Recent Advances in Strategies for Addressing Hypoxia in Tumor Photodynamic Therapy
Abstract
:1. Introduction
2. Strategies for Modulating Tumor Hypoxia in PDT
2.1. Oxygen-Independent Phototherapy
2.1.1. Photogenerated Hole Therapy
2.1.2. Photoacoustic Therapy
2.1.3. Photo-Acid Therapy
2.1.4. Photo-Induced Alkyl Radical Generation Therapy
2.1.5. Light-Enhanced Fenton/Fenton-like Reaction
2.1.6. Type I PDT
2.2. Oxygen-Economizing PDT
2.2.1. Mitochondria Inhibition
2.2.2. Fractional PDT
2.3. Oxygen-Supplementing PDT
2.3.1. Increasing Oxygen Utilization Efficiency Using Micro-/Nanomotors
2.3.2. Living Organism Oxygen Generators
2.3.3. Light-Driven Water Splitting
2.3.4. Modification of Tumor Blood Circulation
2.3.5. Tumor H2O2 Decomposition
2.3.6. Oxygen Delivery
Hemoglobin and Red Blood Cell-Based Oxygen Carriers
Perfluorocarbon-Based Oxygen Carriers
Metal–Organic Frameworks
3. Emerging Trends and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, R.; Gao, Y.; Liu, N.; Suo, Y. Nanoparticles loading porphyrin sensitizers in improvement of photodynamic therapy for ovarian cancer. Photodiagn. Photodyn. Ther. 2021, 33, 102156. [Google Scholar] [CrossRef]
- Montaseri, H.; Kruger, C.; Abrahamse, H. Inorganic nanoparticles applied for active targeted photodynamic therapy of breast cancer. Pharmaceutics 2021, 13, 296. [Google Scholar] [CrossRef] [PubMed]
- Dang, J.; He, H.; Chen, D.; Yin, L. Manipulating tumor hypoxia toward enhanced photodynamic therapy (PDT). Biomater. Sci. 2017, 5, 1500–1511. [Google Scholar] [CrossRef] [PubMed]
- Moulder, J.E.; Rockwell, S. Tumor hypoxia: Its impact on cancer therapy. Cancer Metastasis Rev. 1987, 5, 313–341. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zhao, D.; Wang, G.; Wang, Y.; Cao, L.; Sun, J.; Jiang, Q.; He, Z. Recent progress of hypoxia-modulated multifunctional nanomedicines to enhance photodynamic therapy: Opportunities, challenges, and future development. Acta Pharm. Sin. B 2020, 10, 1382–1396. [Google Scholar] [CrossRef] [PubMed]
- Hong, L.; Pliss, A.M.; Zhan, Y.; Zheng, W.; Xia, J.; Liu, L.; Qu, J.; Prasad, P.N. Perfluoropolyether nanoemulsion encapsulating chlorin e6 for sonodynamic and photodynamic therapy of hypoxic tumor. Nanomaterials 2020, 10, 2058. [Google Scholar] [CrossRef] [PubMed]
- Atkuri, K.R.; Herzenberg, L.A.; Niemi, A.-K.; Cowan, T. Importance of culturing primary lymphocytes at physiological oxygen levels. Proc. Natl. Acad. Sci. USA 2007, 104, 4547–4552. [Google Scholar] [CrossRef] [Green Version]
- Broekgaarden, M.; Weijer, R.; Van Wijk, A.C.; Cox, R.C.; Egmond, M.R.; Hoebe, R.; Van Gulik, T.M.; Heger, M. Photodynamic therapy with liposomal zinc phthalocyanine and tirapazamine increases tumor cell death via DNA damage. J. Biomed. Nanotechnol. 2017, 13, 204–220. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Dai, Y.; Li, X.; Guo, D.; Liu, Y.; Huang, X.; Jiang, J.; Wang, S.; Zhu, G.; Zhang, F.; et al. Hybrid nanomedicine fabricated from photosensitizer-terminated metal-organic framework nanoparticles for photodynamic therapy and hypoxia-activated cascade chemotherapy. Small 2019, 15, e1804131. [Google Scholar] [CrossRef]
- Li, X.; Kwon, N.; Guo, T.; Liu, Z.; Yoon, J. Innovative strategies for hypoxic-tumor photodynamic therapy. Angew. Chem. Int. Ed. 2018, 57, 11522–11531. [Google Scholar] [CrossRef]
- Pucelik, B.; Sułek, A.; Barzowska, A.; Dąbrowski, J.M. Recent advances in strategies for overcoming hypoxia in photodynamic therapy of cancer. Cancer Lett. 2020, 492, 116–135. [Google Scholar] [CrossRef]
- Sara, R.; Iwona, T.D.; Eugene, Y.K.; Marrison, S.T.; Van Thuc, V. Hypoxia and radiation therapy: Past history, ongoing re-search, and future promise. Curr. Mol. Med. 2009, 9, 442–458. [Google Scholar]
- Chen, Q.; Huang, Z.; Chen, H.; Shapiro, H.; Beckers, J.; Hetzel, F.W. Improvement of tumor response by manipulation of tumor oxygenation during photodynamic therapy. Photochem. Photobiol. 2002, 76, 197–203. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, L.; Liu, W.; Yan, Z.; Zhu, Y.; Zhou, S.; Guan, S. Photogenerated-hole-induced rapid elimination of solid tumors by the supramolecular porphyrin photocatalyst. Natl. Sci. Rev. 2021, 8, 155. [Google Scholar] [CrossRef]
- Banerjee, S.; Pillai, S.C.; Falaras, P.; O’Shea, K.E.; Byrne, J.A.; Dionysiou, D.D. New insights into the mechanism of visible light photocatalysis. J. Phys. Chem. Lett. 2014, 5, 2543–2554. [Google Scholar] [CrossRef] [Green Version]
- Zang, Y.; Wei, Y.; Shi, Y.; Chen, Q.; Xing, D. Chemo/photoacoustic dual therapy with mRNA-triggered DOX release and photoinduced shockwave based on a DNA-gold nanoplatform. Small 2016, 12, 756–769. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Zeng, Q.; Li, X.; Xing, D.; Zhang, T. Versatile gadolinium(III)-phthalocyaninate photoagent for MR/PA imag-ing-guided parallel photocavitation and photodynamic oxidation at single-laser irradiation. Biomaterials 2021, 275, 120993. [Google Scholar] [CrossRef] [PubMed]
- Yue, X.; Yanez, C.O.; Yao, S.; Belfield, K.D. Selective cell death by photochemically induced pH Imbalance in cancer cells. J. Am. Chem. Soc. 2013, 135, 2112–2115. [Google Scholar] [CrossRef] [Green Version]
- Fadhel, A.A.; Yue, X.; Zadeh, E.H.G.; Bondar, M.V.; Belfield, K.D. Pegylated and nanoparticle-conjugated sulfonium salt photo triggers necrotic cell death. Int. J. Nanomed. 2016, 11, 6161–6168. [Google Scholar] [CrossRef] [Green Version]
- He, L.; Zhang, M.-F.; Pan, Z.-Y.; Wang, K.-N.; Zhao, Z.-J.; Li, Y.; Mao, Z.-W. A mitochondria-targeted iridium(iii)-based photoacid generator induces dual-mode photodynamic damage within cancer cells. Chem. Commun. 2019, 55, 10472–10475. [Google Scholar] [CrossRef] [PubMed]
- Tian, N.; Sun, W.; Feng, Y.; Guo, X.; Lu, J.; Li, C.; Hou, Y.; Wang, X.; Zhou, Q. Chloromethyl-modified Ru(ii) complexes enabling large pH jumps at low concentrations through photoinduced hydrolysis. Chem. Sci. 2019, 10, 9949–9953. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Fan, Y.; Yang, Z.; Yang, M.; Wong, C.Y. NIR-II-driven and glutathione depletion-enhanced hypoxia-irrelevant free radical nanogenerator for combined cancer therapy. J. Nanobiotechnol. 2021, 19, 265. [Google Scholar] [CrossRef]
- Xia, R.; Zheng, X.; Hu, X.; Liu, S.; Xie, Z. Photothermal controlled gneration of alkyl radical from organic nanoparticles for tumor treatment. ACS Appl. Mater. Interfaces 2019, 11, 5782–5790. [Google Scholar] [CrossRef]
