Isometrically Scaled-up Primate Brain. J. Comp. Neurol. 2009, 513, 532–541. [Google Scholar] [CrossRef]
- Bushong, E.A.; Martone, M.E.; Ellisman, M.H. Maturation of Astrocyte Morphology and the Establishment of Astrocyte Do-mains during Postnatal Hippocampal Development. Int. J. Dev. Neurosci. 2004, 22, 73–86. [Google Scholar] [CrossRef] [PubMed]
- Farmer, W.T.; Abrahamsson, T.; Chierzi, S.; Lui, C.; Zaelzer, C.; Jones, E.V.; Bally, B.P.; Chen, G.G.; Théroux, J.-F.; Peng, J.; et al. Neurons diversify astrocytes in the adult brain through sonic hedgehog signaling. Science 2016, 351, 849–854. [Google Scholar] [CrossRef]
- Farmer, W.T.; Murai, K. Resolving Astrocyte Heterogeneity in the CNS. Front. Cell. Neurosci. 2017, 11, 300. [Google Scholar] [CrossRef]
- Tabata, H. Diverse subtypes of astrocytes and their development during corticogenesis. Front. Neurosci. 2015, 9, 114. [Google Scholar] [CrossRef] [Green Version]
- Lanjakornsiripan, D.; Pior, B.-J.; Kawaguchi, D.; Furutachi, S.; Tahara, T.; Katsuyama, Y.; Suzuki, Y.; Fukazawa, Y.; Gotoh, Y. Layer-specific morphological and molecular differences in neocortical astrocytes and their dependence on neuronal layers. Nat. Commun. 2018, 9, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.-C.J.; Yu, K.; Hatcher, A.; Huang, T.-W.; Lee, H.K.; Carlson, J.; Weston, M.C.; Chen, F.; Zhang, Y.; Zhu, W.; et al. Identification of diverse astrocyte populations and their malignant analogs. Nat. Neurosci. 2017, 20, 396–405. [Google Scholar] [CrossRef] [Green Version]
- Duran, R.C.D.; Wang, C.Y.; Zheng, H.; Deneen, B.; Wu, J.Q. Brain region-specific gene signatures revealed by distinct astrocyte subpopulations unveil links to glioma and neurodegenerative diseases. eNeuro 2019, 6. [Google Scholar] [CrossRef]
- Zeisel, A.; Muñoz-Manchado, A.B.; Codeluppi, S.; Lönnerberg, P.; La Manno, G.; Juréus, A.; Marques, S.; Munguba, H.; He, L.; Betsholtz, C.; et al. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 2015, 347, 1138–1142. [Google Scholar] [CrossRef]
- Moroni, R.F.; Inverardi, F.; Regondi, M.C.; Pennacchio, P.; Frassoni, C. Developmental expression of Kir4.1 in astrocytes and oligodendrocytes of rat somatosensory cortex and hippocampus. Int. J. Dev. Neurosci. 2015, 47, 198–205. [Google Scholar] [CrossRef]
- Chai, H.; Diaz-Castro, B.; Shigetomi, E.; Monte, E.; Octeau, C.; Yu, X.; Cohn, W.; Rajendran, P.S.; Vondriska, T.M.; Whitelegge, J.P.; et al. Neural Circuit-Specialized Astrocytes: Transcriptomic, Proteomic, Morphological, and Functional Evidence. Neuron 2017, 95, 531–549.e9. [Google Scholar] [CrossRef] [PubMed]
- Nair-Roberts, R.; Chatelain-Badie, S.; Benson, E.; White-Cooper, H.; Bolam, J.P.; Ungless, M. Stereological estimates of dopaminergic, GABAergic and glutamatergic neurons in the ventral tegmental area, substantia nigra and retrorubral field in the rat. Neuroscience 2008, 152, 1024–1031. [Google Scholar] [CrossRef] [Green Version]
- Kostuk, E.W.; Cai, J.; Iacovitti, L. Subregional differences in astrocytes underlie selective neurodegeneration or protection in Parkinson’s disease models in culture. Glia 2019, 67, 1542–1557. [Google Scholar] [CrossRef] [PubMed]
- Xin, W.; Schuebel, K.E.; Jair, K.-W.; Cimbro, R.; De Biase, L.M.; Goldman, D.; Bonci, A. Ventral midbrain astrocytes display unique physiological features and sensitivity to dopamine D2 receptor signaling. Neuropsychopharmacology 2018, 44, 344–355. [Google Scholar] [CrossRef]
- Chaudhry, F.A.; Lehre, K.P.; van Lookeren Campagne, M.; Ottersen, O.P.; Danbolt, N.C.; Storm-Mathisen, J. Glutamate Transporters in Glial Plasma Membranes: Highly Differentiated Localizations Revealed by Quantitative Ultrastructural Im-munocytochemistry. Neuron 1995, 15, 711–720. [Google Scholar] [CrossRef] [Green Version]