- Wu, Q.; Han, J.; Li, C.; Sun, T.; Xie, Z. Photothermal Therapy Combined with Light-Induced Generation of Alkyl Radicals for Enhanced Efficacy of Tumor Treatment. ACS Appl. Polym. Mater. 2020, 2, 4188–4194. [Google Scholar] [CrossRef]
- Wu, S.; Liu, X.; Ren, J.; Qu, X. Glutathione depletion in a benign manner by MoS2-based nanoflowers for enhanced hypox-ia-irrelevant free-radical-based cancer therapy. Small 2019, 15, 1904870. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Zhao, J.; Chen, Y.; Zheng, Y.; Li, J.; Zhao, J.; Zhang, J.; Liu, Y.; Liu, X.; Wang, S. MoS2-ALG-Fe/GOx hydrogel with Fenton catalytic activity for combined cancer photothermal, starvation, and chemodynamic therapy. Colloids Surf. B Biointerfaces 2020, 195, 111243. [Google Scholar] [CrossRef] [PubMed]
- Hu, P.; Wu, T.; Fan, W.; Chen, L.; Liu, Y.; Ni, D.; Bu, W.; Shi, J. Near infrared-assisted Fenton reaction for tumor-specific and mitochondrial DNA-targeted photochemotherapy. Biomaterials 2017, 141, 86–95. [Google Scholar] [CrossRef]
- Dong, S.M.; Xu, J.T.; Jia, T.; Xu, M.S.; Zhong, C.N.; Yang, G.X.; Li, J.R.; Yang, D.; He, F.; Gai, S.L.; et al. Upcon-version-mediated ZnFe2O4 nanoplatform for NIR-enhanced chemodynamic and photodynamic therapy. Chem. Sci. 2019, 10, 4259–4271. [Google Scholar] [CrossRef] [Green Version]
- Giannakis, S.; López, M.I.P.; Spuhler, D.; Pérez, J.A.S.; Fernandez-Ibañez, P.; Pulgarin, C. Solar disinfection is an augmentable, in situ -generated photo-Fenton reaction—Part 1: A review of the mechanisms and the fundamental aspects of the process. Appl. Catal. B Environ. 2016, 199, 199–223. [Google Scholar] [CrossRef]
- Xiao, S.; Lu, Y.; Feng, M.; Dong, M.; Cao, Z.; Zhang, X.; Chen, Y.; Liu, J. Multifunctional FeS2 theranostic nanoparticles for photothermal-enhanced chemodynamic/photodynamic cancer therapy and photoacoustic imaging. Chem. Eng. J. 2020, 396, 125294. [Google Scholar] [CrossRef]
- Lu, J.; Yang, J.; Yang, D.; Hu, S.; Sun, Q.; Yang, G.; Gai, S.; Wang, Z.; Yang, P. CuFeSe2-based thermo-responsive multifunctional nanomaterial initiated by a single NIR light for hypoxic cancer therapy. J. Mat. Chem. B 2021, 9, 336–348. [Google Scholar] [CrossRef]
- Dong, S.; Dong, Y.; Jia, T.; Zhang, F.; Wang, Z.; Feng, L.; Sun, Q.; Gai, S.; Yang, P. Sequential catalytic, magnetic targeting nanoplatform for synergistic photothermal and NIR-enhanced chemodynamic therapy. Chem. Mater. 2020, 32, 9868–9881. [Google Scholar] [CrossRef]
- Pan, C.; Ou, M.; Cheng, Q.; Zhou, Y.; Yu, Y.; Li, Z.; Zhang, F.; Xia, D.; Mei, L.; Ji, X. Z-Scheme heterojunction functionalized pyrite nanosheets for modulating tumor microenvironment and strengthening photo/chemodynamic therapeutic effects. Adv. Funct. Mater. 2020, 30, 1906466. [Google Scholar] [CrossRef]
- Bao, W.; Liu, M.; Meng, J.; Liu, S.; Wang, S.; Jia, R.; Wang, Y.; Ma, G.; Wei, W.; Tian, Z. MOFs-based nanoagent enables dual mitochondrial damage in synergistic antitumor therapy via oxidative stress and calcium overload. Nat. Commun. 2021, 12, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Yu, H.; Shu, Y.; Ma, M.; Chen, H. A robust ROS generation strategy for enhanced chemodynamic/photodynamic therapy via H2O2/O2 self-supply and Ca2+ overloading. Adv. Funct. Mater. 2021, in press. [Google Scholar] [CrossRef]
- Meng, X.; Zhang, X.; Liu, M.; Cai, B.; He, N.; Wang, Z. Fenton reaction-based nanomedicine in cancer chemodynamic and synergistic therapy. Appl. Mater. Today 2020, 21, 100864. [Google Scholar] [CrossRef]
- Ma, B.; Wang, S.; Liu, F.; Zhang, S.; Duan, J.; Li, Z.; Kong, Y.; Sang, Y.; Liu, H.; Bu, W.; et al. Self-assembled copper-amino acid nanoparticles for in situ glutathione “AND” H2O2 sequentially triggered chemodynamic therapy. J. Am. Chem. Soc. 2019, 141, 849–857. [Google Scholar] [CrossRef]
- Wang, X.; Zhong, X.; Lei, H.; Geng, Y.; Zhao, Q.; Gong, F.; Yang, Z.; Dong, Z.; Liu, Z.; Cheng, L. Hollow Cu2Se nanozymes for tumor photothermal-catalytic therapy. Chem. Mater. 2019, 31, 6174–6186. [Google Scholar] [CrossRef]
- Liu, W.; Chen, L.; Wang, L.; Xie, Z.G. Photoactive metal-organic framework@porous organic polymer nanocomposites with pH-triggered type I photodynamic therapy. Adv. Mater. Interfaces 2020, 7, 2000504. [Google Scholar] [CrossRef]
- Zhen, W.; Liu, Y.; Jia, X.; Wu, L.; Wang, C.; Jiang, X. Reductive surfactant-assisted one-step fabrication of a BiOI/BiOIO3 heterojunction biophotocatalyst for enhanced photodynamic theranostics overcoming tumor hypoxia. Nanoscale Horizons 2019, 4, 720–726. [Google Scholar] [CrossRef]
- Chen, D.P.; Wang, Z.C.; Dai, H.M.; Lv, X.Y.; Ma, Q.L.; Yang, D.P.; Shao, J.J.; Xu, Z.G.; Dong, X.C. Boosting O2—photogeneration via promoting intersystem-crossing and electron-donating efficiency of Aza-BODIPY-based nanoplatforms for hypoxic-tumor photodynamic therapy. Small Methods 2020, 7, 2000013. [Google Scholar] [CrossRef]
- Belik, A.; Rybkin, A.; Goryachev, N.; Sadkov, A.; Filatova, N.; Buyanovskaya, A.; Talanova, V.; Klemenkova, Z.; Romanova, V.; Koifman, M.; et al. Nanoparticles of water-soluble dyads based on amino acid fullerene C60 derivatives and pyropheophorbide: Synthesis, photophysical properties, and photodynamic activity. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 260, 119885. [Google Scholar] [CrossRef] [PubMed]
- Qiu, M.; Wang, D.; Huang, H.; Yin, T.; Bao, W.; Zhang, B.; Xie, Z.; Xie, N.; Wu, Z.; Ge, C.; et al. A regioselectively oxidized 2D Bi/BiOx lateral nano-heterostructure for hypoxic photodynamic therapy. Adv. Mater. 2021, 33, 2102562. [Google Scholar] [CrossRef]
- Tian, J.W.; Teng, M.Z.; Song, M.; Li, Z.J.; Zhang, X.Y.; Xu, Y.Q. A feasible molecular engineering for bright II-conjugation free radical photosensitizers with aggregation-induced emission. Dyes Pigment. 2021, 194, 109651. [Google Scholar] [CrossRef]
- Zhao, Y.-Y.; Zhang, L.; Chen, Z.; Zheng, B.-Y.; Ke, M.; Li, X.; Huang, J.-D. Nanostructured phthalocyanine assemblies with efficient synergistic effect of type I photoreaction and photothermal action to overcome tumor hypoxia in photodynamic therapy. J. Am. Chem. Soc. 2021, 143, 13980–13989. [Google Scholar] [CrossRef]
- Liu, J.; Wang, F.; Qin, Y.; Feng, X. Advances in the genetically engineered killerred for photodynamic therapy applications. Int. J. Mol. Sci. 2021, 22, 10130. [Google Scholar] [CrossRef]
- Zhao, X.; Dai, Y.; Ma, F.; Misal, S.; Hasrat, K.; Zhu, H.; Qi, Z. Molecular engineering to accelerate cancer cell discrimination and boost AIE-active type I photosensitizer for photodynamic therapy under hypoxia. Chem. Eng. J. 2021, 410, 128133. [Google Scholar] [CrossRef]