- Lehre, K.P.; Danbolt, N. The Number of Glutamate Transporter Subtype Molecules at Glutamatergic Synapses: Chemical and Stereological Quantification in Young Adult Rat Brain. J. Neurosci. 1998, 18, 8751–8757. [Google Scholar] [CrossRef] [Green Version]
- Matthias, K.; Kirchhoff, F.; Seifert, G.; Hüttmann, K.; Matyash, M.; Kettenmann, H.; Steinhäuser, C. Segregated Expression of AMPA-Type Glutamate Receptors and Glutamate Transporters Defines Distinct Astrocyte Populations in the Mouse Hippo-campus. J. Neurosci. 2003, 23, 1750–1758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hochstim, C.; Deneen, B.; Lukaszewicz, A.; Zhou, Q.; Anderson, D.J. Identification of Positionally Distinct Astrocyte Sub-types Whose Identities Are Specified by a Homeodomain Code. Cell 2008, 133, 510–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soreq, L.; Rose, J.; Soreq, E.; Hardy, J.; Trabzuni, D.; Cookson, M.R.; Smith, C.; Ryten, M.; Patani, R.; Ule, J. Major Shifts in Glial Regional Identity Are a Transcriptional Hallmark of Human Brain Aging. Cell Rep. 2017, 18, 557–570. [Google Scholar] [CrossRef] [PubMed]
- Fabricius, K.; Jacobsen, J.S.; Pakkenberg, B. Effect of age on neocortical brain cells in 90+ year old human females—A cell counting study. Neurobiol. Aging 2012, 34, 91–99. [Google Scholar] [CrossRef]
- Pelvig, D.; Pakkenberg, B.; Stark, A. Neocortical glial cell numbers in human brains. Neurobiol. Aging 2008, 29, 1754–1762. [Google Scholar] [CrossRef]
- Clarke, L.E.; Liddelow, S.A.; Chakraborty, C.; Münch, A.E.; Heiman, M.; Barres, B.A. Normal Aging Induces A1-like Astro-cyte Reactivity. Proc. Natl. Acad. Sci. USA 2018, 115, 1896–1905. [Google Scholar] [CrossRef] [Green Version]
- Chinta, S.J.; Woods, G.; Demaria, M.; Rane, A.; Zou, Y.; McQuade, A.; Rajagopalan, S.; Limbad, C.; Madden, D.T.; Campisi, J.; et al. Cellular Senescence Is Induced by the Environmental Neurotoxin Paraquat and Contributes to Neuropathology Linked to Parkinson’s Disease. Cell Rep. 2018, 22, 930–940. [Google Scholar] [CrossRef] [Green Version]
- Werner, C.J.; Heyny-von Haussen, R.; Mall, G.; Wolf, S. Proteome Analysis of Human Substantia Nigra in Parkinson’s Disease. Proteome Sci. 2008, 6, 8. [Google Scholar] [CrossRef] [Green Version]
- Maetzler, W.; Deleersnijder, W.; Hanssens, V.; Bernard, A.; Brockmann, K.; Marquetand, J.; Wurster, I.; Rattay, T.W.; Roncoroni, L.; Schaeffer, E.; et al. GDF15/MIC1 and MMP9 Cerebrospinal Fluid Levels in Parkinson’s Disease and Lewy Body Dementia. PLoS ONE 2016, 11, e0149349. [Google Scholar] [CrossRef]
- Tong, J.; Ang, L.-C.; Williams, B.; Furukawa, Y.; Fitzmaurice, P.; Guttman, M.; Boileau, I.; Hornykiewicz, O.; Kish, S.J. Low levels of astroglial markers in Parkinson’s disease: Relationship to α-synuclein accumulation. Neurobiol. Dis. 2015, 82, 243–253. [Google Scholar] [CrossRef] [Green Version]
- Mirza, B.; Hadberg, H.; Thomsen, P.; Moos, T. The absence of reactive astrocytosis is indicative of a unique inflammatory process in Parkinson’s disease. Neuroscience 1999, 95, 425–432. [Google Scholar] [CrossRef]
- Halliday, G.M.; Stevens, C. Glia: Initiators and progressors of pathology in Parkinson’s disease. Mov. Disord. 2011, 26, 6–17. [Google Scholar] [CrossRef]
- Mathys, H.; Adaikkan, C.; Gao, F.; Young, J.Z.; Manet, E.; Hemberg, M.; De Jager, P.L.; Ransohoff, R.M.; Regev, A.; Tsai, L.-H. Temporal Tracking of Microglia Activation in Neurodegeneration at Single-Cell Resolution. Cell Rep. 2017, 21, 366–380. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, E.; Nakan, M.; Kubota, K.; Himuro, N.; Mizoguchi, S. Activated Forms of Astrocytes with Higher GLT-1 Expression Are Associated with Cognitive Normal Subjects with Alzheimer Pathology in Human Brain. Sci. Rep. 2018, 8, 2–13. [Google Scholar] [CrossRef] [PubMed]
- Campbell, S.C.; Muñoz-Ballester, C.; Chaunsali, L.; Mills, W.A.; Yang, J.H.; Sontheimer, H.; Robel, S. Potassium and Glutamate Transport Is Impaired in Scar-Forming Tumor-Associated Astrocytes. Neurochem. Int. 2020, 133, 104628. [Google Scholar] [CrossRef]
- Vehmas, A.K.; Kawas, C.H.; Stewart, W.F.; Troncoso, J.C. Immune reactive cells in senile plaques and cognitive decline in Alzheimer’s disease. Neurobiol. Aging 2003, 24, 321–331. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Arellano, J.; Parpura, V.; Zorec, R.; Verkhratsky, A. Astrocytes in physiological aging and Alzheimer’s disease. Neuroscience 2016, 323, 170–182. [Google Scholar] [CrossRef] [PubMed]
- Singhrao, S.K.; Thomas, P.; Wood, J.D.; MacMillan, J.C.; Neal, J.W.; Harper, P.S.; Jones, A.L. Huntingtin Protein Colocalizes with Lesions of Neurodegenerative Diseases: An Investigation in Huntington’s, Alzheimer’s, and Pick’s Diseases. Exp. Neurol. 1998, 150, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Faideau, M.; Kim, J.; Cormier, K.; Gilmore, R.; Welch, M.; Auregan, G.; Dufour, N.; Guillermier, M.; Brouillet, E.; Hantraye, P.; et al. In vivo expression of polyglutamine-expanded huntingtin by mouse striatal astrocytes impairs glutamate transport: A correlation with Huntington’s disease subjects. Hum. Mol. Genet. 2010, 19, 3053–3067. [Google Scholar] [CrossRef]
- Rossi, D.M.; Brambilla, L.; Valori, C.F.; Roncoroni, C.; Crugnola, A.; Yokota, T.; Bredesen, D.E.; Volterra, A. Focal degeneration of astrocytes in amyotrophic lateral sclerosis. Cell Death Differ. 2008, 15, 1691–1700. [Google Scholar] [CrossRef] [Green Version]
- Izrael, M.; Slutsky, S.G.; Admoni, T.; Cohen, L.; Granit, A.; Hasson, A.; Itskovitz-Eldor, J.; Krush Paker, L.; Kuperstein, G.; Lavon, N.; et al. Safety and Efficacy of Human Embryonic Stem Cell-Derived Astrocytes Following Intrathecal Transplanta-tion in SOD1 G93A and NSG Animal Models. Stem Cell Res. Ther. 2018, 9, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Specific Astrocytic Function | Marker Protein |
---|---|
Glucose uptake | GLUT1 |
Gluconeogenesis | G6PC, FBP, PC |
Glycogen synthesis and use | GS, GP |
Glycolytic metabolism | PFKFB3, PFK, PKM2, PC, PDK4 |
Lactate shuttle | LDH5, MCT4 |
Ketone body synthesis | HMGCS2 |
Fatty acid oxidation and transport | CPT1a, CPT2, FABP7 |
ECI1, ECI2, ABHD5, GK, GPAT3, IDI1 | |
Cholesterol synthesis | SCAP, HMGCR, LXR/RXR, APOE, ABCA7 |
Catabolism of glycogenic amino acids | GLDC, GPT2, HIBADH, SERHL, SDSL, PRODH, 3PGDH |
Glutamate–glutamine shuttle | GLUL, SNAT3, SNAT5 |
Excitatory amino-acid transporters | EAAT1, EAAT2 |
Water transport | AQP4 |
Protein Marker | Full Name | Information |
---|---|---|
Structural and Membrane Proteins | ||
AQP4 | aquaporin 4 | water homeostasis throughout the brain; localized in endfeet plasma membrane; highly expressed on Bergmann glia; not present at oligodendrocytes |
BEST1 | bestrophin 1 | calcium-dependent transport of chloride ions, permeable for GABA and glutamate; mainly expressed in astrocytes; in mice distributed closer to the glutamatergic synapses than GABAergic synapses |
CNN1 | calponin-1 | actin-related processes; enriched in astrocytes |
Cx26 | connexin 26 | forms gap junction channels in glial network to maintain homeostasis of the CNS |
Cx30 | connexin 30 | critical regulator of synaptic strength, controls location of astroglial processes and modulates glutamate transport; expressed only in mature astrocytes, mostly gray matter |