- Ke, Z.; Xie, A.; Chen, J.; Zou, Z.; Shen, L.; Dai, Y.; Zou, D. Naturally available hypericin undergoes electron transfer for type I photodynamic and photothermal synergistic therapy. Biomater. Sci. 2020, 8, 2481–2487. [Google Scholar] [CrossRef]
- Du, J.; Shi, T.; Long, S.; Chen, P.; Sun, W.; Fan, J.; Peng, X. Enhanced photodynamic therapy for overcoming tumor hypoxia: From microenvironment regulation to photosensitizer innovation. Co-Ord. Chem. Rev. 2021, 427, 213604. [Google Scholar] [CrossRef]
- Luo, T.; Ni, K.; Culbert, A.; Lan, G.; Li, Z.; Jiang, X.; Kaufmann, M.; Lin, W. Nanoscale metal–organic frameworks stabilize bacteriochlorins for type I and type II photodynamic therapy. J. Am. Chem. Soc. 2020, 142, 7334–7339. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Meng, X.; Zhang, K.; Tang, S.; Zhang, C.; Yang, Z.; Dong, H.; Zhang, X. Engineering structural metal–organic framework for hypoxia-tolerant type I photodynamic therapy against hypoxic cancer. ACS Mater. Lett. 2021, 3, 781–789. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, X.; Xie, A.; Zhang, X.; Deng, J.; Zou, D.; Zou, J. Boosting type I process of Ru(II) compounds by changing tetrazole ligand for enhanced photodynamic therapy against lung cancer. J. Inorg. Biochem. 2020, 212, 111236. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Li, G.; Xie, M.; Guo, S.; Zhao, W.; Li, F.; Liu, S.; Zhao, Q. Rational design of type I photosensitizers based on Ru(ii) complexes for effective photodynamic therapy under hypoxia. Dalton Trans. 2020, 49, 11192–11200. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.W.; Zhang, K.X.; Wang, H.L.; Liu, W.; Zhang, Z.Z.; Liu, J.J.; Shi, J.J. A fullerene based hybrid nanoparticle facilitates enhanced photodynamic therapy via changing light source and oxygen consumption. Colloid Surf. B Biointerfaces 2020, 186, 110700. [Google Scholar] [CrossRef]
- Ding, H.; Yu, H.; Dong, Y.; Tian, R.; Huang, G.; Boothman, D.A.; Sumer, B.D.; Gao, J. Photoactivation switch from type II to type I reactions by electron-rich micelles for improved photodynamic therapy of cancer cells under hypoxia. J. Control. Release 2011, 156, 276–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, D.; Yu, Q.; Huang, X.; Dai, H.; Luo, T.; Shao, J.; Chen, P.; Chen, J.; Huang, W.; Dong, X. A highly-efficient type I pho-tosensitizer with robust vascular-disruption activity for hypoxic-and-metastatic tumor specific photodynamic therapy. Small 2020, 16, 2001059. [Google Scholar] [CrossRef]
- Li, X.; Lee, D.; Huang, J.D.; Yoon, J. Phthalocyanine-assembled nanodots as photosensitizers for highly efficient type I photo-reactions in photodynamic therapy. Angew. Chem. Int. Ed. 2018, 57, 9885–9890. [Google Scholar] [CrossRef]
- Zhang, E.; Zuo, Z.; Yu, W.; Zhao, H.; Xia, S.; Huang, Y.; Lv, F.; Liu, L.; Li, Y.; Wang, S. Photoactive conjugated poly-mer/graphdiyne nanocatalyst for CO2 reduction to CO in living cells for hypoxia tumor treatment. Mat. Chem. Front. 2021, 5, 5841–5845. [Google Scholar] [CrossRef]
- Vaupel, P.; Multhoff, G. Revisiting the Warburg effect: Historical dogma versus current understanding. J. Physiol. 2020, 599, 1745–1757. [Google Scholar] [CrossRef]
- Moreno-Sánchez, R.; Rodriguez-Enriquez, S.; Marín-Hernández, Á.; Saavedra, E. Energy metabolism in tumor cells. FEBS J. 2007, 274, 1393–1418. [Google Scholar] [CrossRef]
- Moreno-Sánchez, R.; Marín-Hernández, Á.; Saavedra, E.; Pardo, J.P.; Ralph, S.; Rodriguez-Enriquez, S. Who controls the ATP supply in cancer cells? Biochemistry lessons to understand cancer energy metabolism. Int. J. Biochem. Cell Biol. 2014, 50, 10–23. [Google Scholar] [CrossRef]
- Dong, P.; Hu, J.; Yu, S.; Zhou, Y.; Shi, T.; Zhao, Y.; Wang, X.; Liu, X. A mitochondrial oxidative stress amplifier to overcome hypoxia resistance for enhanced photodynamic therapy. Small Methods 2021, 5, 2100581. [Google Scholar] [CrossRef]
- Chen, D.; Suo, M.; Guo, J.; Tang, W.; Jiang, W.; Liu, Y.; Duo, Y. Development of MOF “armor-plated” phycocyanin and syn-ergistic inhibition of cellular respiration for hypoxic photodynamic therapy in patient-derived xenograft models. Adv. Healthc. Mater. 2020, 10, 2001577. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.T.; Zhou, T.J.; Cui, P.F.; He, Y.J.; Chang, X.; Xing, L.; Jiang, H.L. Modulation of intracellular oxygen pressure by du-al-drug nanoparticles to enhance photodynamic therapy. Adv. Funct. Mater. 2019, 29, 1806708. [Google Scholar] [CrossRef]
- Zhao, L.-P.; Zheng, R.-R.; Chen, H.-Q.; Liu, L.-S.; Zhao, X.-Y.; Liu, H.; Qiu, X.-Z.; Yu, X.-Y.; Cheng, H.; Li, S.-Y. Self-delivery nanomedicine for O2-economized photodynamic tumor therapy. Nano Lett. 2020, 20, 2062–2071. [Google Scholar] [CrossRef]
- Xia, D.; Xu, P.; Luo, X.; Zhu, J.; Gu, H.; Huo, D.; Hu, Y. Overcoming hypoxia by multistage nanoparticle delivery system to inhibit mitochondrial respiration for photodynamic therapy. Adv. Funct. Mater. 2019, 29, 1807294. [Google Scholar] [CrossRef]
- Wang, D.; Xue, B.; Ohulchanskyy, T.; Liu, Y.; Yakovliev, A.; Ziniuk, R.; Xu, M.; Song, J.; Qu, J.; Yuan, Z. Inhibiting tumor oxygen metabolism and simultaneously generating oxygen by intelligent upconversion nanotherapeutics for enhanced photodynamic therapy. Biomaterials 2020, 251, 120088. [Google Scholar] [CrossRef]
- Yuan, P.; Deng, F.; Liu, Y.; Zheng, R.; Rao, X.; Qiu, X.; Zhang, D.; Yu, X.; Cheng, H.; Li, S. Mitochondria targeted O2 economizer to alleviate tumor hypoxia for enhanced photodynamic therapy. Adv. Health Mater. 2021, 10, 2100198. [Google Scholar] [CrossRef]
- Li, M.; Shao, Y.; Kim, J.H.; Pu, Z.; Zhao, X.; Huang, H.; Xiong, T.; Kang, Y.; Li, G.; Shao, K.; et al. Unimolecular photodynamic O2-economizer to overcome hypoxia resistance in phototherapeutics. J. Am. Chem. Soc. 2020, 142, 5380–5388. [Google Scholar] [CrossRef]
- Yang, Z.J.; Chen, Q.; Chen, J.W.; Dong, Z.L.; Zhang, R.; Liu, J.J.; Liu, Z. Tumor-pH-responsive dissociable albumin-tamoxifen nanocomplexes enabling efficient tumor penetration and hypoxia relief for enhanced cancer photodynamic therapy. Small 2018, 14, 1803262. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, J.; Liu, S.; Li, X.; Miao, L.; Yang, B.; Zhang, C.; He, J.; Ai, S.; Guan, W. Defeating relapsed and refractory malignancies through a nano-enabled mitochondria-mediated respiratory inhibition and damage pathway. Biomaterials 2020, 229, 119580. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ding, X.; Yu, B.; Zhang, X.; Shen, Y.; Cong, H. Tumor microenvironment-responsive polymer with chlorin e6 to interface hollow mesoporous silica nanoparticles-loaded oxygen supply factor for boosted photodynamic therapy. Nanotechnology 2020, 31, 305709. [Google Scholar] [CrossRef]
- Jiang, W.; Zhang, C.; Ahmed, A.; Zhao, Y.L.; Deng, Y.; Ding, Y.; Cai, J.F.; Hu, Y. H2O2-sensitive upconversion nanocluster bomb for tri-mode imaging-guided photodynamic therapy in deep tumor tissue. Adv. Healthc. Mater. 2019, 8, 1900972. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.; Zhang, S.; Guo, X.; Li, Y.; Ren, J.; Zhou, H.; Du, B.; Zhou, J. A traceable nanoplatform for enhanced chemo-photodynamic therapy by reducing oxygen consumption. Nanomed. Nanotechnol. Biol. Med. 2019, 20, 101978. [Google Scholar] [CrossRef] [PubMed]
- Zuo, H.Q.; Tao, J.X.; Shi, H.; He, J.; Zhou, Z.Y.; Zhang, C. Platelet-mimicking nanoparticles co-loaded with W18O49 and met-formin alleviate tumor hypoxia for enhanced photodynamic therapy and photothermal therapy. Acta Biomater. 2018, 80, 296–307. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Song, J.; Lei, Y.; Zhang, X.; Chen, Z.; Lu, Z.; Zhang, L.; Wang, Z. A metformin-based nanoreactor alleviates hypoxia and reduces ATP for cancer synergistic therapy. Biomater. Sci. 2021, 9, 7456–7470. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Yang, X.; Fu, H.; Chen, C.; Zhang, Y.; Wu, Z.; Duan, Y.; Sun, Y. Immune/hypoxic tumor microenvironment regu-lation-enhanced photodynamic treatment realized by pH-responsive phase transition-targeting nanobubbles. ACS Appl. Mater. Interfaces 2021, 13, 32763–32779. [Google Scholar] [CrossRef]
- Yu, W.Y.; Liu, T.; Zhang, M.K.; Wang, Z.X.; Ye, J.J.; Li, C.X.; Liu, W.L.; Li, R.Q.; Feng, J.; Zhang, X.Z. O2 economizer for in-hibiting cell respiration to combat the hypoxia obstacle in tumor treatments. ACS Nano 2019, 13, 1784–1794. [Google Scholar]
- Xiang, Q.; Qiao, B.; Luo, Y.; Cao, J.; Fan, K.; Hu, X.; Hao, L.; Cao, Y.; Zhang, Q.; Wang, Z. Increased photodynamic therapy sensitization in tumors using a nitric oxide-based nanoplatform with ATP-production blocking capability. Theranostics 2021, 11, 1953–1969. [Google Scholar] [CrossRef]
- Lan, Y.; Zhu, X.; Tang, M.; Wu, Y.; Zhang, J.; Liu, J.; Zhang, Y. Construction of a near-infrared responsive upconversion na-noplatform against hypoxic tumors via NO-enhanced photodynamic therapy. Nanoscale 2020, 12, 7875–7887. [Google Scholar] [CrossRef]
- Li, W.; Yong, J.; Xu, Y.; Wang, Y.; Zhang, Y.; Ren, H.; Li, X. Glutathione depletion and dual-model oxygen balance disruption for photodynamic therapy enhancement. Colloids Surf. B Biointerfaces 2019, 183, 110453. [Google Scholar] [CrossRef]
- Xiao, Z.; Halls, S.; Dickey, D.; Tulip, J.; Moore, R. Fractionated versus standard continuous light delivery in interstitial photodynamic therapy of dunning prostate carcinomas. Clin. Cancer Res. 2007, 13, 7496–7505. [Google Scholar] [CrossRef] [Green Version]
- Turan, I.S.; Yildiz, D.; Turksoy, A.; Gunaydin, G.; Akkaya, E.U. A bifunctional photosensitizer for enhanced fractional pho-todynamic therapy: Singlet oxygen generation in the presence and absence of light. Angew. Chem. Int. Ed. 2016, 55, 2875–2878. [Google Scholar] [CrossRef] [PubMed]
- De Souza, A.L.R.; Marra, K.; Gunn, J.; Samkoe, K.S.; Kanick, S.C.; Davis, S.C.; Chapman, M.S.; Maytin, E.V.; Hasan, T.; Pogue, B.W. Comparing desferrioxamine and light fractionation enhancement of ALA-PpIX photodynamic therapy in skin cancer. Br. J. Cancer 2016, 115, 805–813. [Google Scholar] [CrossRef] [Green Version]
- Cosme, J.R.A.; Gagui, D.C.; Green, N.H.; Bryant, H.E.; Claeyssens, F. In vitro low-fluence photodynamic therapy parameter screening using 3D tumor spheroids shows that fractionated light treatments enhance phototoxicity. ACS Biomater. Sci. Eng. 2021, 7, 5078–5089. [Google Scholar] [CrossRef]
- Zhang, P.; Wu, G.; Zhao, C.; Zhou, L.; Wang, X.; Wei, S. Magnetic stomatocyte-like nanomotor as photosensitizer carrier for photodynamic therapy based cancer treatment. Colloid Surf. B-Biointerfaces 2020, 194, 111204. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Lin, Z.; Wang, D.; Wu, Z.; Xie, H.; He, Q. Red blood cell-mimicking micromotor for active photodynamic cancer therapy. ACS Appl. Mater. Interfaces 2019, 11, 23392–23400. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Lin, Z.; Zhou, C.; Wang, D.; He, Q. Acoustophoretic motion of erythrocyte-mimicking hemoglobin micromotors. Chin. J. Chem. 2020, 38, 1589–1594. [Google Scholar] [CrossRef]
- Li, Y.-H.; Zhou, S.; Jian, X.; Zhang, X.; Song, Y.-Y. Asymmetrically coating Pt nanoparticles on magnetic silica nanospheres for target cell capture and therapy. Microchim. Acta 2021, 188, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Sun, Z.; Jiang, S.; Lai, X.; Böckler, A.; Huang, H.; Peng, F.; Liu, L.; Chen, Y. Tadpole-like unimolecular nwith sub-100 nm size swims in a tumor microenvironment model. Nano Lett. 2019, 19, 8749–8757. [Google Scholar] [CrossRef]
- Peng, F.; Men, Y.; Tu, Y.; Chen, Y.; Wilson, D.A. Nanomotor-based strategy for enhanced penetration across vasculature model. Adv. Funct. Mater. 2018, 28, 1706117. [Google Scholar] [CrossRef]
- Zhou, T.-J.; Xing, L.; Fan, Y.-T.; Cui, P.-F.; Jiang, H.-L. Light triggered oxygen-affording engines for repeated hypoxia-resistant photodynamic therapy. J. Control. Release 2019, 307, 44–54. [Google Scholar] [CrossRef] [PubMed]
- Huo, M.; Wang, L.; Zhang, L.; Wei, C.; Chen, Y.; Shi, J. Photosynthetic tumor oxygenation by photosensitizer-containing cyanobacteria for enhanced photodynamic therapy. Angew. Chem. Int. Ed. 2020, 59, 1906–1913. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Zhang, Y.; Zhang, C.; Wang, H.; Pan, H.; Liu, J.; Li, Z.; Chen, L.; Chang, J.; Zhang, W. Cyanobacteria-based bio-oxygen pump promoting hypoxia-resistant photodynamic therapy. Front. Bioeng. Biotechnol. 2020, 8, 237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; He, H.; Luo, Z.; Zhou, H.; Liang, R.; Pan, H.; Ma, Y.; Cai, L. In situ photocatalyzed oxygen generation with photosynthetic bacteria to enable robust immunogenic photodynamic therapy in triple-negative breast cancer. Adv. Funct. Mater. 2020, 30, 1910176. [Google Scholar] [CrossRef]
- He, C.; Dong, C.; Hu, H.; Yu, L.; Chen, Y.; Hao, Y. Photosynthetic oxygen-self-generated 3D-printing microbial scaffold en-hances osteosarcoma elimination and prompts bone regeneration. Nano Today 2021, 41, 101297. [Google Scholar] [CrossRef]