Cx43 | connexin 43 | key player in brain development; abundantly expressed in adult CNS astrocyte endfeet |
EAAT1 (GLAST) | excitatory amino acid transporter 1, glutamate aspartate transporter | glutamate uptake, co-compartmentalizes with mitochondria, supplying glutamate as a fuel for the brain; abundant in fine astrocyte processes, but also variably expressed by all cell types in the CNS |
EAAT2 (GLT1) | excitatory amino acid transporter 2; glutamate transporter-1 | glutamate uptake, co-compartmentalizes with mitochondria, supplying glutamate as a fuel for the brain; abundant in fine astrocyte processes, but also variably expressed by all cell types in the CNS |
ezrin | ezrin | protein anchoring the plasma membrane to cytoskeletal microfilaments; acts as stabilizer of filopodia (peripheral astrocyte processes) |
FMN2 | formin-2 | actin-related processes; enriched in astrocytes |
GAT-1 | sodium- and chloride-dependent GABA transporter 1 | GABA transporter; localized in distal astrocytic processes but in majority is expressed in neurons |
GAT-3 | sodium- and chloride-dependent GABA transporter 3 | GABA transporter; localized mostly in processes adjacent to neuronal synapses; most numerous subtype in astrocytes |
GFAP | glial fibrillary acidic protein | contributes to astroglial BBB mechanical support; expressed mainly by white matter astrocyte extensive branching and slightly their cell body; useful marker for studying complex astroglial morphology |
KIR4. 1 | potassium inwardly-rectifying channels | controls cell hyperpolarization during resting potential, uptake of K+ from the synaptic cleft or its redistribution; in the normal adult CNS, KIR4.1 levels vary significantly in gray matter astroglia, downregulated in pathological conditions |
NEBL | LIM zinc-binding domain-containing Nebulette | actin-related processes; enriched in astrocytes |
nestin | nestin | marker of stem or progenitor cells |
PDLIM7 | PDZ and LIM domain protein 7 | actin-related processes; enriched in astrocytes |
radixin | radixin | connect the plasma membrane with cytoskeletal microfilaments; act as stabilizer of filopodia (peripheral astrocyte processes) |
RSPH1 | radial spoke head 1 homolog | actin-related processes; astrocyte specific |
synemin | synemin | intermediate filament; co-expressed by immature astrocytes along with GFAP, vimentin and nestin |
SYNPO2 | synaptopodin-2 | actin-related processes; enriched in astrocytes |
transitin | transitin | intermediate filament; expressed by radial glia during CNS development |
vimentin | vimentin | role in differentiation and maturation of astrocytes; mostly expressed in some specialized glial cells such as Bergmann and radial glia or ependymal cells, white matter astrocytes |
Transcription Factors and Intracellular Proteins | ||
NF1A | nuclear factor 1 | maintains hippocampal astrocyte synapse-supporting functions; marker of glial lineages, including oligodendrocytes and astrocytes |
NF1B | nuclear factor 2 | expressed in the adult brain olfactory bulb, hippocampus, cortex, and brainstem where they co-localize with ALDH1L1, also observed in neurons |
NF1X | nuclear factor 3 | expressed in the adult brain olfactory bulb, hippocampus, cortex, and brainstem where they co-localize with ALDH1L1, also observed in neurons |
NKX2-1 | NK homeobox gene-coded protein | regulates GFAP expression; controls astroglia production spatiotemporally in embryos |
NKX3-1 | NK homeobox gene-coded protein | astrocytic region-specific transcription factor; exclusively expressed in astrocytes in olfactory bulb |