- Qi, F.; Ji, P.; Chen, Z.; Wang, L.; Yao, H.; Huo, M.; Shi, J. Photosynthetic cyanobacteria-hybridized black phosphorus nanosheets for enhanced tumor photodynamic therapy. Small 2021, 17, 2102113. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.; Zhang, C.; Yang, C.; Tian, R.; Sun, T.; Zhang, W.; Chang, J.; Wang, H. An injectable hydrogel co-loading with cyanobacteria and upconversion nanoparticles for enhanced photodynamic tumor therapy. Colloids Surf. B Biointerfaces 2021, 201, 111640. [Google Scholar] [CrossRef]
- Zhong, D.; Li, W.; Qi, Y.; He, J.; Zhou, M. Photosynthetic biohybrid nanoswimmers system to alleviate tumor hypoxia for FL/PA/MR imaging-guided enhanced radio-photodynamic synergetic therapy. Adv. Funct. Mater. 2020, 30, 1910395. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, H.; Dai, X.; Li, H.; Zhou, X.; Chen, S.; Zhang, J.; Liang, X.-J.; Li, Z. Cyanobacteria-based near-infrared light-excited self-supplying oxygen system for enhanced photodynamic therapy of hypoxic tumors. Nano Res. 2021, 14, 667–673. [Google Scholar] [CrossRef]
- Wang, H.; Guo, Y.; Wang, C.; Jiang, X.; Liu, H.; Yuan, A.; Yan, J.; Hu, Y.; Wu, J. Light-controlled oxygen production and collection for sustainable photodynamic therapy in tumor hypoxia. Biomaterials 2021, 269, 120621. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zhong, D.; Hua, S.; Du, Z.; Zhou, M. Biomineralized biohybrid algae for tumor hypoxia modulation and cascade radio-photodynamic therapy. ACS Appl. Mater. Interfaces 2020, 12, 44541–44553. [Google Scholar] [CrossRef] [PubMed]
- Zheng, D.; Li, B.; Xu, L.; Zhang, Q.L.; Fan, J.X.; Li, C.X.; Zhang, X.Z. Normalizing tumor microenvironment based on photo-synthetic abiotic/biotic nanoparticles. ACS Nano 2018, 12, 6218–6227. [Google Scholar] [CrossRef]
- Cheng, Y.; Zheng, R.; Wu, X.; Xu, K.; Song, P.; Wang, Y.; Yan, J.; Chen, R.; Li, X.; Zhang, H. Thylakoid membranes with unique photosystems used to simultaneously produce self-supplying oxygen and singlet oxygen for hypoxic tumor therapy. Adv. Health Mater. 2021, 10, e2001666. [Google Scholar] [CrossRef] [PubMed]
- Berry, J.; Bjorkman, O. Phtosynthetic response and adaptation to temperature in higher-plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1980, 31, 491–543. [Google Scholar] [CrossRef]
- Santarius, K.A. Sites of heat sensitivity in chloroplasts and differential inactivation of cyclic and noncyclic photophosphory-lation by heating. J. Therm. Biol. 1976, 1, 101–107. [Google Scholar] [CrossRef]
- Spahn, D.R. Blood substitutes Artificial oxygen carriers: Perfluorocarbon emulsions. Crit. Care 1999, 3, R93–R97. [Google Scholar] [CrossRef] [Green Version]
- Cheng, X.; Li, H.; Ge, X.; Chen, L.; Liu, Y.; Mao, W.; Zhao, B.; Yuan, W.-E. Tumor-microenvironment- responsive size-shrinkable drug-delivery nanosystems for deepened penetration into tumors. Front. Mol. Biosci. 2020, 7, 576420. [Google Scholar] [CrossRef]
- Chen, W.H.; Sun, Z.; Jiang, C.H.; Sun, W.B.; Yu, B.; Wang, W.; Lu, L.H. An all-in-one organic semiconductor for targeted photoxidation catalysis in hypoxic tumor. Angew. Chem. Int. Ed. 2021, 60, 16641–16648. [Google Scholar] [CrossRef] [PubMed]
- Zheng, D.-W.; Li, B.; Li, C.-X.; Fan, J.-X.; Lei, Q.; Li, C.; Xu, Z.; Zhang, X.-Z. Carbon-dot-decorated carbon nitride nanoparticles for enhanced photodynamic therapy against hypoxic tumor via water splitting. ACS Nano 2016, 10, 8715–8722. [Google Scholar] [CrossRef]
- Cheng, H.L.; Guo, H.L.; Xie, A.J.; Shen, Y.H.; Zhu, M.Z. 4-in-1 Fe3O4/g-C3N4@PPy-DOX nanocomposites: Magnetic targeting guided trimode combinatorial chemotherapy/PDT/PTT for cancer. J. Inorg. Biochem. 2021, 215, 111329. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhang, C.; Liu, X.; Chen, Z.; Peng, S.; Zhong, Z.; Zhang, X. A tungsten nitride-based O2 self-sufficient nanoplatform for enhanced photodynamic therapy against hypoxic tumors. Adv. Ther. 2019, 2, 1900012. [Google Scholar] [CrossRef]
- Yang, D.; Yang, G.; Sun, Q.; Gai, S.; He, F.; Dai, Y.; Zhong, C.; Yang, P. Carbon-dot-decorated TiO2 nanotubes toward pho-todynamic therapy based on water-splitting mechanism. Adv. Healthc. Mater. 2018, 7, 1800042. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Zhang, Z.; Wang, Q.; Dou, J.; Zhao, Y.; Ma, Y.; Liu, H.; Xu, H.; Wang, Y. Tumor reoxygenation and blood perfusion enhanced photodynamic therapy using ultrathin graphdiyne oxide nanosheets. Nano Lett. 2019, 19, 4060–4067. [Google Scholar] [CrossRef]
- Li, M.; Lin, H.; Qu, F. FeS2@C-ICG-PEG nanostructure with intracellular O2 generation for enhanced photo-dynamic/thermal therapy and imaging. Chem. Eng. J. 2020, 384, 123374. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, X.; Wang, X.; Wang, P.; Ruan, S.; Xie, A.; Shen, Y.; Zhu, M. 4-in-1 phototheranostics: PDA@CoPA-LA nano-composite for photothermal imaging/photothermal/in-situ O2 generation/photodynamic combination therapy. Chem. Eng. J. 2020, 387, 124113. [Google Scholar] [CrossRef]
- Huang, Y.; Tian, Y.; Shu, J.; Wang, F.; Wei, X. Oxygen self-enriched single-component “black carbon nitride” for near-infrared phototheranostics. Nanoscale 2020, 12, 21812–21820. [Google Scholar] [CrossRef]
- Li, R.-Q.; Zhang, C.; Xie, B.-R.; Yu, W.-Y.; Qiu, W.-X.; Cheng, H.; Zhang, X.-Z. A two-photon excited O2-evolving nanocomposite for efficient photodynamic therapy against hypoxic tumor. Biomaterials 2019, 194, 84–93. [Google Scholar] [CrossRef]
- Yang, L.; Wei, Y.; Xing, D.; Chen, Q. Increasing the efficiency of photodynamic therapy by improved light delivery and oxygen supply using an anticoagulant in a solid tumor model. Lasers Surg. Med. 2010, 42, 671–679. [Google Scholar] [CrossRef]
- Hu, D.; Sheng, Z.; Gao, G.; Siu, F.; Liu, C.; Wan, Q.; Gong, P.; Zheng, H.; Ma, Y.; Cai, L. Activatable albumin-photosensitizer nanoassemblies for triple-modal imaging and thermal-modulated photodynamic therapy of cancer. Biomaterials 2016, 93, 10–19. [Google Scholar] [CrossRef]
- Wang, M.; Zhao, J.; Zhang, L.; Wei, F.; Lian, Y.; Wu, Y.; Gong, Z.; Zhang, S.; Zhou, J.; Cao, K.; et al. Role of tumor microenvironment in tumorigenesis. J. Cancer 2017, 8, 761–773. [Google Scholar] [CrossRef]
- Yang, N.; Xiao, W.; Song, X.; Wang, W.; Dong, X. Recent advances in tumor microenvironment hydrogen peroxide-responsive materials for cancer photodynamic therapy. Nano Micro Lett. 2020, 12, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Li, Y.; Yang, W.; Zhou, L.; Wei, S. Nanozyme with robust catalase activity by multiple mechanisms and its application for hypoxic tumor treatment. Adv. Healthc. Mater. 2021, 10, 2100601. [Google Scholar] [CrossRef]
- Liu, J.; Wang, L.; Shen, X.; Gao, X.; Chen, Y.; Liu, H.; Liu, Y.; Yin, D.; Liu, Y.; Xu, W.; et al. Graphdiyne-templated palladium-nanoparticle assembly as a robust oxygen generator to attenuate tumor hypoxia. Nano Today 2020, 34, 100907. [Google Scholar] [CrossRef]
- Xu, T.; Zhu, X.; Yang, L.; Bu, Y.; Zhang, Y.; Zhang, J.; Wang, L.; Yu, Z.; Zhou, H. Defective transition metal hydroxide-based nanoagents with hypoxia relief for photothermal-enhanced photodynamic therapy. J. Mater. Chem. B 2020, 9, 1018–1029. [Google Scholar] [CrossRef]
- Mu, J.; Zhang, L.; Zhao, M.; Wang, Y. Co3O4 nanoparticles as an efficient catalase mimic: Properties, mechanism and its electrocatalytic sensing application for hydrogen peroxide. J. Mol. Catal. A Chem. 2013, 378, 30–37. [Google Scholar] [CrossRef]
- Wu, J.; Niu, S.; Bremner, D.H.; Nie, W.; Fu, Z.; Li, D.; Zhu, L.M. A tumor microenvironment-responsive biodegradable mesoporous nanosystem for anti-inflammation and cancer theranostics. Adv. Healthc. Mater. 2020, 9, 1901307. [Google Scholar] [CrossRef]
- Yuan, X.Y.; Cen, J.Q.; Chen, X.; Jia, Z.; Zhu, X.F.; Huang, Y.Q.; Yuan, G.L.; Liu, J. Iridium oxide nanoparticles mediated enhanced photodynamic therapy combined with photothermal therapy in the treatment of breast cancer. J. Colloid Interface Sci. 2022, 605, 851–862. [Google Scholar] [CrossRef] [PubMed]
- Yao, C.; Wang, W.; Wang, P.; Zhao, M.; Li, X.; Zhang, F. Near-infrared upconversion mesoporous cerium oxide hollow bio-photocatalyst for concurrent pH-/H2O2-responsive O2-evolving synergetic cancer therapy. Adv. Mater. 2018, 30, 1704833. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Ding, Y. Cerium oxide nanoparticles-mediated cascade catalytic chemo-photo tumor combination therapy. Nano Res. 2021, 15, 1–13. [Google Scholar] [CrossRef]
- Dong, P.; Wang, W.; Pan, M.; Yu, W.; Liu, Y.; Shi, T.; Hu, J.; Zhou, Y.; Yu, S.; Wang, F.; et al. cascaded amplifier nanoreactor for efficient photodynamic therapy. ACS Appl. Mater. Interfaces 2021, 13, 16075–16083. [Google Scholar] [CrossRef]
- Yang, X.; Liu, R.; Zhong, Z.; Huang, H.; Shao, J.; Xie, X.; Zhang, Y.; Wang, W.; Dong, X. Platinum nanoenzyme functionalized black phosphorus nanosheets for photothermal and enhanced-photodynamic therapy. Chem. Eng. J. 2021, 409, 127381. [Google Scholar] [CrossRef]
- Liu, C.-P.; Wu, T.-H.; Liu, C.-Y.; Chen, K.-C.; Chen, Y.-X.; Chen, G.-S.; Lin, S.-Y. Self-supplying O2 through the catalase-like activity of gold nanoclusters for photodynamic therapy against hypoxic cancer cells. Small 2017, 13, 1700278. [Google Scholar] [CrossRef] [PubMed]
- Lan, G.; Ni, K.; Xu, Z.; Veroneau, S.; Song, Y.; Lin, W. Nanoscale metal–organic framework overcomes hypoxia for photodynamic therapy primed cancer immunotherapy. J. Am. Chem. Soc. 2018, 140, 5670–5673. [Google Scholar] [CrossRef] [PubMed]
- Hou, H.; Huang, X.; Wei, G.; Xu, F.; Wang, Y.; Zhou, S. Fenton reaction-assisted photodynamic therapy for cancer with multifunctional magnetic nanoparticles. ACS Appl. Mater. Interfaces 2019, 11, 29579–29592. [Google Scholar] [CrossRef]
- Shi, L.; Hu, F.; Duan, Y.; Wu, W.; Dong, J.; Meng, X.; Zhu, X.; Liu, B. Hybrid nanospheres to overcome hypoxia and intrinsic oxidative resistance for enhanced photodynamic therapy. ACS Nano 2020, 14, 2183–2190. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Jiang, Z.; Chen, L.; Pan, C.; Sun, S.; Liu, C.; Li, Z.; Ren, W.; Wu, A.; Huang, P. PCN-Fe(III)-PTX nanoparticles for MRI guided high efficiency chemo-photodynamic therapy in pancreatic cancer through alleviating tumor hypoxia. Nano Res. 2020, 13, 273–281. [Google Scholar] [CrossRef]
- Rajalakshmi, R.; Mahesh, K.; Kumar, C.K. A critical review on nano emulsions. Int. J. Innov. Drug Dis. 2011, 1, 1–8. [Google Scholar]
- Rich, L.; Damasco, J.; Bulmahn, J.; Kutscher, H.; Prasad, P.; Seshadri, M. Photoacoustic and magnetic resonance imaging of hybrid manganese dioxide-coated ultra-small NaGdF4 nanoparticles for spatiotemporal modulation of hypoxia in head and neck cancer. Cancers 2020, 12, 3294. [Google Scholar] [CrossRef]
- Li, S.Y.; Zhao, L.P.; Zheng, R.R.; Fan, G.L.; Liu, L.S.; Zhou, X.; Chen, X.T.; Qiu, X.Z.; Yu, X.Y.; Cheng, H. Tumor microenvi-ronment adaptable nanoplatform for O2 self-sufficient chemo/photodynamic combination therapy. Part. Part. Syst. Charact. 2020, 37, 1900496. [Google Scholar] [CrossRef]
- Nwahara, N.; Abrahams, G.; Prinsloo, E.; Nyokong, T. Folic acid-modified phthalocyanine-nanozyme loaded liposomes for targeted photodynamic therapy. Photodiagn. Photodyn. Ther. 2021, 36, 102527. [Google Scholar] [CrossRef]
- Wu, F.; Zhang, Q.; Sun, B.; Chu, X.; Zhang, M.; She, Z.; Li, Z.; Zhou, N.; Wang, J.; Li, A. MoO3-x nanosheets-based platform for single NIR laser induced efficient PDT/PTT of cancer. J. Control. Release 2021, 338, 46–55. [Google Scholar] [CrossRef]
- Zhu, D.; Wang, B.; Zhu, X.-H.; Zhu, H.-L.; Ren, S.-Z. A MnO2-coated multivariate porphyrinic metal–organic framework for oxygen self-sufficient chemo-photodynamic synergistic therapy. Nanomed. Nanotechnol. Biol. Med. 2021, 37, 102440. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, Z.; He, W.; Ren, J.; Wong, C.-Y. One-pot synthesis of a self-reinforcing cascade bioreactor for combined photodynamic/chemodynamic/starvation therapy. J. Colloid Interface Sci. 2021, 599, 543–555. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Song, J.; Zhu, J.; Hong, G.; An, J.; Feng, E.; Peng, X.; Song, F. A dual-nanozyme-catalyzed cascade reactor for en-hanced photodynamic oncotherapy against tumor hypoxia. Adv. Healthc. Mater. 2021, 10, 2101049. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhou, C.; Zhang, J.; Xu, F.; Zheng, Y.; Wang, S.; Zou, D. Photo-induced tumor therapy using MnO2/IrO2-PVP nano-enzyme with TME-responsive behaviors. Colloid Surf. B Biointerfaces 2021, 205, 111852. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Chen, Z.; Yao, Z.; Zhao, K.; Shao, F.; Su, J.; Liu, S. Black Phosphorus quantum dots encapsulated biodegradable hollow mesoporous MnO2: Dual-modality cancer imaging and synergistic chemo-phototherapy. Adv. Funct. Mater. 2021, 31, 2104643. [Google Scholar] [CrossRef]
- Liu, P.; Zhou, Y.; Shi, X.; Yuan, Y.; Peng, Y.; Hua, S.; Luo, Q.; Ding, J.; Li, Y.; Zhou, W. A cyclic nano-reactor achieving en-hanced photodynamic tumor therapy by reversing multiple resistances. J. Nanobiotechnol. 2021, 19, 149. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Xie, X.; Liu, M.; Hu, S.; Ding, J.; Zhou, W. A smart MnO2-doped graphene oxide nanosheet for enhanced chemo-photodynamic combinatorial therapy via simultaneous oxygenation and glutathione depletion. Acta Pharm. Sin. B 2021, 11, 823–834. [Google Scholar] [CrossRef]