NKX6-1 | NK homeobox gene-coded protein | astrocytic region-specific transcription factor; exclusively expressed in astrocytes in brainstem |
SOX9 | SRY-related high mobility group (HMG) box gene 9 | nuclear marker; expressed almost exclusively in astrocytes; good astroglia marker in adult brain, outside the neurogenic zones, upregulated in reactive astrocytes |
S100β | S100 calcium-binding protein β | cytosolic Ca++-binding protein, also secreted; labels cell bodies of small astrocytes with less extended branchinga, also expressed in neonatal oligodendrocytes, adult NG2 glia, ependymocytes and spinal, medullar, pontine and cerebellar neurons |
Metabolic Markers | ||
Glucose Related | ||
ALDH1L1 | folate enzyme aldehyde dehydrogenase 1 family member L1 | converting NADP to NADPH; not homogenous expression, expressed in fibrous and protoplasmic astrocytes, and radial glia |
FBP | fructose 1,6-bisphosphate | gluconeogenesis; production of glucose during starvation, astrocyte specific |
G6PC | glucose 6-phosphatase | gluconeogenesis; production of glucose during starvation, astrocyte specific |
GLUT1 | glucose transporter | glucose transport; less glycosylated isoform (45 kDa) found in astrocytes, more heavily glycolsylated isoform (55 kDa) is predominant in microvascular endothelium |
GP | glycogen phosphorylase | glycogen utilization; astroglia-specific enzyme, degrades glycogen deposits in astroglia |
GS | glycogen synthase | glycogen synthesis; selective to astrocytes, glycogen storage |
LDH5 | lactate dehydrogenase | conversion of pyruvate to lactate; bidirectional enzyme biased towards the production of lactate, twofold enriched in astrocytes |
MCT1 | monocarboxylate transporter 1 | responsible for pyruvate, lactate and ketone bodies transfer; expressed in astrocytes and oligodendrocytes lower affinity for lactate than the neuronal MCT2, expression is age-dependent |
MCT4 | monocarboxylate transporter 4 | responsible for pyruvate, lactate and ketone bodies transfer; expressed only in astrocytes, much lower affinity for lactate than the neuronal MCT2, low affinity for ketone bodies |
PC | pyruvate carboxylase | converts pyruvate into oxaloacetate in glycolysis; glial-specific anaplerotic enzyme, providing oxaloacetate for the TCA cycle |
PDK4 | pyruvate dehydrogenase kinase 4 | phosphorylation-mediated inactivation of PDH; 30 times higher expression in astrocytes than in neurons; expressed also by microglial cells |
PFKFB3 | 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 | converts fructose-6-phosphate to fructose-2,6-bisphosphate, regulates glycolysis and gluconeogenesis; enriched in astrocytes, a magnitude lower expression in neurons due to continuous degradation |
PFK | phospho-fructokinase | higher expressed in astrocytes than in neurons |
PKM2 | pyruvate kinase muscle isoform-2 | converts phosphoenolpyruvate to pyruvate, regulates glycolysis; enriched in astrocytes, expressed also by other glial cells |
FAO Related | ||
ABCA7 | ATP-binding cassette transporter 7 | cholesterol transporter |
ABHD5 | 1-acylglycerol-3-phosphate O-acyltransferase 5 | membrane lipid metabolism and dynamics |
APOE | apolipoprotein E | forms lipoprotein complex with cholesterol and is secreted through the ABCAs; expressed mainly in astrocytes but also found in microglia, found in neurons under pathological conditions |
CTP1a | carnitine palmitoyltransferase 1a | citrate transporter protein, essential step for the mitochondrial uptake of long-chain fatty acids and beta-oxidation in mitochondrion; selective to astrocytes in outer membrane of mitochondrion, rate-limiting step of beta-oxidation |
CTP2 | carnitine palmitoyltransferase 2 | citrate transporter protein, essential step for the mitochondrial uptake of long-chain fatty acids and beta-oxidation in mitochondrion; localized in mitochondrion inner membrane |
DIO2 | type 2-deiodinase | removes iodide from L-thyroxine to produce 3, 3′5-triiodothyronine; thyroid hormone metabolism |
ECL1 | enoyl-CoA delta isomerase 1 | oxidation of unsaturated fatty acids |
ECL2 | enoyl-CoA delta isomerase 2 | oxidation of unsaturated fatty acids |
FABP7 | fatty acid-binding protein 7 | high affinity reversible binding of saturated and unsaturated long-chain fatty acids; expression in neural stem cells throughout development, in adulthood decreases and becomes restricted to radial glia-like cells and astrocytes, abundant in astrocytes rich in cytoplasmic granules |
GC-2 | mitochondrial glutamate carrier 2 | glutamate transport to the mitochondria; predominantly expressed in protoplasmic astrocyte cells but also in oligodendrocyte progenitor cells |
GDH | glutamate dehydrogenase | oxidative deamination of glutamate to alpha-ketoglutarate |
GK | glycerol kinase | membrane lipid metabolism and dynamics |
GLDC | glycine decarboxylase | catabolism of glycogenic amino acids |
GLP-1R | glucagon-like peptide-1 receptor | modulator of food intake and body weight |
GLUL | glutamine synthetase | converts glutamate to glutamine; selectively expressed by astrocytes |
GPAT3 | glycerol-3-phosphate acyltransferase | membrane lipid metabolism and dynamics |
GPT2 | alanine aminotransferase 2 | catabolism of glycogenic amino acids |
HADHA | hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase/enoyl-CoA hydratase alpha | critical for the FAO regulation by T3; 95% of HADHA co-localize with GFAP in the brain |
HIBADH | 3-hydroxyisobutyrate dehydrogenase | catabolism of glycogenic amino acids |
HMGCR | 3-hydroxy-3-methylglutaryl-coenzyme A reductase | catalyzes the rate-limiting step in cholesterol synthesis |
HMGCS2 | 3-hydroxy-3-methylglutaryl-CoA synthase 2 | converts acetyl-CoA to acetoacetate; rate-limiting enzyme in ketone bodies production, astrocyte specific |
IDI1 | isopentenyl-diphosphate delta-isomerase 1 | membrane lipid metabolism and dynamics |
LXR/RXR | liver X receptor/retinoid X receptor | activates production of cholesterol and mediates transcription of its transport proteins APOE and ABCA7 |
PRODH | proline dehedrogenase 1 | catabolism of glycogenic amino acids |
SCAP | SREBP cleavage-activating protein | mediates cholesterol synthesis; expressed in astrocytes and oligodendrocytes |
SDSL | serine dehydratase-like | catabolism of glycogenic amino acids |
SERHL | serine hydrolase-like | catabolism of glycogenic amino acids |
SLCO1C1 | solute carrier organic anion transporter family member 1C1 transporter | transports L-thyroxine from the blood; thyroid hormone metabolism |
SNAT3 | sodium-coupled neutral amino acid transporter 3 | glutamine transporter; suited for glutamine release |
SNAT5 | sodium-coupled neutral amino acid transporter 5 | glutamine transporter; suited for glutamine release |
Protein Marker | Full Name | Information |
---|---|---|
Structural and Membrane Proteins | ||
CD109 | cluster of differentiation receptor 109 | upregulated in pro-inflammatory astroglial activation, specific for astrocytes, low expression after LPS, high after MCAO |
CD14 | cluster of differentiation receptor 14 | upregulated in pro-inflammatory astroglial activation |
CD36 | cluster of differentiation receptor 36 | fatty acid transporter; upregulated in reactive astrocytes |
CD44 | cluster of differentiation receptor 44 | surface receptor for hyaluronan; responsible for astroglia morphological changes; detected on long, unbranched human astrocytes |