- Huang, Y.; Shen, K.; Si, Y.; Shan, C.; Guo, H.; Chen, M.; Wu, L. Dendritic organosilica nanospheres with large mesopores as multi-guests vehicle for photoacoustic/ultrasound imaging-guided photodynamic therapy. J. Colloid Interface Sci. 2021, 583, 166–177. [Google Scholar] [CrossRef]
- Zhu, T.; Shi, L.; Ma, C.; Xu, L.; Yang, J.; Zhou, G.; Zhu, X.; Shen, L. Fluorinated chitosan-mediated intracellular catalase delivery for enhanced photodynamic therapy of oral cancer. Biomater. Sci. 2021, 9, 658–662. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Yin, Y.; Jin, W.; Zhang, B.; Yan, H.; Mei, H.; Wang, H.; Guo, T.; Shi, W.; Hu, Y. Tissue factor-targeted “O2-Evolving” nanoparticles for photodynamic therapy in Malignant Lymphoma. Front. Oncol. 2020, 10, 524712. [Google Scholar] [CrossRef]
- Shen, L.; Huang, Y.; Chen, D.; Qiu, F.; Ma, C.; Jin, X.; Zhu, X.; Zhou, G.; Zhang, Z. PH-responsive aerobic nanoparticles for effective photodynamic therapy. Theranostics 2017, 7, 4537–4550. [Google Scholar] [CrossRef] [Green Version]
- Zhou, R.; Ohulchanskyy, T.Y.; Xu, H.; Ziniuk, R.; Qu, J. Catalase nanocrystals loaded with methylene blue as oxygen self-supplied, imaging-guided platform for photodynamic therapy of hypoxic tumors. Small 2021, 17, 2103569. [Google Scholar] [CrossRef]
- Shi, C.; Li, M.; Zhang, Z.; Yao, Q.; Shao, K.; Xu, F.; Xu, N.; Li, H.; Fan, J.; Sun, W.; et al. Cata-lase-based liposomal for reversing immunosuppressive tumor microenvironment and enhanced cancer chemo-photodynamic therapy. Biomaterials 2020, 233, 119755. [Google Scholar] [CrossRef]
- Deng, X.; Yang, W.; Shao, Z.; Zhao, Y. Genetically modified bacteria for targeted phototherapy of tumor. Biomaterials 2021, 272, 120809. [Google Scholar] [CrossRef]
- Ding, S.; Liu, Z.; Huang, C.; Zeng, N.; Jiang, W.; Li, Q. Novel engineered bacterium/black phosphorus quantum dot hybrid system for hypoxic tumor targeting and efficient photodynamic therapy. ACS Appl. Mater. Interfaces 2021, 13, 10564–10573. [Google Scholar] [CrossRef]
- Cheng, X.; He, L.; Xu, J.; Fang, Q.; Yang, L.; Xue, Y.; Wang, X.; Tang, R. Oxygen-producing catalase-based prodrug nanopar-ticles overcoming resistance in hypoxia-mediated chemo-photodynamic therapy. Acta Biomater. 2020, 112, 234–249. [Google Scholar] [CrossRef] [PubMed]
- Hong, L.; Zhang, J.; Geng, J.; Qu, J.; Liu, L. Development of a hydrogen peroxide-responsive and oxygen-carrying nanoemul-sion for photodynamic therapy against hypoxic tumors using phase inversion composition method. J. Innov. Opt. Health Sci. 2021, 14, 2150003. [Google Scholar] [CrossRef]
- Zhang, C.; Qin, W.-J.; Bai, X.-F.; Zhang, X.-Z. Nanomaterials to relieve tumor hypoxia for enhanced photodynamic therapy. Nano Today 2020, 35, 100960. [Google Scholar] [CrossRef]
- Riggs, A.F. The Bohr effect. Annu. Rev. Physiol. 1988, 50, 181–204. [Google Scholar] [CrossRef]
- Jia, Q.; Ge, J.; Liu, W.; Zheng, X.; Chen, S.; Wen, Y.; Zhang, H.; Wang, P. A Magnetofluorescent carbon dot assembly as an acidic H2O2-driven oxygenerator to regulate tumor hypoxia for simultaneous bimodal imaging and enhanced photodynamic therapy. Adv. Mater. 2018, 30, e1706090. [Google Scholar] [CrossRef] [PubMed]
- Buehler, P.W.; Zhou, Y.; Cabrales, P.; Jia, Y.; Sun, G.; Harris, D.R.; Tsai, A.G.; Intaglietta, M.; Palmer, A.F. Synthesis, biophysical properties and pharmacokinetics of ultrahigh molecular weight tense and relaxed state polymerized bovine hemoglobins. Biomaterials 2010, 31, 3723–3735. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Liu, L.; Liang, R.; Luo, Z.; He, H.; Wu, Z.; Tian, H.; Zheng, M.; Ma, Y.; Cai, L. Bioinspired hybrid protein oxygen nanocarrier amplified photodynamic therapy for eliciting anti-tumor immunity and abscopal effect. ACS Nano 2018, 12, 8633–8645. [Google Scholar] [CrossRef]
- Guo, X.; Qu, J.; Zhu, C.; Li, W.; Luo, L.; Yang, J.; Yin, X.; Li, Q.; Du, Y.; Chen, D.; et al. Synchronous delivery of oxygen and photosensitizer for alleviation of hypoxia tumor microenvironment and dramatically enhanced photodynamic therapy. Drug Deliv. 2018, 25, 585–599. [Google Scholar] [CrossRef]
- Xu, T.; Ma, Y.; Yuan, Q.; Hu, H.; Hu, X.; Qian, Z.; Rolle, J.K.; Gu, Y.; Li, S. Enhanced ferroptosis by oxygen-boosted photo-therapy based on 2-in-1 nanoplatform of ferrous hemoglobin for tumor synergistic therapy. ACS Nano 2020, 14, 3414–3425. [Google Scholar] [CrossRef]
- Shi, X.; Zhan, Q.; Yan, X.; Zhou, J.; Zhou, L.; Wei, S. Oxyhemoglobin nano-recruiter preparation and its application in bio-mimetic red blood cells to relieve tumor hypoxia and enhance photodynamic therapy activity. J. Mat. Chem. B 2020, 8, 534–545. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Yang, W.; Ma, Q.; Lu, Y.; Xu, Y.; Bian, K.; Liu, F.; Shi, C.; Wang, H.; Shi, Y.; et al. Hemoglobin-mediated biomimetic synthesis of paramagnetic O2-evolving theranostic nanoprobes for MR imaging-guided enhanced photodynamic therapy of tumor. Theranostics 2020, 10, 11607–11621. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.-L.; Liu, T.; Zou, M.; Yu, W.; Li, C.; He, Z.; Zhang, M.; Liu, M.; Li, Z.; Feng, J.; et al. Aggressive man-made red blood cells for hypoxia-resistant photodynamic therapy. Adv. Mater. 2018, 30, e1802006. [Google Scholar] [CrossRef]
- Wang, P.; Wang, X.; Luo, Q.; Li, Y.; Lin, X.; Fan, L.; Zhang, Y.; Liu, J.; Liu, X. Fabrication of red blood cell-based multimodal theranostic probes for second near-infrared window fluorescence imaging-guided tumor surgery and photodynamic therapy. Theranostics 2019, 9, 369–380. [Google Scholar] [CrossRef] [PubMed]
- Hong, L.; Wang, J.-L.; Geng, J.-X.; Zhao, Y.-H.; Zhou, G.-X.; Zhang, J.; Liu, L.-W.; Qu, J.-L. Rational design of an oxygen-enriching nanoemulsion for enhanced near-infrared laser activatable photodynamic therapy against hypoxic tumors. Colloids Surf. B Biointerfaces 2021, 198, 111500. [Google Scholar] [CrossRef]
- Cheng, Y.; Jiang, C.; Qiu, X.; Wang, K.; Huan, W.; Yuan, A.; Wu, J.; Hu, Y. Perfluorocarbon nanoparticles enhance reactive oxygen levels and tumour growth inhibition in photodynamic therapy. Nat. Commun. 2015, 6, 8785. [Google Scholar] [CrossRef]
- Ren, H.; Liu, J.Q.; Su, F.H.; Ge, S.Z.; Yuan, A.; Dai, W.M.; Wu, J.H.; Hu, Y.Q. Relighting photosensitizers by synergistic inte-gration of albumin and perfluorocarbon for enhanced photodynamic therapy. ACS Appl. Mater. Interfaces 2017, 9, 3463–3473. [Google Scholar] [CrossRef]
- Wang, H.-Y.; Hou, L.; Li, H.-L.; Wang, X.; Cao, Y.; Zhang, B.-Y.; Wang, J.-T.; Wei, S.-J.; Dang, H.-W.; Ran, H.-T. A nanosystem loaded with perfluorohexane and rose bengal coupled upconversion nanoparticles for multimodal imaging and synergetic chemo-photodynamic therapy of cancer. Biomater. Sci. 2020, 8, 2488–2506. [Google Scholar] [CrossRef]
- Yan, K.; Mu, C.; Wang, D.; Jing, X.; Zhang, N.; Meng, L. Yolk-shell polyphosphazenes nanotheranostics for multimodal imaging guided effective phototherapy. Compos. Commun. 2021, 28, 100950. [Google Scholar] [CrossRef]
- Kv, R.; Liu, T.-I.; Lu, I.-L.; Liu, C.-C.; Chen, H.-H.; Lu, T.-Y.; Chiang, W.-H.; Chiu, H.-C. Tumor microenvironment-responsive and oxygen self-sufficient oil droplet nanoparticles for enhanced photothermal/photodynamic combination therapy against hypoxic tumors. J. Control. Release 2020, 328, 87–99. [Google Scholar] [CrossRef]
- Tao, D.; Feng, L.; Chao, Y.; Liang, C.; Song, X.; Wang, H.; Yang, K.; Liu, Z. Covalent organic polymers based on fluorinated porphyrin as oxygen nanoshuttles for tumor hypoxia relief and enhanced photodynamic therapy. Adv. Funct. Mater. 2018, 28, 1804901. [Google Scholar] [CrossRef]
- Ren, H.; Liu, J.; Li, Y.; Wang, H.; Ge, S.; Yuan, A.; Hu, Y.; Wu, J. Oxygen self-enriched nanoparticles functionalized with erythrocyte membranes for long circulation and enhanced phototherapy. Acta Biomater. 2017, 59, 269–282. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Chen, M.; Bhattarai, P.; Hameed, S.; Dai, Z. Perfluorocarbon@Porphyrin nanoparticles for tumor hypoxia relief to enhance photodynamic therapy against liver metastasis of colon cancer. ACS Nano 2020, 14, 13569–13583. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Zheng, P.; Li, Z.; Feng, X.; Yan, W.; Chen, S.; Guo, W.; Liu, D.; Yang, X.; Wang, S.; et al. Biomimetic O2-evolving metal-organic framework nanoplatform for highly efficient photodynamic therapy against hypoxic tumor. Biomaterials 2018, 178, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Cai, X.; Sun, C.; Liang, S.; Shao, S.; Huang, S.; Cheng, Z.; Pang, M.; Xing, B.; Kheraif, A.A.A.; et al. O2-loaded pH-responsive multifunctional nanodrug carrier for overcoming hypoxia and highly efficient chemo-photodynamic cancer therapy. Chem. Mater. 2019, 31, 483–490. [Google Scholar] [CrossRef]
Strategy | Representative Materials | Strengths | Shortcomings |
---|---|---|---|
Increasing oxygen utilization efficiency using micro-/nanomotors | Poly(ethylene glycol) block polystyrene, Fe3O4 nanoparticle-loaded hemoglobin | Deep tumor penetration through movement | Maximum efficiency limited by oxygen concentration |
Living organism oxygen generators | Chlorella, Cyanobacteria, Spirulina, and thylakoid membrane of green plants | Synchronous activation of oxygen supply and ROS generation, abundance of water in the human body beneficial for oxygen generation | Harsh tumor microenvironment harming organism activity; micrometer size limiting deep tumor penetration; light wavelengths in visible light range |
Light-driven water splitting | Tungsten nitride, carbon nanodot, graphdiyne oxide, iron disulfide, cobalt phytate, C3N4 | Synchronous activation of oxygen supply and ROS generation, abundance of water in the human body for oxygen production | Safety concern due to presence of metal ions |
Modification of tumor blood circulation | Heparin, warm water bath | Concurrent improvement of light delivery | Weak effect on tumor regions distant from blood vessels |
Tumor H2O2 decomposition | Metal-based materials, catalase | Inherent tumor specificity | Efficiency limited by H2O2 concentration |
Oxygen delivery | Hemoglobin, perfluorocarbon, metal–organic frameworks | High efficiency | Lack of inherent tumor specificity |
Materials for Tumor H2O2 Decomposition | Strengths | Shortcomings |
---|---|---|
Metal-based materials | Superior stability in environments with different pH values and temperatures | Lower activity than catalase, safety concern arisen from metal ions |
Catalase | High activity as a biological catalyst | Low stability in environments with different pH values and temperatures |
Strategy | Representative Materials | Strengths | Shortcomings |
---|---|---|---|
Hemoglobin | Modified hemoglobin, red blood cells | Tumor-specific oxygen release owing to Bohr effect, ability of the red blood cell membrane to escape from immune clearance | Low oxygen loading capacity, safety concern |
Perfluorocarbon | Perfluorohexane, perfluorooctyl bromide, perfluoro-15-crown-5-ether, perfluorotributylamine | High oxygen loading capacity, FDA-approved materials such as perfluorohexane, increased 1O2 lifetime | Relatively weak tumor-specific oxygen release |
Metal–organic frameworks | UiO-66, ZIF-90 | Multifunctionality, high oxygen loading capacity | Potential toxicity arisen from metal ions |
Strategy | Strengths | Shortcomings |
---|---|---|
Oxygen-independent phototherapy | Generation of ROS with stronger oxidation performance than 1O2 | Hypoxia-related issues such as drug-resistant gene expression unresolved |
Oxygen-economizing PDT | Synergetic ATP production inhibition | Maximum efficiency limited by the existing oxygen content |
Oxygen-supplementing PDT | Hypoxia-related issues such as drug-resistant gene expression attenuated | Difficulty in achieving both continuous and efficient oxygen supply |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, L.; Li, J.; Luo, Y.; Guo, T.; Zhang, C.; Ou, S.; Long, Y.; Hu, Z. Recent Advances in Strategies for Addressing Hypoxia in Tumor Photodynamic Therapy. Biomolecules 2022, 12, 81. https://doi.org/10.3390/biom12010081
Hong L, Li J, Luo Y, Guo T, Zhang C, Ou S, Long Y, Hu Z. Recent Advances in Strategies for Addressing Hypoxia in Tumor Photodynamic Therapy. Biomolecules. 2022; 12(1):81. https://doi.org/10.3390/biom12010081
Chicago/Turabian StyleHong, Liang, Jiangmin Li, Yali Luo, Tao Guo, Chenshuang Zhang, Sha Ou, Yaohang Long, and Zuquan Hu. 2022. "Recent Advances in Strategies for Addressing Hypoxia in Tumor Photodynamic Therapy" Biomolecules 12, no. 1: 81. https://doi.org/10.3390/biom12010081
APA StyleHong, L., Li, J., Luo, Y., Guo, T., Zhang, C., Ou, S., Long, Y., & Hu, Z. (2022). Recent Advances in Strategies for Addressing Hypoxia in Tumor Photodynamic Therapy. Biomolecules, 12(1), 81. https://doi.org/10.3390/biom12010081