Cx30 | connexin 30 | transmembrane protein; strongly engaged in inflammatory activation of astrocytes |
Cx43 | connexin 43 | transmembrane protein channel; engaged in inflammatory reactive astrogliosis |
EMP1 | epithelial membrane protein | small membrane glycoprotein; regulates cellular proliferation |
FABP7/BLBP | fatty acid-binding protein/brain lipid-binding protein | expressed in Bergmann and radial glia, and also by injured astrocytes |
GFAP | glial fibrillary acidic protein | cytoskeleton-building protein; strong increase in expression observed in most pathological conditions including neurodegeneration and injuries; variability in its basal levels between structures |
nestin | nestin | intermediate filament; expression increases after astrocyte activation by MCAO or stroke but not LPS |
S1P3 | sphingosine-1 phosphate receptor 3 | cell-membrane protein; overexpressed by astrocytes in neuroinflammation, confirmed in rodents and humans; ability to modulate BBB permeability, activated by MCAO |
STEAP4 | six transmembrane epithelial antigen of prostate 4 | membrane protein reducing Fe3+ and Cu++ ions; upregulated in inflammation, although not exclusive for astroglia |
synemin | synemin | intermediate filament; expression increases after astrocyte activation |
TGM1 | transglutaminase 1 | membrane-bound enzyme; creates mechanical barrier against infectious agents, specific for astrocytes, low expression after LPS, high after MCAO |
vimentin | vimentin | intermediate filament; expression increases after astrocyte activation, both after MCAO and LPS |
Secreted Proteins | ||
C3 | complement component 3 | upregulated in course of neurodegenerative diseases, also expressed by microglia |
CFB | complement factor B | element of alternate complement pathway activation modulating proliferation and degradation of blood cellular components during inflammation |
CXCL10 | C-X-C motif chemokine 10 | pro-inflammatory protein; mediates an inflammatory response between neurons and glia |
LCN2 | lipocalin 2 | secreted protein-binding iron ions; participates in innate immunity and apoptotic mechanisms, strong upregulation during reactive astrogliosis, expressed also by endothelial cells and microglia; colocalizes with GLAST |
MFG-E8 | milk fat globulin protein E8 | secreted protein; responsible for removal of damaged neurons |
MT | metallothionein | Metal-binding protein; found overexpressed in neurodegenerative diseases |
MX1S | interferon-induced GTP-binding protein | acts against viral nucleic acids |
PK2 | prokineticin-2 | chemokine-like protein; stimulates and promotes shift of astroglia phenotype into immunosuppressive when overexpressed by neurons and astrocytes |
PTX3 | pentraxin 3 | directly related to the innate immunity response to pathogens; responsible for astroglial support of BBB integrity after ischemic stroke; activates classical complement pathway, specific for astrocytes, low expression after LPS, high after MCAO |
Serpin A3N | serine protease inhibitor A3N | expression in resting state cells is below detection level; upregulated only in activated astrocytes; colocalizes with GLAST |
Serpin G1 | plasma protease C1 inhibitor | interferes with C3 and CFB by physical binding influencing the alternate complement activation, increased in LPS activation |
TIMP1 | tissue inhibitor of metalloproteinase 1 | forms complexes with MMPs irreversibly inactivating them; able to induce reactive astrogliosis; produced by astrocytes in response to pathophysiological threat |
TN-C | tenascin | extracellular matrix protein; engaged in astroglia development and synaptic plasticity, marker of reactive astrocytes in stroke, neuronal injury or glial scar formation, induced by MCAO |
TSP-1 | thrombospondin-1 | STAT-3-regulated factor; stimulates synaptogenesis, found upregulated after motor neuron injury along with GFAP |
Intracellular Proteins | ||
ALDOC | fructose-bisphosphate aldolase C | glycolytic enzyme; upregulated after spinal or brain injuries |
ARG1 | arginase 1 | hydrolase; enzyme converting L-arginine in urea cycle, expressed in microglia but also in some astrocytes |
FABP7 | fatty acid-binding protein | expressed by injured astrocytes and is specific to them |
GBP2 | guanylate-binding protein 2 | transducer; reduces GTP by hydrolyzation, anti-viral properties |
HSPB1/HSP27 | heat shock factor-binding protein 1 | chaperones; overexpressed in neurodegenerative diseases |
HSPB5 | alpha-B crystallin | chaperones; overexpressed in neurodegenerative diseases |
iNOS | inducible NO synthetase | cytoplasmic enzyme; engaged in cytokine-induced NO production during inflammatory response, strongly upregulated not only in microglia but also in reactive astrocytes |
MAO-B | monoamine oxidase B | increase is a marker in neurodegenerative conditions affecting neurons releasing monoamines |
NDRG2 | N-Myc downstream-regulated gene 2 | developmental protein; tumor suppressor and cellular stress-related protein associated with cell proliferation and differentiation; exclusively expressed by astrocytes |
NFAT | nuclear factor of activated T cells | transcription factor |
NRF2 | nuclear factor erythroid 2-related factor 2 | transcription factor; regulates gene expression related to oxidative stress and redox reactions; expressed exclusively in astrocytes in course of Parkinson’s disease, but additionally in microglia and neurons in Alzheimer’s disease |
PTGS2 | prostaglandin G/H synthase 2 | responsible for stimulation of prostaglandin production; expression increased in injury and inflammation-related reactive astrogliosis |
S100β | protein S100-B | cytosolic Ca++-binding protein; labels cell bodies of small astrocytes with less extended branching; preferentially marks gray matter cells complementing GFAP staining; actively secreted from astrocytes during cellular stress along with downregulation of its expression intracellularly |
SOX9 | SRY-box transcription factor 9 | almost exclusively expressed by astrocytes in adult human CNS, strong upregulation reported in rodent ALS model |
SPHK1 | sphingosine kinase-1 | catalyzes phosphorylation of sphingosine activating NFκB signaling and IL-17 secretion |
STAT3 | signal transducer and activator of transcription 3 | JAK-STAT pathway element; necessary for astroglial differentiation; overexpressed by astroglia in injury-induced inflammation, but expressed by other cells |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jurga, A.M.; Paleczna, M.; Kadluczka, J.; Kuter, K.Z. Beyond the GFAP-Astrocyte Protein Markers in the Brain. Biomolecules 2021, 11, 1361. https://doi.org/10.3390/biom11091361
Jurga AM, Paleczna M, Kadluczka J, Kuter KZ. Beyond the GFAP-Astrocyte Protein Markers in the Brain. Biomolecules. 2021; 11(9):1361. https://doi.org/10.3390/biom11091361
Chicago/Turabian StyleJurga, Agnieszka M., Martyna Paleczna, Justyna Kadluczka, and Katarzyna Z. Kuter. 2021. "Beyond the GFAP-Astrocyte Protein Markers in the Brain" Biomolecules 11, no. 9: 1361. https://doi.org/10.3390/biom11091361
APA StyleJurga, A. M., Paleczna, M., Kadluczka, J., & Kuter, K. Z. (2021). Beyond the GFAP-Astrocyte Protein Markers in the Brain. Biomolecules, 11(9), 1361. https://doi.org/10.3390/biom11091361